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Preface to the First Edition

Computational chemistry, alternatively sometimes called theoretical chemistry or molecular
modeling (reflecting a certain factionalization amongst practitioners), is a field that can be
said to be both old and young. It is old in the sense that its foundation was laid with the
development of quantum mechanics in the early part of the twentieth century. It is young,
however, insofar as arguably no technology in human history has developed at the pace
that digital computers have over the last 35 years or so. The digital computer being the
‘instrument’ of the computational chemist, workers in the field have taken advantage of this
progress to develop and apply new theoretical methodologies at a similarly astonishing pace.

The evidence of this progress and its impact on Chemistry in general can be assessed in
various ways. Boyd and Lipkowitz, in their book series Reviews in Computational Chemistry,
have periodically examined such quantifiable indicators as numbers of computational papers
published, citations to computational chemistry software packages, and citation rankings of
computational chemists. While such metrics need not necessarily be correlated with ‘impor-
tance’, the exponential growth rates they document are noteworthy. My own personal (and
somewhat more whimsical) metric is the staggering increase in the percentage of exposi-
tion floor space occupied by computational chemistry software vendors at various chemistry
meetings worldwide – someone must be buying those products!

Importantly, the need for at least a cursory understanding of theory/computation/modeling
is by no means restricted to practitioners of the art. Because of the broad array of theoretical
tools now available, it is a rare problem of interest that does not occupy the attention of both
experimental and theoretical chemists. Indeed, the synergy between theory and experiment
has vastly accelerated progress in any number of areas (as one example, it is hard to imagine
a modern paper on the matrix isolation of a reactive intermediate and its identification
by infrared spectroscopy not making a comparison of the experimental spectrum to one
obtained from theory/calculation). To take advantage of readily accessible theoretical tools,
and to understand the results reported by theoretical collaborators (or competitors), even the
wettest of wet chemists can benefit from some familiarity with theoretical chemistry. My
objective in this book is to provide a survey of computational chemistry – its underpinnings,
its jargon, its strengths and weaknesses – that will be accessible to both the experimental
and theoretical communities. The level of the presentation assumes exposure to quantum
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and statistical mechanics; particular topics/examples span the range of inorganic, organic,
and biological chemistry. As such, this text could be used in a course populated by senior
undergraduates and/or beginning graduate students without regard to specialization.

The scope of theoretical methodologies presented in the text reflects my judgment of
the degree to which these methodologies impact on a broad range of chemical problems,
i.e., the degree to which a practicing chemist may expect to encounter them repeatedly
in the literature and thus should understand their applicability (or lack thereof). In some
instances, methodologies that do not find much modern use are discussed because they help
to illustrate in an intuitive fashion how more contemporary models developed their current
form. Indeed, one of my central goals in this book is to render less opaque the funda-
mental natures of the various theoretical models. By understanding the assumptions implicit
in a theoretical model, and the concomitant limitations imposed by those assumptions, one
can make informed judgments about the trustworthiness of theoretical results (and econom-
ically sound choices of models to apply, if one is about to embark on a computational
project).

With no wish to be divisive, it must be acknowledged: there are some chemists who
are not fond of advanced mathematics. Unfortunately, it is simply not possible to describe
computational chemistry without resort to a fairly hefty number of equations, and, particularly
for modern electronic-structure theories, some of those equations are fantastically daunting
in the absence of a detailed knowledge of the field. That being said, I offer a promise to
present no equation without an effort to provide an intuitive explanation for its form and the
various terms within it. In those instances where I don’t think such an explanation can be
offered (of which there are, admittedly, a few), I will provide a qualitative discussion of the
area and point to some useful references for those inclined to learn more.

In terms of layout, it might be preferable from a historic sense to start with quantum theo-
ries and then develop classical theories as an approximation to the more rigorous formulation.
However, I think it is more pedagogically straightforward (and far easier on the student) to
begin with classical models, which are in the widest use by experimentalists and tend to feel
very intuitive to the modern chemist, and move from there to increasingly more complex
theories. In that same vein, early emphasis will be on single-molecule (gas-phase) calcu-
lations followed by a discussion of extensions to include condensed-phase effects. While
the book focuses primarily on the calculation of equilibrium properties, excited states and
reaction dynamics are dealt with as advanced subjects in later chapters.

The quality of a theory is necessarily judged by its comparison to (accurate) physical
measurements. Thus, careful attention is paid to offering comparisons between theory and
experiment for a broad array of physical observables (the first chapter is devoted in part
to enumerating these). In addition, there is some utility in the computation of things which
cannot be observed (e.g., partial atomic charges), and these will also be discussed with
respect to the performance of different levels of theory. However, the best way to develop
a feeling for the scope and utility of various theories is to apply them, and instructors are
encouraged to develop computational problem sets for their students. To assist in that regard,
case studies appear at the end of most chapters illustrating the employ of one or more of
the models most recently presented. The studies are drawn from the chemical literature;
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depending on the level of instruction, reading and discussing the original papers as part of
the class may well be worthwhile, since any synopsis necessarily does away with some of
the original content.

Perversely, perhaps, I do not include in this book specific problems. Indeed, I provide
almost no discussion of such nuts and bolts issues as, for example, how to enter a molec-
ular geometry into a given program. The reason I eschew these undertakings is not that I
think them unimportant, but that computational chemistry software is not particularly well
standardized, and I would like neither to tie the book to a particular code or codes nor
to recapitulate material found in users’ manuals. Furthermore, the hardware and software
available in different venues varies widely, so individual instructors are best equipped to
handle technical issues themselves. With respect to illustrative problems for students, there
are reasonably good archives of such exercises provided either by software vendors as part
of their particular package or developed for computational chemistry courses around the
world. Chemistry 8021 at the University of Minnesota, for example, has several years worth
of problem sets (with answers) available at pollux.chem.umn.edu/8021. Given the pace of
computational chemistry development and of modern publishing, such archives are expected
to offer a more timely range of challenges in any case.

A brief summary of the mathematical notation adopted throughout this text is in order.
Scalar quantities, whether constants or variables, are represented by italic characters. Vectors
and matrices are represented by boldface characters (individual matrix elements are scalar,
however, and thus are represented by italic characters that are indexed by subscript(s) iden-
tifying the particular element). Quantum mechanical operators are represented by italic
characters if they have scalar expectation values and boldface characters if their expec-
tation values are vectors or matrices (or if they are typically constructed as matrices for
computational purposes). The only deliberate exception to the above rules is that quantities
represented by Greek characters typically are made neither italic nor boldface, irrespective
of their scalar or vector/matrix nature.

Finally, as with most textbooks, the total content encompassed herein is such that only
the most masochistic of classes would attempt to go through this book cover to cover in the
context of a typical, semester-long course. My intent in coverage is not to act as a firehose,
but to offer a reasonable degree of flexibility to the instructor in terms of optional topics.
Thus, for instance, Chapters 3 and 11–13 could readily be skipped in courses whose focus is
primarily on the modeling of small- and medium-sized molecular systems. Similarly, courses
with a focus on macromolecular modeling could easily choose to ignore the more advanced
levels of quantum mechanical modeling. And, clearly, time constraints in a typical course
are unlikely to allow the inclusion of more than one of the last two chapters. These practical
points having been made, one can always hope that the eager student, riveted by the content,
will take time to read the rest of the book him- or herself!

Christopher J. Cramer
September 2001



Preface to the Second Edition

Since publication of the first edition I have become increasingly, painfully aware of just
how short the half-life of certain ‘Essentials’ can be in a field growing as quickly as is
computational chemistry. While I utterly disavow any hubris on my part and indeed blithely
assign all blame for this text’s title to my editor, that does not detract from my satisfaction at
having brought the text up from the ancient history of 2001 to the present of 2004. Hopefully,
readers too will be satisfied with what’s new and improved.

So, what is new and improved? In a nutshell, new material includes discussion of docking,
principal components analysis, force field validation in dynamics simulations, first-order
perturbation theory for relativistic effects, tight-binding density functional theory, electroneg-
ativity equalization charge models, standard-state equilibrium constants, computation of pKa

values and redox potentials, molecular dynamics with implicit solvent, and direct dynamics.
With respect to improved material, the menagerie of modern force fields has been restocked
to account for the latest in new and ongoing developments and a new menagerie of density
functionals has been assembled to help the computational innocent navigate the forest of
acronyms (in this last regard, the acronym glossary of Appendix A has also been expanded
with an additional 64 entries). In addition, newly developed basis sets for electronic structure
calculations are discussed, as are methods to scale various theories to infinite-basis-set limits,
and new thermochemical methods. The performances of various more recent methods for the
prediction of nuclear magnetic resonance chemical shifts are summarized, and discussion of
the generation of condensed-phase potentials of mean force from simulation is expanded.

As developments in semiempirical molecular orbital theory, density functional theory, and
continuum solvation models have proceeded at a particularly breakneck pace over the last
three years, Chapters 5, 8, and 11 have been substantially reworked and contain much fresh
material. In addition, I have tried wherever possible to update discussions and, while so
doing, to add the most modern references available so as to improve the text’s connection
with the primary literature. This effort poses something of a challenge, as I definitely do not
want to cross the line from writing a text to writing instead an outrageously lengthy review
article – I leave it to the reader to assess my success in that regard. Lastly, the few remaining
errors, typographical and otherwise, left over from the second printing of the first edition
have been corrected – I accept full responsibility for all of them (with particular apologies
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to any descendants of Leopold Kronecker) and I thank those readers who called some of
them to my attention.

As for important things that have not changed, with the exception of Chapter 10 I have
chosen to continue to use all of the existing case studies. I consider them still to be sufficiently
illustrative of modern application that they remain useful as a basis for thought/discussion,
and instructors will inevitably have their own particular favorites that they may discuss ‘off-
text’ in any case. The thorough nature of the index has also, hopefully, not changed, nor I
hope the deliberate and careful explanation of all equations, tables, and figures.

Finally, in spite of the somewhat greater corpulence of the second edition compared to
the first, I have done my best to maintain the text’s liveliness – at least to the extent that
a scientific tome can be said to possess that quality. After all, to what end science without
humor?

Christopher J. Cramer
July 2004
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1
What are Theory, Computation,
and Modeling?

1.1 Definition of Terms

A clear definition of terms is critical to the success of all communication. Particularly in the
area of computational chemistry, there is a need to be careful in the nomenclature used to
describe predictive tools, since this often helps clarify what approximations have been made
in the course of a modeling ‘experiment’. For the purposes of this textbook, we will adopt
a specific convention for what distinguishes theory, computation, and modeling.

In general, ‘theory’ is a word with which most scientists are entirely comfortable. A theory
is one or more rules that are postulated to govern the behavior of physical systems. Often,
in science at least, such rules are quantitative in nature and expressed in the form of a
mathematical equation. Thus, for example, one has the theory of Einstein that the energy of
a particle, E, is equal to its relativistic mass, m, times the speed of light in a vacuum, c,
squared,

E = mc2 (1.1)

The quantitative nature of scientific theories allows them to be tested by experiment. This
testing is the means by which the applicable range of a theory is elucidated. Thus, for
instance, many theories of classical mechanics prove applicable to macroscopic systems but
break down for very small systems, where one must instead resort to quantum mechanics.
The observation that a theory has limits in its applicability might, at first glance, seem a
sufficient flaw to warrant discarding it. However, if a sufficiently large number of ‘interesting’
systems falls within the range of the theory, practical reasons tend to motivate its continued
use. Of course, such a situation tends to inspire efforts to find a more general theory that is
not subject to the limitations of the original. Thus, for example, classical mechanics can be
viewed as a special case of the more general quantum mechanics in which the presence of
macroscopic masses and velocities leads to a simplification of the governing equations (and
concepts).

Such simplifications of general theories under special circumstances can be key to getting
anything useful done! One would certainly not want to design the pendulum for a mechanical
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clock using the fairly complicated mathematics of quantal theories, for instance, although the
process would ultimately lead to the same result as that obtained from the simpler equations
of the more restricted classical theories. Furthermore, at least at the start of the twenty-first
century, a generalized ‘theory of everything’ does not yet exist. For instance, efforts to link
theories of quantum electromagnetics and theories of gravity continue to be pursued.

Occasionally, a theory has proven so robust over time, even if only within a limited range
of applicability, that it is called a ‘law’. For instance, Coulomb’s law specifies that the energy
of interaction (in arbitrary units) between two point charges is given by

E = q1q2

εr12
(1.2)

where q is a charge, ε is the dielectric constant of a homogeneous medium (possibly vacuum)
in which the charges are embedded, and r12 is the distance between them. However, the
term ‘law’ is best regarded as honorific – indeed, one might regard it as hubris to imply that
experimentalists can discern the laws of the universe within a finite span of time.

Theory behind us, let us now move on to ‘model’. The difference between a theory
and a model tends to be rather subtle, and largely a matter of intent. Thus, the goal of a
theory tends to be to achieve as great a generality as possible, irrespective of the practical
consequences. Quantum theory, for instance, has breathtaking generality, but the practical
consequence is that the equations that govern quantum theory are intractable for all but
the most ideal of systems. A model, on the other hand, typically involves the deliberate
introduction of simplifying approximations into a more general theory so as to extend its
practical utility. Indeed, the approximations sometimes go to the extreme of rendering the
model deliberately qualitative. Thus, one can regard the valence-shell-electron-pair repulsion
(VSEPR; an acronym glossary is provided as Appendix A of this text) model familiar to
most students of inorganic chemistry as a drastic simplification of quantum mechanics to
permit discrete choices for preferred conformations of inorganic complexes. (While serious
theoreticians may shudder at the empiricism that often governs such drastic simplifications,
and mutter gloomily about lack of ‘rigor’, the value of a model is not in its intrinsic beauty,
of course, but in its ability to solve practical problems; for a delightful cartoon capturing the
hubris of theoretical dogmatism, see Ghosh 2003.)

Another feature sometimes characteristic of a quantitative ‘model’ is that it incorporates
certain constants that are derived wholly from experimental data, i.e., they are empirically
determined. Again, the degree to which this distinguishes a model from a theory can be
subtle. The speed of light and the charge of the electron are fundamental constants of the
universe that appear either explicitly or implicitly in Eqs. (1.1) and (1.2), and we know these
values only through experimental measurement. So, again, the issue tends to be intent. A
model is often designed to apply specifically to a restricted volume of what we might call
chemical space. For instance, we might imagine developing a model that would predict the
free energy of activation for the hydrolysis of substituted β-lactams in water. Our motivation,
obviously, would be the therapeutic utility of these species as antibiotics. Because we are
limiting ourselves to consideration of only very specific kinds of bond-making and bond-
breaking, we may be able to construct a model that takes advantage of a few experimentally
known free energies of activation and correlates them with some other measured or predicted



1.1 DEFINITION OF TERMS 3

28

24

20

1.250 1.300 1.350

C −N bond length (Å)

A
ct

iv
at

io
n 

fr
ee

 e
ne

rg
y 

(k
ca

l m
ol

−1
)

1.400

Figure 1.1 Correlation between activation free energy for aqueous hydrolysis of β-lactams and lactam
C–N bond lengths as determined from X-ray crystallography (data entirely fictitious)

quantity. For example, we might find from comparison with X-ray crystallography that there
is a linear correlation between the aqueous free energy of activation, �G‡, and the length
of the lactam C–N bond in the crystal, rCN (Figure 1.1). Our ‘model’ would then be

�G‡ = arCN + b (1.3)

where a would be the slope (in units of energy per length) and b the intercept (in units of
energy) for the empirically determined correlation.

Equation (1.3) represents a very simple model, and that simplicity derives, presumably,
from the small volume of chemical space over which it appears to hold. As it is hard to
imagine deriving Eq. (1.3) from the fundamental equations of quantum mechanics, it might
be more descriptive to refer to it as a ‘relationship’ rather than a ‘model’. That is, we make
some attempt to distinguish between correlation and causality. For the moment, we will not
parse the terms too closely.

An interesting question that arises with respect to Eq. (1.3) is whether it may be more
broadly applicable. For instance, might the model be useful for predicting the free energies
of activation for the hydrolysis of γ -lactams? What about amides in general? What about
imides? In a statistical sense, these chemical questions are analogous to asking about the
degree to which a correlation may be trusted for extrapolation vs. interpolation. One might
say that we have derived a correlation involving two axes of multi-dimensional chemical
space, activation free energy for β-lactam hydrolysis and β-lactam C–N bond length. Like
any correlation, our model is expected to be most robust when used in an interpolative sense,
i.e., when applied to newly measured β-lactam C–N bonds with lengths that fall within the
range of the data used to derive the correlation. Increasingly less certain will be application
of Eq. (1.3) to β-lactam bond lengths that are outside the range used to derive the correlation,
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or assumption that other chemical axes, albeit qualitatively similar (like γ -lactam C–N bond
lengths), will be coincident with the abscissa.

Thus, a key question in one’s mind when evaluating any application of a theoretical model
should be, ‘How similar is the system being studied to systems that were employed in the
development of the model?’ The generality of a given model can only be established by
comparison to experiment for a wider and wider variety of systems. This point will be
emphasized repeatedly throughout this text.

Finally, there is the definition of ‘computation’. While theories and models like those
represented by Eqs. (1.1), (1.2), and (1.3), are not particularly taxing in terms of their math-
ematics, many others can only be efficiently put to use with the assistance of a digital
computer. Indeed, there is a certain synergy between the development of chemical theories
and the development of computational hardware, software, etc. If a theory cannot be tested,
say because solution of the relevant equations lies outside the scope of practical possibility,
then its utility cannot be determined. Similarly, advances in computational technology can
permit existing theories to be applied to increasingly complex systems to better gauge the
degree to which they are robust. These points are expanded upon in Section 1.4. Here we
simply close with the concise statement that ‘computation’ is the use of digital technology
to solve the mathematical equations defining a particular theory or model.

With all these definitions in hand, we may return to a point raised in the preface, namely,
what is the difference between ‘Theory’, ‘Molecular Modeling’, and ‘Computational Chem-
istry’? To the extent members of the community make distinctions, ‘theorists’ tend to have as
their greatest goal the development of new theories and/or models that have improved perfor-
mance or generality over existing ones. Researchers involved in ‘molecular modeling’ tend
to focus on target systems having particular chemical relevance (e.g., for economic reasons)
and to be willing to sacrifice a certain amount of theoretical rigor in favor of getting the right
answer in an efficient manner. Finally, ‘computational chemists’ may devote themselves not
to chemical aspects of the problem, per se, but to computer-related aspects, e.g., writing
improved algorithms for solving particularly difficult equations, or developing new ways to
encode or visualize data, either as input to or output from a model. As with any classifica-
tion scheme, there are no distinct boundaries recognized either by observers or by individual
researchers, and certainly a given research endeavor may involve significant efforts under-
taken within all three of the areas noted above. In the spirit of inclusiveness, we will treat
the terms as essentially interchangeable.

1.2 Quantum Mechanics

The postulates and theorems of quantum mechanics form the rigorous foundation for the
prediction of observable chemical properties from first principles. Expressed somewhat
loosely, the fundamental postulates of quantum mechanics assert that microscopic systems
are described by ‘wave functions’ that completely characterize all of the physical properties
of the system. In particular, there are quantum mechanical ‘operators’ corresponding to each
physical observable that, when applied to the wave function, allow one to predict the prob-
ability of finding the system to exhibit a particular value or range of values (scalar, vector,
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etc.) for that observable. This text assumes prior exposure to quantum mechanics and some
familiarity with operator and matrix formalisms and notation.

However, many successful chemical models exist that do not necessarily have obvious
connections with quantum mechanics. Typically, these models were developed based on
intuitive concepts, i.e., their forms were determined inductively. In principle, any successful
model must ultimately find its basis in quantum mechanics, and indeed a posteriori deriva-
tions have illustrated this point in select instances, but often the form of a good model is
more readily grasped when rationalized on the basis of intuitive chemical concepts rather
than on the basis of quantum mechanics (the latter being desperately non-intuitive at first
blush).

Thus, we shall leave quantum mechanics largely unreviewed in the next two chapters
of this text, focusing instead on the intuitive basis for classical models falling under the
heading of ‘molecular mechanics’. Later in the text, we shall see how some of the funda-
mental approximations used in molecular mechanics can be justified in terms of well-defined
approximations to more complete quantum mechanical theories.

1.3 Computable Quantities

What predictions can be made by the computational chemist? In principle, if one can measure
it, one can predict it. In practice, some properties are more amenable to accurate computation
than others. There is thus some utility in categorizing the various properties most typically
studied by computational chemists.

1.3.1 Structure

Let us begin by focusing on isolated molecules, as they are the fundamental unit from which
pure substances are constructed. The minimum information required to specify a molecule
is its molecular formula, i.e., the atoms of which it is composed, and the manner in which
those atoms are connected. Actually, the latter point should be put more generally. What is
required is simply to know the relative positions of all of the atoms in space. Connectivity,
or ‘bonding’, is itself a property that is open to determination. Indeed, the determination of
the ‘best’ structure from a chemically reasonable (or unreasonable) guess is a very common
undertaking of computational chemistry. In this case ‘best’ is defined as having the lowest
possible energy given an overall connectivity roughly dictated by the starting positions of
the atoms as chosen by the theoretician (the process of structure optimization is described
in more detail in subsequent chapters).

This sounds relatively simple because we are talking about the modeling of an isolated,
single molecule. In the laboratory, however, we are much more typically dealing with an
equilibrium mixture of a very large number of molecules at some non-zero temperature.
In that case, measured properties reflect thermal averaging, possibly over multiple discrete
stereoisomers, tautomers, etc., that are structurally quite different from the idealized model
system, and great care must be taken in making comparisons between theory and experiment
in such instances.
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1.3.2 Potential Energy Surfaces

The first step to making the theory more closely mimic the experiment is to consider not
just one structure for a given chemical formula, but all possible structures. That is, we
fully characterize the potential energy surface (PES) for a given chemical formula (this
requires invocation of the Born–Oppenheimer approximation, as discussed in more detail in
Chapters 4 and 15). The PES is a hypersurface defined by the potential energy of a collection
of atoms over all possible atomic arrangements; the PES has 3N − 6 coordinate dimensions,
where N is the number of atoms ≥3. This dimensionality derives from the three-dimensional
nature of Cartesian space. Thus each structure, which is a point on the PES, can be defined
by a vector X where

X ≡ (x1, y1, z1, x2, y2, z2, . . . , xN , yN, zN) (1.4)

and xi , yi , and zi are the Cartesian coordinates of atom i. However, this expression of X does
not uniquely define the structure because it involves an arbitrary origin. We can reduce the
dimensionality without affecting the structure by removing the three dimensions associated
with translation of the structure in the x, y, and z directions (e.g., by insisting that the
molecular center of mass be at the origin) and removing the three dimensions associated
with rotation about the x, y, and z axes (e.g., by requiring that the principal moments of
inertia align along those axes in increasing order).

A different way to appreciate this reduced dimensionality is to imagine constructing a
structure vector atom by atom (Figure 1.2), in which case it is most convenient to imagine
the dimensions of the PES being internal coordinates (i.e., bond lengths, valence angles,
etc.). Thus, choice of the first atom involves no degrees of geometric freedom – the atom
defines the origin. The position of the second atom is specified by its distance from the first.
So, a two-atom system has a single degree of freedom, the bond length; this corresponds to
3N − 5 degrees of freedom, as should be the case for a linear molecule. The third atom must
be specified either by its distances to each of the preceding atoms, or by a distance to one and
an angle between the two bonds thus far defined to a common atom. The three-atom system,
if collinearity is not enforced, has 3 total degrees of freedom, as it should. Each additional
atom requires three coordinates to describe its position. There are several ways to envision
describing those coordinates. As in Figure 1.2, they can either be a bond length, a valence
angle, and a dihedral angle, or they can be a bond length and two valence angles. Or, one
can imagine that the first three atoms have been used to create a fixed Cartesian reference
frame, with atom 1 defining the origin, atom 2 defining the direction of the positive x axis,
and atom 3 defining the upper half of the xy plane. The choice in a given calculation is a
matter of computational convenience. Note, however, that the shapes of particular surfaces
necessarily depend on the choice of their coordinate systems, although they will map to one
another in a one-to-one fashion.

Particularly interesting points on PESs include local minima, which correspond to optimal
molecular structures, and saddle points (i.e., points characterized by having no slope in any
direction, downward curvature for a single coordinate, and upward curvature for all of the
other coordinates). Simple calculus dictates that saddle points are lowest energy barriers
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Figure 1.2 Different means for specifying molecular geometries. In frame I, there are no degrees
of freedom as only the nature of atom ‘a’ has been specified. In frame II, there is a single degree of
freedom, namely the bond length. In frame III, location of atom ‘c’ requires two additional degrees of
freedom, either two bond lengths or a bond length and a valence angle. Frame IV illustrates various
ways to specify the location of atom ‘d’; note that in every case, three new degrees of freedom must
be specified, either in internal or Cartesian coordinates

on paths connecting minima, and thus they can be related to the chemical concept of a
transition state. So, a complete PES provides, for a given collection of atoms, complete
information about all possible chemical structures and all isomerization pathways intercon-
necting them.

Unfortunately, complete PESs for polyatomic molecules are very hard to visualize, since
they involve a large number of dimensions. Typically, we take slices through potential energy
surfaces that involve only a single coordinate (e.g., a bond length) or perhaps two coordinates,
and show the relevant reduced-dimensionality energy curves or surfaces (Figure 1.3). Note
that some care must be taken to describe the nature of the slice with respect to the other
coordinates. For instance, was the slice a hyperplane, implying that all of the non-visualized
coordinates have fixed values, or was it a more general hypersurface? A typical example of
the latter choice is one where the non-visualized coordinates take on values that minimize
the potential energy given the value of the visualized coordinate(s). Thus, in the case of
a single visualized dimension, the curve attempts to illustrate the minimum energy path
associated with varying the visualized coordinate. [We must say ‘attempts’ here, because an
actual continuous path connecting any two structures on a PES may involve any number
of structures all of which have the same value for a single internal coordinate. When that
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Figure 1.3 The full PES for the hypothetical molecule ABC requires four dimensions to
display (3N − 6 = 3 coordinate degrees of freedom plus one dimension for energy). The
three-dimensional plot (top) represents a hyperslice through the full PES showing the energy as a
function of two coordinate dimensions, the AB and BC bond lengths, while taking a fixed value for
the angle ABC (a typical choice might be the value characterizing the global minimum on the full
PES). A further slice of this surface (bottom) now gives the energy as a function of a single dimension,
the AB bond length, where the BC bond length is now also treated as frozen (again at the equilibrium
value for the global minimum)
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path is projected onto the dimension defined by that single coordinate (or any reduced
number of dimensions including it) the resulting curve is a non-single-valued function of the
dimension. When we arbitrarily choose to use the lowest energy point for each value of the
varied coordinate, we may introduce discontinuities in the actual structures, even though the
curve may appear to be smooth (Figure 1.4). Thus, the generation and interpretation of such
‘partially relaxed’ potential energy curves should involve a check of the individual structures
to ensure that such a situation has not arisen.]
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Figure 1.4 The bold line in (a) traces out a lowest-energy path connecting two minima of energy
0, located at coordinates (0,1) and (10,9), on a hypothetical three-dimensional PES – shaded regions
correspond to contour levels spanning 20 energy units. Following the path starting from point (0,1)
in the upper left, coordinate 1 initially smoothly increases to a value of about 7.5 while coordinate
2 undergoes little change. Then, however, because of the coupling between the two coordinates,
coordinate 1 begins decreasing while coordinate 2 changes. The ‘transition state structure’ (saddle
point) is reached at coordinates (5,5) and has energy 50. On this PES, the path downward is the
symmetric reverse of the path up. If the full path is projected so as to remove coordinate 2, the
two-dimensional potential energy diagram (b) is generated. The solid curve is what would result if
we only considered lowest energy structures having a given value of coordinate 1. Of course, the
solid curve is discontinuous in coordinate 2, since approaches to the ‘barrier’ in the solid curve
from the left and right correspond to structures having values for coordinate 2 of about 1 and 9,
respectively. The dashed curve represents the higher energy structures that appear on the smooth,
continuous, three-dimensional path. If the lower potential energy diagram were to be generated by
driving coordinate 1, and care were not taken to note the discontinuity in coordinate 2, the barrier
for interconversion of the two minima would be underestimated by a factor of 2 in this hypothetical
example. (For an actual example of this phenomenon, see Cramer et al. 1994.)
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Figure 1.4 (Continued)

Finally, sometimes slices are chosen so that all structures in the slicing surface belong
to a particular symmetry point group. The utility of symmetry will be illustrated in various
situations throughout the text.

With the complete PES in hand (or, more typically, with the region of the PES that
would be expected to be chemically accessible under the conditions of the experimental
system being modeled), one can take advantage of standard precepts of statistical mechanics
(see Chapter 10) to estimate equilibrium populations for situations involving multiple stable
molecular structures and compute ensemble averages for physical observables.

1.3.3 Chemical Properties

One can arbitrarily divide the properties one might wish to estimate by computation into
three classes. The first is ‘single-molecule’ properties, that is, properties that could in prin-
ciple be measured from a single molecule, even though, in practice, use of a statistical
ensemble may be required for practical reasons. Typical examples of such properties are
spectral quantities. Thus, theory finds considerable modern application to predicting nuclear
magnetic resonance (NMR) chemical shifts and coupling constants, electron paramagnetic
resonance (EPR) hyperfine coupling constants, absorption maxima for rotational, vibra-
tional, and electronic spectra (typically in the microwave, infrared, and ultraviolet/visible
regions of the spectrum, respectively), and electron affinities and ionization potentials (see
Chapter 9).

With respect to molecular energetics, one can, in principle, measure the total energy of
a molecule (i.e., the energy required to separate it into its constituent nuclei and electrons
all infinitely separated from one another and at rest). More typically, however, laboratory
measurements focus on thermodynamic quantities such as enthalpy, free energy, etc., and
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this is the second category into which predicted quantities fall. Theory is extensively used
to estimate equilibrium constants, which are derived from free energy differences between
minima on a PES, and rate constants, which, with certain assumptions (see Chapter 15), are
derived from free energy differences between minima on a PES and connected transition-
state structures. Thus, theory may be used to predict reaction thermochemistries, heats of
formation and combustion, kinetic isotope effects, complexation energies (key to molecular
recognition), acidity and basicity (e.g., pKa values), ‘stability’, and hydrogen bond strengths,
to name a few properties of special interest. With a sufficiently large collection of molecules
being modeled, theory can also, in principle, compute bulk thermodynamic phenomena such
as solvation effects, phase transitions, etc., although the complexity of the system may render
such computations quite challenging.

Finally, there are computable ‘properties’ that do not correspond to physical observables.
One may legitimately ask about the utility of such ontologically indefensible constructs!
However, one should note that unmeasurable properties long predate computational chem-
istry – some examples include bond order, aromaticity, reaction concertedness, and isoelec-
tronic, -steric, and -lobal behavior. These properties involve conceptual models that have
proven sufficiently useful in furthering chemical understanding that they have overcome
objections to their not being uniquely defined.

In cases where such models take measurable quantities as input (e.g., aromaticity models
that consider heats of hydrogenation or bond-length alternation), clearly those measurable
quantities are also computable. There are additional non-observables, however, that are
unique to modeling, usually being tied to some aspect of the computational algorithm. A
good example is atomic partial charge (see Chapter 9), which can be a very useful chemical
concept for understanding molecular reactivity.

1.4 Cost and Efficiency

1.4.1 Intrinsic Value

Why has the practice of computational chemistry skyrocketed in the last few years? Try
taking this short quiz: Chemical waste disposal and computational technology – which of
these two keeps getting more and more expensive and which less and less? From an economic
perspective, at least, theory is enormously attractive as a tool to reduce the costs of doing
experiments.

Chemistry’s impact on modern society is most readily perceived in the creation of mate-
rials, be they foods, textiles, circuit boards, fuels, drugs, packaging, etc. Thus, even the most
ardent theoretician would be unlikely to suggest that theory could ever supplant experiment.
Rather, most would opine that opportunities exist for combining theory with experiment so
as to take advantage of synergies between them.

With that in mind, one can categorize efficient combinations of theory and experiment
into three classes. In the first category, theory is applied post facto to a situation where
some ambiguity exists in the interpretation of existing experimental results. For example,
photolysis of a compound in an inert matrix may lead to a single product species as
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analyzed by spectroscopy. However, the identity of this unique product may not be obvious
given a number of plausible alternatives. A calculation of the energies and spectra for all
of the postulated products provides an opportunity for comparison and may prove to be
definitive.

In the second category, theory may be employed in a simultaneous fashion to optimize
the design and progress of an experimental program. Continuing the above analogy, a priori
calculation of spectra for plausible products may assist in choosing experimental parameters
to permit the observation of minor components which might otherwise be missed in a compli-
cated mixture (e.g., theory may allow the experimental instrument to be tuned properly to
observe a signal whose location would not otherwise be predictable).

Finally, theory may be used to predict properties which might be especially difficult or
dangerous (i.e., costly) to measure experimentally. In the difficult category are such data
as rate constants for the reactions of trace, upper-atmospheric constituents that might play
an important role in the ozone cycle. For sufficiently small systems, levels of quantum
mechanical theory can now be brought to bear that have accuracies comparable to the
best modern experimental techniques, and computationally derived rate constants may find
use in complex kinetic models until such time as experimental data are available. As for
dangerous experiments, theoretical pre-screening of a series of toxic or explosive compounds
for desirable (or undesirable) properties may assist in prioritizing the order in which they
are prepared, thereby increasing the probability that an acceptable product will be arrived at
in a maximally efficient manner.

1.4.2 Hardware and Software

All of these points being made, even computational chemistry is not without cost. In general,
the more sophisticated the computational model, the more expensive in terms of computa-
tional resources. The talent of the well-trained computational chemist is knowing how to
maximize the accuracy of a prediction while minimizing the investment of such resources. A
primary goal of this text is to render more clear the relationship between accuracy and cost
for various levels of theory so that even relatively inexperienced users can make informed
assessments of the likely utility (before the fact) or credibility (after the fact) of a given
calculation.

To be more specific about computational resources, we may, without going into a great
deal of engineering detail, identify three features of a modern digital computer that impact
upon its utility as a platform for molecular modeling. The first feature is the speed with
which it carries out mathematical operations. Various metrics are used when comparing the
speed of ‘chips’, which are the fundamental processing units. One particularly useful one is
the number of floating-point operations per second (FLOPS) that the chip can accomplish.
That is, how many mathematical manipulations of decimally represented numbers can be
carried out (the equivalent measure for integers is IPS). Various benchmark computer codes
are available for comparing one chip to another, and one should always bear in mind that
measured processor speeds are dependent on which code or set of codes was used. Different
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kinds of mathematical operations or different orderings of operations can have effects as large
as an order of magnitude on individual machine speeds because of the way the processors
are designed and because of the way they interact with other features of the computational
hardware.

The second feature affecting performance is memory. In order to carry out a floating-point
operation, there must be floating-point numbers on which to operate. Numbers (or characters)
to be processed are stored in a magnetic medium referred to as memory. In a practical sense,
the size of the memory associated with a given processor sets the limit on the total amount
of information to which it has ‘instant’ access. In modern multiprocessor machines, this
definition has grown more fuzzy, as there tend to be multiple memory locations, and the
speed with which a given processor can access a given memory site varies depending upon
their physical locations with respect to one another. The somewhat unsurprising bottom
line is that more memory and shorter access times tend to lead to improved computational
performance.

The last feature is storage, typically referred to as disk since that has been the read/write
storage medium of choice for the last several years. Storage is exactly like memory, in the
sense that it holds number or character data, but it is accessible to the processing unit at a
much slower rate than is memory. It makes up for this by being much cheaper and being, in
principle, limitless and permanent. Calculations which need to read and/or write data to a disk
necessarily proceed more slowly than do calculations that can take place entirely in memory.
The difference is sufficiently large that there are situations where, rather than storing on disk
data that will be needed later, it is better to throw them away (because memory limits require
you to overwrite the locations in which they are stored), as subsequent recomputation of the
needed data is faster than reading it back from disk storage. Such a protocol is usually called
a ‘direct’ method (see Almlöf, Faegri, and Korsell 1982).

Processors, memory, and storage media are components of a computer referred to as ‘hard-
ware’. However, the efficiency of a given computational task depends also on the nature of the
instructions informing the processor how to go about implementing that task. Those instruc-
tions are encoded in what is known as ‘software’. In terms of computational chemistry, the
most obvious piece of software is the individual program or suite of programs with which the
chemist interfaces in order to carry out a computation. However, that is by no means the only
software involved. Most computational chemistry software consists of a large set of instruc-
tions written in a ‘high-level’ programming language (e.g., FORTRAN or C++), and choices
of the user dictate which sets of instructions are followed in which order. The collection of all
such instructions is usually called a ‘code’ (listings of various computational chemistry codes
can be found at websites such as http://cmm.info.nih.gov/modeling/software.html). But
the language of the code cannot be interpreted directly by the processor. Instead, a series
of other pieces of software (compilers, assemblers, etc.) translate the high-level language
instructions into the step-by-step operations that are carried out by the processing unit.
Understanding how to write code (in whatever language) that takes the best advantage of the
total hardware/software environment on a particular computer is a key aspect to the creation
of an efficient software package.
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1.4.3 Algorithms

In a related sense, the manner in which mathematical equations are turned into computer
instructions is also key to efficient software development. Operations like addition and
subtraction do not allow for much in the way of innovation, needless to say, but oper-
ations like matrix diagonalization, numerical integration, etc., are sufficiently complicated
that different algorithms leading to the same (correct) result can vary markedly in compu-
tational performance. A great deal of productive effort in the last decade has gone into the
development of so-called ‘linear-scaling’ algorithms for various levels of theory. Such an
algorithm is one that permits the cost of a computation to scale roughly linearly with the size
of the system studied. At first, this may not sound terribly demanding, but a quick glance
back at Coulomb’s law [Eq. (1.2)] will help to set this in context. Coulomb’s law states that
the potential energy from the interaction of charged particles depends on the pairwise inter-
action of all such particles. Thus, one might expect any calculation of this quantity to scale
as the square of the size of the system (there are n(n − 1)/2 such interactions where n is
the number of particles). However, for sufficiently large systems, sophisticated mathematical
‘tricks’ permit the scaling to be brought down to linear.

In this text, we will not be particularly concerned with algorithms – not because they are
not important but because such concerns are more properly addressed in advanced textbooks
aimed at future practitioners of the art. Our focus will be primarily on the conceptual aspects
of particular computational models, and not necessarily on the most efficient means for
implementing them.

We close this section with one more note on careful nomenclature. A ‘code’ renders a
‘model’ into a set of instructions that can be understood by a digital computer. Thus, if one
applies a particular model, let us say the molecular mechanics model called MM3 (which will
be described in the next chapter) to a particular problem, say the energy of chair cyclohexane,
the results should be completely independent of which code one employs to carry out the
calculation. If two pieces of software (let’s call them MYPROG and YOURPROG) differ by
more than the numerical noise that can arise because of different round-off conventions with
different computer chips (or having set different tolerances for what constitutes a converged
calculation) then one (or both!) of those pieces of software is incorrect. In colloquial terms,
there is a ‘bug’ in the incorrect code(s).

Furthermore, it is never correct to refer to the results of a calculation as deriving from the
code, e.g., to talk about one’s ‘MYPROG structure’. Rather, the results derive from the model,
and the structure is an ‘MM3 structure’. It is not simply incorrect to refer to the results of
the calculation by the name of the code, it is confusing: MYPROG may well contain code for
several different molecular mechanics models, not just MM3, so simply naming the program
is insufficiently descriptive.

It is regrettable, but must be acknowledged, that certain models found in the chemical
literature are themselves not terribly well defined. This tends to happen when features or
parameters of a model are updated without any change in the name of the model as assigned
by the original authors. When this happens, codes implementing older versions of the model
will disagree with codes implementing newer versions even though each uses the same name
for the model. Obviously, developers should scrupulously avoid ever allowing this situation
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Table 1.1 Useful quantities in atomic and other units

Physical quantity
(unit name)

Symbol Value
in a.u.

Value in SI units Value(s) in other units

Angular momentum h̄ 1 1.055 × 10−34 J s 2.521 × 10−35 cal s
Mass me 1 9.109 × 10−31 kg
Charge e 1 1.602 × 10−19 C 1.519 × 10−14 statC
Vacuum permittivity 4πε0 1 1.113 × 10−10 C2 J−1 m−1 2.660 × 10−21 C2 cal−1 Å−1

Length (bohr) a0 1 5.292 × 10−11 m 0.529 Å
52.9 pm

Energy (hartree) Eh 1 4.360 × 10−18 J 627.51 kcal mol−1

2.626 × 103 kJ mol−1

27.211 eV
2.195 × 105 cm−1

Electric dipole moment ea0 1 8.478 × 10−30 C m 2.542 D
Electric polarizability e2a2

0E−1
h 1 1.649 × 10−41 C2 m2 J−1

Planck’s constant h 2π 6.626 × 10−34 J s
Speed of light c 1.370 × 102 2.998 × 108 m s−1

Bohr magneton µB 0.5 9.274 × 10−24 J T−1

Nuclear magneton µN 2.723 × 10−4 5.051 × 10−27 J T−1

to arise. To be safe, scientific publishing that includes computational results should always
state what code or codes were used, to include version numbers, in obtaining particular model
results (clearly version control of computer codes is thus just as critical as it is for models).

1.5 Note on Units

In describing a computational model, a clear equation can be worth 1000 words. One way to
render equations more clear is to work in atomic (or theorist’s) units. In a.u., the charge on the
proton, e, the mass of the electron, me, and h̄ (i.e., Planck’s constant divided by 2π) are all
defined to have magnitude 1. When converting equations expressed in SI units (as opposed
to Gaussian units), 4πε0, where ε0 is the permittivity of the vacuum, is also defined to have
magnitude 1. As the magnitude of these quantities is unity, they are dropped from relevant
equations, thereby simplifying the notation. Other atomic units having magnitudes of unity
can be derived from these three by dimensional analysis. For instance, h̄2/mee

2 has units of
distance and is defined as 1 a.u.; this atomic unit of distance is also called the ‘bohr’ and
symbolized by a0. Similarly, e2/a0 has units of energy, and defines 1 a.u. for this quantity,
also called 1 hartree and symbolized by Eh. Table 1.1 provides notation and values for several
useful quantities in a.u. and also equivalent values in other commonly used units. Greater
precision and additional data are available at http://www.physics.nist.gov/PhysRefData/.
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2
Molecular Mechanics

2.1 History and Fundamental Assumptions

Let us return to the concept of the PES as described in Chapter 1. To a computational chemist,
the PES is a surface that can be generated point by point by use of some computational
method which determines a molecular energy for each point’s structure. However, the concept
of the PES predates any serious efforts to “compute” such surfaces. The first PESs (or slices
thereof) were constructed by molecular spectroscopists.

A heterodiatomic molecule represents the simplest case for study by vibrational spec-
troscopy, and it also represents the simplest PES, since there is only the single degree of
freedom, the bond length. Vibrational spectroscopy measures the energy separations between
different vibrational levels, which are quantized. Most chemistry students are familiar with
the simplest kind of vibrational spectroscopy, where allowed transitions from the vibrational
ground state (ν = 0) to the first vibrationally excited state (ν = 1) are monitored by absorp-
tion spectroscopy; the typical photon energy for the excitation falls in the infrared region of
the optical spectrum. More sensitive experimental apparati are capable of observing other
allowed absorptions (or emissions) between more highly excited vibrational states, and/or
forbidden transitions between states differing by more than 1 vibrational quantum number.
Isotopic substitution perturbs the vibrational energy levels by changing the reduced mass of
the molecule, so the number of vibrational transitions that can be observed is arithmetically
related to the number of different isotopomers that can be studied. Taking all of these data
together, spectroscopists are able to construct an extensive ladder of vibrational energy levels
to a very high degree of accuracy (tenths of a wavenumber in favorable cases), as illustrated
in Figure 2.1.

The spacings between the various vibrational energy levels depend on the potential energy
associated with bond stretching (see Section 9.3.2). The data from the spectroscopic experi-
ments thus permit the derivation of that potential energy function in a straightforward way.

Let us consider for the moment the potential energy function in an abstract form. A useful
potential energy function for a bond between atoms A and B should have an analytic form.
Moreover, it should be continuously differentiable. Finally, assuming the dissociation energy
for the bond to be positive, we will define the minimum of the function to have a potential
energy of zero; we will call the bond length at the minimum req. We can determine the value

Essentials of Computational Chemistry, 2nd Edition Christopher J. Cramer
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09181-9 (cased); 0-470-09182-7 (pbk)
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Figure 2.1 The first seven vibrational energy levels for a lighter (solid horizontal lines) and heavier
(horizontal dashed lines) isotopomer of diatomic AB. Allowed vibrational transitions are indicated by
solid vertical arrows, forbidden transitions are indicated by dashed vertical arrows

of the potential energy at an arbitrary point by taking a Taylor expansion about req

U(r) = U(req) + dU

dr

∣∣∣∣
r=req

(r − req) + 1

2!

d2U

dr2

∣∣∣∣
r=req

(r − req)
2

+ 1

3!

d3U

dr3

∣∣∣∣
r=req

(r − req)
3 + · · · (2.1)

Note that the first two terms on the r.h.s. of Eq. (2.1) are zero, the first by arbitrary choice,
the second by virtue of req being the minimum. If we truncate after the first non-zero term,
we have the simplest possible expression for the vibrational potential energy

U(rAB) = 1
2kAB(rAB − rAB,eq)

2 (2.2)

where we have replaced the second derivative of U by the symbol k. Equation (2.2) is
Hooke’s law for a spring, where k is the ‘force constant’ for the spring; the same term
is used for k in spectroscopy and molecular mechanics. Subscripts have been added to
emphasize that force constants and equilibrium bond lengths may vary from one pair of
atoms to another.

Indeed, one might expect that force constants and equilibrium lengths might vary substan-
tially even when A and B remain constant, but the bond itself is embedded in different
molecular frameworks (i.e., surroundings). However, as more and more spectroscopic data
became available in the early 20th century, particularly in the area of organic chemistry,
where hundreds or thousands of molecules having similar bonds (e.g., C–C single bonds)
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could be characterized, it became empirically evident that the force constants and equilib-
rium bond lengths were largely the same from one molecule to the next. This phenomenon
came to be called ‘transferability’.

Concomitant with these developments in spectroscopy, thermochemists were finding that,
to a reasonable approximation, molecular enthalpies could be determined as a sum of bond
enthalpies. Thus, assuming transferability, if two different molecules were to be composed
of identical bonds (i.e., they were to be isomers of one kind or another), the sum of the
differences in the ‘strains’ of those bonds from one molecule to the other (which would arise
from different bond lengths in the two molecules – the definition of strain in this instance is
the positive deviation from the zero of energy) would allow one to predict the difference in
enthalpies. Such prediction was a major goal of the emerging area of organic conformational
analysis.

One might ask why any classical mechanical bond would deviate from its equilibrium
bond length, insofar as that represents the zero of energy. The answer is that in polyatomic
molecules, other energies of interaction must also be considered. For instance, repulsive van
der Waals interactions between nearby groups may force some bonds connecting them to
lengthen. The same argument can be applied to bond angles, which also have transferable
force constants and optimal values (vide infra). Energetically unfavorable non-bonded, non-
angle-bending interactions have come to be called ‘steric effects’ following the terminology
suggested by Hill (1946), who proposed that a minimization of overall steric energy could
be used to predict optimal structures. The first truly successful reduction to practice of this
general idea was accomplished by Westheimer and Mayer (1946), who used potential energy
functions to compute energy differences between twisted and planar substituted biphenyls
and were able to rationalize racemization rates in these molecules.

The rest of this chapter examines the various components of the molecular energy and
the force-field approaches taken for their computation. The discussion is, for the most part,
general. At the end of the chapter, a comprehensive listing of reported/available force fields
is provided with some description of their form and intended applicability.

2.2 Potential Energy Functional Forms

2.2.1 Bond Stretching

Before we go on to consider functional forms for all of the components of a molecule’s
total steric energy, let us consider the limitations of Eq. (2.2) for bond stretching. Like any
truncated Taylor expansion, it works best in regions near its reference point, in this case req.
Thus, if we are interested primarily in molecular structures where no bond is terribly distorted
from its optimal value, we may expect Eq. (2.2) to have reasonable utility. However, as the
bond is stretched to longer and longer r , Eq. (2.2) predicts the energy to become infinitely
positive, which is certainly not chemically realistic. The practical solution to such inaccuracy
is to include additional terms in the Taylor expansion. Inclusion of the cubic term provides
a potential energy function of the form

U(rAB) = 1
2 [kAB + k

(3)
AB(rAB − rAB,eq)](rAB − rAB,eq)

2 (2.3)



20 2 MOLECULAR MECHANICS

where we have added the superscript ‘(3)’ to the cubic force constant (also called the ‘anhar-
monic’ force constant) to emphasize that it is different from the quadratic one. The cubic
force constant is negative, since its function is to reduce the overly high stretching ener-
gies predicted by Eq. (2.2). This leads to an unintended complication, however; Eq. (2.3)
diverges to negative infinity with increasing bond length. Thus, the lowest possible energy
for a molecule whose bond energies are described by functions having the form of Eq. (2.3)
corresponds to all bonds being dissociated, and this can play havoc with automated mini-
mization procedures.

Again, the simple, practical solution is to include the next term in the Taylor expansion,
namely the quartic term, leading to an expression of the form

U(rAB) = 1
2 [kAB + k

(3)
AB(rAB − rAB,eq) + k

(4)
AB(rAB − rAB,eq)

2](rAB − rAB,eq)
2 (2.4)

Such quartic functional forms are used in the general organic force field, MM3 (a large
taxonomy of existing force fields appears at the end of the chapter). Many force fields that
are designed to be used in reduced regions of chemical space (e.g., for specific biopolymers),
however, use quadratic bond stretching potentials because of their greater computational
simplicity.

The alert reader may wonder, at this point, why there has been no discussion of the Morse
function

U(rAB) = DAB[1 − e−αAB(rAB−rAB,eq)]2 (2.5)

where DAB is the dissociation energy of the bond and αAB is a fitting constant. The hypothet-
ical potential energy curve shown in Figure 2.1 can be reproduced over a much wider range
of r by a Morse potential than by a quartic potential. Most force fields decline to use the
Morse potential because it is computationally much less efficient to evaluate the exponential
function than to evaluate a polynomial function (vide infra). Moreover, most force fields
are designed to study the energetics of molecules whose various degrees of freedom are all
reasonably close to their equilibrium values, say within 10 kcal/mol. Over such a range, the
deviation between the Morse function and a quartic function is usually negligible.

Even in these instances, however, there is some utility to considering the Morse function.
If we approximate the exponential in Eq. (2.5) as its infinite series expansion truncated at
the cubic term, we have

U(rAB) = DAB
{
1 − [

1 − αAB(rAB − rAB,eq) + 1
2α2

AB(rAB − rAB,eq)
2

− 1
6α3

AB(rAB − rAB,eq)
3]}2

(2.6)

Squaring the quantity in braces and keeping only terms through quartic gives

U(rAB) = DAB

[
α2

AB − α3
AB(rAB − rAB,eq) + 7

12
α4

AB(rAB − rAB,eq)
2
]

(rAB − rAB,eq)
2 (2.7)
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where comparison of Eqs. (2.4) and (2.7) makes clear the relationship between the various
force constants and the parameters D and α of the Morse potential. In particular,

kAB = 2α2
ABDAB (2.8)

Typically, the simplest parameters to determine from experiment are kAB and DAB. With
these two parameters available, αAB can be determined from Eq. (2.8), and thus the cubic and
quartic force constants can also be determined from Eqs. (2.4) and (2.7). Direct measurement
of cubic and quartic force constants requires more spectral data than are available for many
kinds of bonds, so this derivation facilitates parameterization. We will discuss parameteriza-
tion in more detail later in the chapter, but turn now to consideration of other components
of the total molecular energy.

2.2.2 Valence Angle Bending

Vibrational spectroscopy reveals that, for small displacements from equilibrium, energy vari-
ations associated with bond angle deformation are as well modeled by polynomial expansions
as are variations associated with bond stretching. Thus, the typical force field function for
angle strain energy is

U(θABC) = 1
2 [kABC + k

(3)
ABC(θABC − θABC,eq) + k

(4)
ABC(θABC − θABC,eq)

2 + · · ·]
(θABC − θABC,eq)

2 (2.9)

where θ is the valence angle between bonds AB and BC (note that in a force field, a bond
is defined to be a vector connecting two atoms, so there is no ambiguity about what is
meant by an angle between two bonds), and the force constants are now subscripted ABC
to emphasize that they are dependent on three atoms. Whether Eq. (2.9) is truncated at the
quadratic term or whether more terms are included in the expansion depends entirely on the
balance between computational simplicity and generality that any given force field chooses
to strike. Thus, to note two specific examples, the general organic force field MM3 continues
the expansion through to the sextic term for some ABC combinations, while the biomolecular
force field of Cornell et al. (see Table 2.1, first row) limits itself to a quadratic expression
in all instances. (Original references to all the force fields discussed in this chapter will be
found in Table 2.1.)

While the above prescription for angle bending seems useful, certain issues do arise. First,
note that no power expansion having the form of Eq. (2.9) will show the appropriate chemical
behavior as the bond angle becomes linear, i.e., at θ = π . Another flaw with Eq. (2.9) is
that, particularly in inorganic systems, it is possible to have multiple equilibrium values;
for instance, in the trigonal bipyramidal system PCl5 there are stable Cl–P–Cl angles of
π/2, π/3, and π for axial/equatorial, equatorial/equatorial, and axial/axial combinations of
chlorine atoms, respectively. Finally, there is another kind of angle bending that is sometimes
discussed in molecular systems, namely ‘out-of-plane’ bending. Prior to addressing these



22 2 MOLECULAR MECHANICS

various issues, it is instructive to consider the manner in which force fields typically handle
potential energy variations associated with torsional motion.

2.2.3 Torsions

If we consider four atoms connected in sequence, ABCD, Figure 1.2 shows that a convenient
means to describe the location of atom D is by means of a CD bond length, a BCD valence
angle, and the torsional angle (or dihedral angle) associated with the ABCD linkage. As
depicted in Figure 2.2, the torsional angle is defined as the angle between bonds AB and CD
when they are projected into the plane bisecting the BC bond. The convention is to define
the angle as positive if one must rotate the bond in front of the bisecting plane in a clockwise
fashion to eclipse the bond behind the bisecting plane. By construction, the torsion angle is
periodic. An obvious convention would be to use only the positive angle, in which case the
torsion period would run from 0 to 2π radians (0 to 360◦). However, the minimum energy
for many torsions is for the antiperiplanar arrangement, i.e., ω = π . Thus, the convention
that −π < ω ≤ π(−180◦ ≤ ω ≤ 180◦) also sees considerable use.

Since the torsion itself is periodic, so too must be the torsional potential energy. As such,
it makes sense to model the potential energy function as an expansion of periodic functions,
e.g., a Fourier series. In a general form, typical force fields use

U(ωABCD) = 1
2

∑
{j}ABCD

Vj,ABCD[1 + (−1)j+1 cos(jωABCD + ψj,ABCD)] (2.10)

where the values of the signed term amplitudes Vj and the set of periodicities {j} included
in the sum are specific to the torsional linkage ABCD (note that deleting a particular value
of j from the evaluated set is equivalent to setting the term amplitude for that value of j

B

C

D

A

w < 0

w > 0

Figure 2.2 Definition and sign convention for dihedral angle ω. The bold lines are the projections
of the AB and CD bonds into the bisecting plane. Note that the sign of ω is independent of whether
one chooses to view the bisecting plane from the AB side or the CD side
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equal to zero). Other features of Eq. (2.10) meriting note are the factor of 1/2 on the r.h.s.,
which is included so that the term amplitude Vj is equal to the maximum the particular
term can contribute to U . The factor of (−1)j+1 is included so that the function in brackets
within the sum is zero for all j when ω = π , if the phase angles ψ are all set to 0. This
choice is motivated by the empirical observation that most (but not all) torsional energies
are minimized for antiperiplanar geometries; the zero of energy for U in Eq. (2.10) thus
occurs at ω = π . Choice of phase angles ψ other than 0 permits a fine tuning of the torsional
coordinate, which can be particularly useful for describing torsions in systems exhibiting large
stereoelectronic effects, like the anomeric linkages in sugars (see, for instance, Woods 1996).

While the mathematical utility of Eq. (2.10) is clear, it is also well founded in a chemical
sense, because the various terms can be associated with particular physical interactions when
all phase angles ψ are taken equal to 0. Indeed, the magnitudes of the terms appearing in an
individual fit can be informative in illuminating the degree to which those terms influence
the overall rotational profile. We consider as an example the rotation about the C–O bond in
fluoromethanol, the analysis of which was first described in detail by Wolfe et al. (1971) and
Radom, Hehre and Pople (1971). Figure 2.3 shows the three-term Fourier decomposition of
the complete torsional potential energy curve. Fluoromethanol is somewhat unusual insofar
as the antiperiplanar structure is not the global minimum, although it is a local minimum. It
is instructive to note the extent to which each Fourier term contributes to the overall torsional
profile, and also to consider the physical factors implicit in each term.

One physical effect that would be expected to be onefold periodic in the case of fluo-
romethanol is the dipole–dipole interaction between the C–F bond and the O–H bond.
Because of differences in electronegativity between C and F and O and H, the bond dipoles
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Figure 2.3 Fourier decomposition of the torsional energy for rotation about the C–O bond of fluo-
romethanol (bold black curve, energetics approximate). The Fourier sum (�) is composed of the
onefold (�), twofold (◦), and threefold (�) periodic terms, respectively. In the Newman projection of
the molecule, the oxygen atom lies behind the carbon atom at center
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for these bonds point from C to F and from H to O, respectively. Thus, at ω = 0, the
dipoles are antiparallel (most energetically favorable) while at ω = π they are parallel (least
energetically favorable). Thus, we would expect the V1 term to be a minimum at ω = 0,
implying V1 should be negative, and that is indeed the case. This term makes the largest
contribution to the full rotational profile, having a magnitude roughly double either of the
other two terms.

Twofold periodicity is associated with hyperconjugative effects. Hyperconjugation is the
favorable interaction of a filled or partially filled orbital, typically a σ orbital, with a nearby
empty orbital (hyperconjugation is discussed in more detail in Appendix D within the context
of natural bond orbital (NBO) analysis). In the case of fluoromethanol, the filled orbital that
is highest in energy is an oxygen lone pair orbital, and the empty orbital lowest in energy
(and thus best able to interact in a resonance fashion with the oxygen lone pair) is the C–F σ ∗
antibonding orbital. Resonance between these orbitals, which is sometimes called negative
hyperconjugation to distinguish it from resonance involving filled σ orbitals as donors, is
favored by maximum overlap; this takes place for torsion angles of roughly ±π/2. The
contribution of this V2 term to the overall torsional potential of fluoromethanol is roughly
half that of the V1 term, and of the expected sign.

The remaining V3 term is associated with unfavorable bond–bond eclipsing interactions,
which, for a torsion involving sp3-hybridized carbon atoms, would be expected to show three-
fold periodicity. To be precise, true threefold periodicity would only be expected were each
carbon atom to bear all identical substituents. Experiments suggest that fluorine and hydrogen
have similar steric behavior, so we will ignore this point for the moment. As expected, the
sign of the V3 term is positive, and it has roughly equal weight to the hyperconjugative term.

[Note that, following the terminology introduced earlier, we refer to the unfavorable
eclipsing of chemical bonds as a steric interaction. Since molecular mechanics in essence
treats molecules as classical atomic balls (possibly charged balls, as discussed in more detail
below) connected together by springs, this terminology is certainly acceptable. It should
be borne in mind, however, that real atoms are most certainly not billiard balls bumping
into one another with hard shells. Rather, the unfavorable steric interaction derives from
exchange-repulsion between filled molecular orbitals as they come closer to one another,
i.e., the effect is electronic in nature. Thus, the bromide that all energetic issues in chem-
istry can be analyzed as a combination of electronic and steric effects is perhaps overly
complex. . . all energetic effects in chemistry, at least if we ignore nuclear chemistry, are
exclusively electronic/electrical in nature.]

While this analysis of fluoromethanol is instructive, it must be pointed out that a number
of critical issues have been either finessed or ignored. First, as can be seen in Figure 2.3, the
actual rotational profile of fluoromethanol cannot be perfectly fit by restricting the Fourier
decomposition to only three terms. This may sound like quibbling, since the ‘perfect’ fitting
of an arbitrary periodic curve takes an infinite number of Fourier terms, but the poorness
of the fit is actually rather severe from a chemical standpoint. This may be most readily
appreciated by considering simply the four symmetry-unique stationary points – two minima
and two rotational barriers. We are trying to fit their energies, but we also want their nature
as stationary points to be correct, implying that we are trying to fit their first derivatives as
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well (making the first derivative equal to zero defines them as stationary points). Thus, we
are trying to fit eight constraints using only three variables (namely, the term amplitudes).
By construction, we are actually guaranteed that 0 and π will have correct first derivatives,
and that the energy value for π will be correct (since it is required to be the relative zero),
but that still leaves five constraints on three variables. If we add non-zero phase angles ψ ,
we can do a better (but still not perfect) job.

Another major difficulty is that we have biased the system so that we can focus on a single
dihedral interaction (FCOH) as being dominant, i.e., we ignored the HCOH interactions, and
we picked a system where one end of the rotating bond had only a single substituent. To
illustrate the complexities introduced by more substitution, consider the relatively simple case
of n-butane (Figure 2.4). In this case, the three-term Fourier fit is in very good agreement
with the full rotational profile, and certain aspects continue to make very good chemical
sense. For instance, the twofold periodic term is essentially negligible, as would be expected
since there are no particularly good donors or acceptors to interact in a hyperconjugative
fashion. The onefold term, on the other hand, makes a very significant contribution, and this
clearly cannot be assigned to some sort of dipole–dipole interaction, since the magnitude of
a methylene–methyl bond dipole is very near zero. Rather, the magnitudes of the one- and
threefold symmetric terms provide information about the relative steric strains associated
with the two possible eclipsed structures, the lower energy of which has one H/H and
two H/CH3 eclipsing interactions, while the higher energy structure has two H/H and one
CH3/CH3 interactions. While one might be tempted to try to derive some sort of linear
combination rule for this still highly symmetric case, it should be clear that by the time one
tries to analyze the torsion about a C–C bond bearing six different substituents, one’s ability
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Figure 2.4 Fourier decomposition of the torsional energy for rotation about the C–C bond of n-butane
(bold black curve, energetics approximate). The Fourier sum (�) has a close overlap, and is composed
of the onefold (�), twofold (◦), and threefold (�) periodic terms, respectively
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to provide a physically meaningful interpretation of the many different term amplitudes is
quite limited.

Moreover, as discussed in more detail later, force field parameters are not statistically
orthogonal, so optimized values can be skewed by coupling with other parameters. With all
of these caveats in mind, however, there are still instances where valuable physical insights
derive from a term-by-term analysis of the torsional coordinate.

Let us return now to a question raised above, namely, how to handle the valence angle
bending term in a system where multiple equilibrium angles are present. Such a case is
clearly analogous to the torsional energy, which also presents multiple minima. Thus, the
inorganic SHAPES force field uses the following equations to compute angle bending energy

U(θABC) =
∑

{j}ABC

kFourier
j,ABC [1 + cos(jθABC + ψ)] (2.11)

kFourier
j,ABC = 2kharmonic

ABC

j 2
(2.12)

where ψ is a phase angle. Note that this functional form can also be used to ensure appro-
priate behavior in regions of bond angle inversion, i.e., where θ = π . [As a digression,
in metal coordination force fields an alternative formulation designed to handle multiple
ligand–metal–ligand angles is simply to remove the angle term altogether. It is replaced by
a non-bonded term specific to 1,3-interactions (a so-called ‘Urey–Bradley’ term) which tends
to be repulsive. Thus, a given number of ligands attached to a central atom will tend to orga-
nize themselves so as to maximize the separation between any two. This ‘points-on-a-sphere’
(POS) approach is reminiscent of the VSEPR model of coordination chemistry.]

A separate situation, also mentioned in the angle bending discussion, arises in the case of
four-atom systems where a central atom is bonded to three otherwise unconnected atoms, e.g.,
formaldehyde. Such systems are good examples of the second case of step IV of Figure 1.2,
i.e., systems where a fourth atom is more naturally defined by a bond length to the central
atom and its two bond angles to the other two atoms. However, as Figure 2.5 makes clear,
one could define the final atom’s position using the first case of step IV of Figure 1.2, i.e.,
by assigning a length to the central atom, an angle to a third atom, and then a dihedral angle
to the fourth atom even though atoms three and four are not defined as connected. Such an
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Figure 2.5 Alternative molecular coordinates that can be used to compute the energetics of distortions
from planarity about a triply substituted central atom
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assignment makes perfect sense from a geometric standpoint, even though it may seem odd
from a chemical standpoint. Torsion angles defined in this manner are typically referred to as
‘improper torsions’. In a system like formaldehyde, an improper torsion like OCHH would
have a value of π radians (180◦) in the planar, minimum energy structure. Increasing or
decreasing this value would have the effect of moving the oxygen atom out of the plane
defined by the remaining three atoms. Many force fields treat such improper torsions like
any other torsion, i.e., they use Eq. (2.10). However, as Figure 2.5 indicates, the torsional
description for this motion is only one of several equally reasonable coordinates that one
might choose. One alternative is to quantify deviations from planarity by the angle θo.o.p. that
one substituent makes with the plane defined by the other three (o.o.p. = ‘out of plane’).
Another is to quantify the elevation ro.o.p. of the central atom above/below the plane defined
by the three atoms to which it is attached. Both of these latter modes have obvious connec-
tions to angle bending and bond stretching, respectively, and typically Eqs. (2.9) and (2.4),
respectively, are used to model the energetics of their motion.

Let us return to the case of the butane rotational potential. As noted previously, the
barriers in this potential are primarily associated with steric interactions between eclipsing
atoms/groups. Anyone who has ever built a space-filling model of a sterically congested
molecule is familiar with the phenomenon of steric congestion – some atomic balls in the
space-filling model push against one another, creating strain (leading to the apocryphal ‘drop
test’ metric of molecular stability: from how great a height can the model be dropped and
remain intact?) Thus, in cases where dipole–dipole and hyperconjugative interactions are
small about a rotating bond, one might question whether there is a need to parameterize a
torsional function at all. Instead, one could represent atoms as balls, each having a character-
istic radius, and develop a functional form quantifying the energetics of ball–ball interactions.
Such a prescription provides an intuitive model for more distant ‘non-bonded’ interactions,
which we now examine.

2.2.4 van der Waals Interactions

Consider the mutual approach of two noble gas atoms. At infinite separation, there is no
interaction between them, and this defines the zero of potential energy. The isolated atoms are
spherically symmetric, lacking any electric multipole moments. In a classical world (ignoring
the chemically irrelevant gravitational interaction) there is no attractive force between them
as they approach one another. When there are no dissipative forces, the relationship between
force F in a given coordinate direction q and potential energy U is

Fq = −∂U

∂q
(2.13)

In this one-dimensional problem, saying that there is no force is equivalent to saying that the
slope of the energy curve with respect to the ‘bond length’ coordinate is zero, so the potential
energy remains zero as the two atoms approach one another. Associating non-zero size with
our classical noble gas atoms, we might assign them hard-sphere radii rvdw. In that case,
when the bond length reaches twice the radius, the two cannot approach one another more
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Figure 2.6 Non-attractive hard-sphere potential (straight lines) and Lennard–Jones potential (curve).
Key points on the energy and bond length axes are labeled

closely, which is to say the potential energy discontinuously becomes infinite for r < 2rvdw.
This potential energy curve is illustrated in Figure 2.6.

One of the more profound manifestations of quantum mechanics is that this curve does not
accurately describe reality. Instead, because the ‘motions’ of electrons are correlated (more
properly, the electronic wave functions are correlated), the two atoms simultaneously develop
electrical moments that are oriented so as to be mutually attractive. The force associated with
this interaction is referred to variously as ‘dispersion’, the ‘London’ force, or the ‘attractive
van der Waals’ force. In the absence of a permanent charge, the strongest such interaction
is a dipole–dipole interaction, usually referred to as an ‘induced dipole–induced dipole’
interaction, since the moments in question are not permanent. Such an interaction has an
inverse sixth power dependence on the distance between the two atoms. Thus, the potential
energy becomes increasingly negative as the two noble gas atoms approach one another from
infinity.

Dispersion is a fascinating phenomenon. It is sufficiently strong that even the dimer of
He is found to have one bound vibrational state (Luo et al. 1993; with a vibrationally
averaged bond length of 55 Å it is a remarkable member of the molecular bestiary). Even
for molecules with fairly large permanent electric moments in the gas phase, dispersion is
the dominant force favoring condensation to the liquid state at favorable temperatures and
pressures (Reichardt 1990).

However, as the two atoms continue to approach one another, their surrounding electron
densities ultimately begin to interpenetrate. In the absence of opportunities for bonding
interactions, Pauli repulsion (or ‘exchange repulsion’) causes the energy of the system to rise
rapidly with decreasing bond length. The sum of these two effects is depicted in Figure 2.6;
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the contrasts with the classical hard-sphere model are that (i) an attractive region of the
potential energy curve exists and (ii) the repulsive wall is not infinitely steep. [Note that
at r = 0 the potential energy is that for an isolated atom having an atomic number equal
to the sum of the atomic numbers for the two separated atoms; this can be of interest
in certain formal and even certain practical situations, but we do no modeling of nuclear
chemistry here.]

The simplest functional form that tends to be used in force fields to represent the combi-
nation of the dispersion and repulsion energies is

U(rAB) = aAB

r12
AB

− bAB

r6
AB

(2.14)

where a and b are constants specific to atoms A and B. Equation (2.14) defines a so-called
‘Lennard–Jones’ potential.

The inverse 12th power dependence of the repulsive term on interatomic separation has
no theoretical justification – instead, this term offers a glimpse into the nuts and bolts of the
algorithmic implementation of computational chemistry. Formally, one can more convinc-
ingly argue that the repulsive term in the non-bonded potential should have an exponential
dependence on interatomic distance. However, the evaluation of the exponential function
(and the log, square root, and trigonometric functions, inter alia) is roughly a factor of
five times more costly in terms of central processing unit (cpu) time than the evaluation
of the simple mathematical functions of addition, subtraction, or multiplication. Thus, the
evaluation of r12 requires only that the theoretically justified r6 term be multiplied by itself,
which is a very cheap operation. Note moreover the happy coincidence that all terms in r

involve even powers of r . The relationship between the internal coordinate r and Carte-
sian coordinates, which are typically used to specify atomic positions (see Section 2.4), is
defined by

rAB =
√

(xA − xB)2 + (yA − yB)2 + (zA − zB)2 (2.15)

If only even powers of r are required, one avoids having to compute a square root. While
quibbling over relative factors of five with respect to an operation that takes a tiny fraction
of a second in absolute time may seem like overkill, one should keep in mind how many
times the function in question may have to be evaluated in a given calculation. In a formal
analysis, the number of non-bonded interactions that must be evaluated scales as N2, where
N is the number of atoms. In the process of optimizing a geometry, or of searching for many
energy minima for a complex molecule, hundreds or thousands of energy evaluations may
need to be performed for interim structures. Thus, seemingly small savings in time can be
multiplied so that they are of practical importance in code development.

The form of the Lennard–Jones potential is more typically written as

U(rAB) = 4εAB

[(
σAB

rAB

)12

−
(

σAB

rAB

)6
]

(2.16)
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where the constants a and b of Eq. (2.14) are here replaced by the constants ε and σ .
Inspection of Eq. (2.16) indicates that σ has units of length, and is the interatomic separation
at which repulsive and attractive forces exactly balance, so that U = 0. If we differentiate
Eq. (2.16) with respect to rAB, we obtain

dU(rAB)

drAB
= 4εAB

rAB

[
−12

(
σAB

rAB

)12

+ 6
(

σAB

rAB

)6
]

(2.17)

Setting the derivative equal to zero in order to find the minimum in the Lennard–Jones
potential gives, after rearrangement

r∗
AB = 21/6σAB (2.18)

where r∗ is the bond length at the minimum. If we use this value for the bond length in
Eq. (2.16), we obtain U = −εAB, indicating that the parameter ε is the Lennard–Jones well
depth (Figure 2.6).

The Lennard–Jones potential continues to be used in many force fields, particularly those
targeted for use in large systems, e.g., biomolecular force fields. In more general force
fields targeted at molecules of small to medium size, slightly more complicated functional
forms, arguably having more physical justification, tend to be used (computational times for
small molecules are so short that the efficiency of the Lennard–Jones potential is of little
consequence). Such forms include the Morse potential [Eq. (2.5)] and the ‘Hill’ potential

U(rAB) = εAB

[
6

βAB − 6
exp

(
βAB

1 − rAB

r∗
AB

)
− βAB

βAB − 6

(
r∗

AB

rAB

)6
]

(2.19)

where β is a new parameter and all other terms have the same meanings as in previous
equations.

Irrespective of the functional form of the van der Waals interaction, some force fields
reduce the energy computed for 1,4-related atoms (i.e., torsionally related) by a constant
scale factor.

Our discussion of non-bonded interactions began with the example of two noble gas atoms
having no permanent electrical moments. We now turn to a consideration of non-bonded
interactions between atoms, bonds, or groups characterized by non-zero local electrical
moments.

2.2.5 Electrostatic Interactions

Consider the case of two molecules A and B interacting at a reasonably large distance, each
characterized by classical, non-polarizable, permanent electric moments. Classical electro-
statics asserts the energy of interaction for the system to be

UAB = M(A)V(B) (2.20)
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where M(A) is an ordered vector of the multipole moments of A, e.g., charge (zeroth moment),
x, y, and z components of the dipole moment, then the nine components of the quadrupole
moment, etc., and V(B) is a similarly ordered row vector of the electrical potentials deriving
from the multipole moments of B. Both expansions are about single centers, e.g., the centers
of mass of the molecules. At long distances, one can truncate the moment expansions at
reasonably low order and obtain useful interaction energies.

Equation (2.20) can be used to model the behavior of a large collection of individual
molecules efficiently because the electrostatic interaction energy is pairwise additive. That
is, we may write

U =
∑

A

∑
B>A

M(A)V(B) (2.21)

However, Eq. (2.21) is not very convenient in the context of intramolecular electrostatic
interactions. In a protein, for instance, how can one derive the electrostatic interactions
between spatially adjacent amide groups (which have large local electrical moments)? In
principle, one could attempt to define moment expansions for functional groups that recur
with high frequency in molecules, but such an approach poses several difficulties. First, there
is no good experimental way in which to measure (or even define) such local moments,
making parameterization difficult at best. Furthermore, such an approach would be compu-
tationally quite intensive, as evaluation of the moment potentials is tedious. Finally, the
convergence of Eq. (2.20) at short distances can be quite slow with respect to the point of
truncation in the electrical moments.

Let us pause for a moment to consider the fundamental constructs we have used thus
far to define a force field. We have introduced van der Waals balls we call atoms, and we
have defined bonds, angles, and torsional linkages between them. What would be convenient
would be to describe electrostatic interactions in some manner that is based on these available
entities (this convenience derives in part from our desire to be able to optimize molecular
geometries efficiently, as described in more detail below). The simplest approach is to assign
to each van der Waals atom a partial charge, in which case the interaction energy between
atoms A and B is simply

UAB = qAqB

εABrAB
(2.22)

This assignment tends to follow one of three formalisms, depending on the intent of the
modeling endeavor. In the simplest case, the charges are ‘permanent’, in the sense that all
atoms of a given type are defined to carry that charge in all situations. Thus, the atomic
charge is a fixed parameter.

Alternatively, the charge can be determined from a scheme that depends on the electroneg-
ativity of the atom in question, and also on the electronegativities of those atoms to which
it is defined to be connected Thus, the atomic electronegativity becomes a parameter and
some functional form is adopted in which it plays a role as a variable. In a force field with
a reduced number of atomic ‘types’ (see below for more discussion of atomic types) this
preserves flexibility in the recognition of different chemical environments. Such flexibility
is critical for the charge because the electrostatic energy can be so large compared to other
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components of the force field: Eq. (2.22) is written in a.u.; the conversion to energy units
of kilocalories per mole and distance units of ångstorms involves multiplication of the r.h.s.
by a factor of 332. Thus, even at 100 Å separation, the interaction energy between two unit
charges in a vacuum would be more than 3 kcal/mol, which is of the same order of energy
we expect for distortion of an individual stretching, bending, or torsional coordinate.

Finally, in cases where the force field is designed to study a particular molecule (i.e.,
generality is not an issue), the partial charges are often chosen to accurately reproduce
some experimental or computed electrostatic observable of the molecule. Various schemes
in common use are described in Chapter 9.

If, instead of the atom, we define charge polarization for the chemical bonds, the most
convenient bond moment is the dipole moment. In this case, the interaction energy is defined
between bonds AB and CD as

UAB/CD = µABµCD

εAB/CDr3
AB/CD

(cos χAB/CD − 3 cos αAB cos αCD) (2.23)

where the bond moment vectors having magnitude µ are centered midway along the bonds
and are collinear with them. The orientation vectors χ and α are defined in Figure 2.7.

Note that in Eqs. (2.22) and (2.23) the dielectric constant ε is subscripted. Although one
might expect the best dielectric constant to be that for the permittivity of free space, such an
assumption is not necessarily consistent with the approximations introduced by the use of
atomic point charges. Instead, the dielectric constant must be viewed as a parameter of the
model, and it is moreover a parameter that can take on multiple values. For use in Eq. (2.22),

•

•

mAB

mCD

aAB

aCD

cAB/CD

rAB/CD

A

B

C

D

Figure 2.7 Prescription for evaluating the interaction energy between two dipoles. Each angle α is
defined as the angle between the positive end of its respective dipole and the line passing through the
two dipole centroids. The length of the line segment connecting the two centroids is r . To determine
χ , the AB dipole and the centroid of the CD dipole are used to define a plane, and the CD dipole is
projected into this plane. If the AB dipole and the projected CD dipole are parallel, χ is defined to be
0; if they are not parallel, they are extended as rays until they intersect. If the extension is from the
same signed end of both dipoles, χ is the interior angle of the intersection (as illustrated), otherwise
it is the exterior angle of the intersection
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a plausible choice might be

εAB =



∞ if A and B are 1,2- or 1,3-related

3.0 if A and B are 1,4-related

1.5 otherwise

(2.24)

which dictates that electrostatic interactions between bonded atoms or between atoms sharing
a common bonded atom are not evaluated, interactions between torsionally related atoms are
evaluated, but are reduced in magnitude by a factor of 2 relative to all other interactions,
which are evaluated with a dielectric constant of 1.5. Dielectric constants can also be defined
so as to have a continuous dependence on the distance between the atoms. Although one
might expect the use of high dielectric constants to mimic to some extent the influence
of a surrounding medium characterized by that dielectric (e.g., a solvent), this is rarely
successful – more accurate approaches for including condensed-phase effects are discussed
in Chapters 3, 11, and 12.

Bonds between heteroatoms and hydrogen atoms are amongst the most polar found in
non-ionic systems. This polarity is largely responsible for the well-known phenomenon of
hydrogen bonding, which is a favorable interaction (usually ranging from 3 to 10 kcal/mol)
between a hydrogen and a heteroatom to which it is not formally bonded. Most force
fields account for hydrogen bonding implicitly in the non-bonded terms, van der Waals and
electrostatic. In some instances an additional non-bonded interaction term, in the form of a
10–12 potential, is added

U(rXH) = a′
XH

r12
XH

− b′
XH

r10
XH

(2.25)

where X is a heteroatom to which H is not bound. This term is analogous to a Lennard–Jones
potential, but has a much more rapid decay of the attractive region with increasing bond
length. Indeed, the potential well is so steep and narrow that one may regard this term as
effectively forcing a hydrogen bond to deviate only very slightly from its equilibrium value.

Up to now, we have considered the interactions of static electric moments, but actual
molecules have their electric moments perturbed under the influence of an electrical field
(such as that deriving from the electrical moments of another molecule). That is to say,
molecules are polarizable. To extend a force field to include polarizability is conceptually
straightforward. Each atom is assigned a polarizability tensor. In the presence of the perma-
nent electric field of the molecule (i.e., the field derived from the atomic charges or the
bond–dipole moments), a dipole moment will be induced on each atom. Following this,
however, the total electric field is the sum of the permanent electric field and that created
by the induced dipoles, so the determination of the ‘final’ induced dipoles is an iterative
process that must be carried out to convergence (which may be difficult to achieve). The total
electrostatic energy can then be determined from the pairwise interaction of all moments and
moment potentials (although the energy is determined in a pairwise fashion, note that many-
body effects are incorporated by the iterative determination of the induced dipole moments).
As a rough rule, computing the electrostatic interaction energy for a polarizable force field is
about an order of magnitude more costly than it is for a static force field. Moreover, except for
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the most accurate work in very large systems, the benefits derived from polarization appear
to be small. Thus, with the possible exception of solvent molecules in condensed-phase
models (see Section 12.4.1), most force fields tend to avoid including polarization.

2.2.6 Cross Terms and Additional Non-bonded Terms

Bonds, angles, and torsions are not isolated molecular coordinates: they couple with one
another. To appreciate this from a chemical point of view, consider BeH2. In its preferred,
linear geometry, one describes the Be hybridization as sp, i.e., each Be hybrid orbital used
to bond with hydrogen has 50% 2s character and 50% 2p character. If we now decrease the
bond angle, the p contribution increases until we stop at, say, a bond angle of π /3, which
is the value corresponding to sp2 hybridization. With more p character in the Be bonding
hybrids, the bonds should grow longer. While this argument relies on rather basic molecular
orbital theory, even from a mechanical standpoint, one would expect that as a bond angle is
compressed, the bond lengths to the central atom will lengthen to decrease the non-bonded
interactions between the terminal atoms in the sequence.

We can put this on a somewhat clearer mathematical footing by expanding the full molec-
ular potential energy in a multi-dimensional Taylor expansion, which is a generalization of
the one-dimensional case presented as Eq. (2.1). Thus

U(q) = U(qeq) +
3N−6∑
i=1

(qi − qi,eq)
∂U

∂qi

∣∣∣∣∣
q=qeq

+ 1

2!

3N−6∑
i=1

3N−6∑
j=1

(qi − qi,eq)(qj − qj,eq)
∂2U

∂qi∂qj

∣∣∣∣
q=qeq

+ 1

3!

3N−6∑
i=1

3N−6∑
j=1

3N−6∑
k=1

(qi − qi,eq)(qj − qj,eq)(qk − qk,eq)
∂3U

∂qi∂qj∂qk

∣∣∣∣
q=qeq

+ · · ·
(2.26)

where q is a molecular geometry vector of 3N − 6 internal coordinates and the expansion
is taken about an equilibrium structure. Again, the first two terms on the r.h.s. are zero
by definition of U for qeq and by virtue of all of the first derivatives being zero for an
equilibrium structure. Up to this point, we have primarily discussed the ‘diagonal’ terms of
the remaining summations, i.e., those terms for which all of the summation indices are equal
to one another. However, if we imagine that index 1 of the double summation corresponds
to a bond stretching coordinate, and index 2 to an angle bending coordinate, it is clear that
our force field will be more ‘complete’ if we include energy terms like

U(rAB, θABC) = 1

2
kAB,ABC(rAB − rAB,eq)(θABC − θABC,eq) (2.27)

where kAB,ABC is the mixed partial derivative appearing in Eq. (2.26). Typically, the mixed
partial derivative will be negligible for degrees of freedom that do not share common atoms.



2.2 POTENTIAL ENERGY FUNCTIONAL FORMS 35

In general force fields, stretch–stretch terms can be useful in modeling systems characterized
by π conjugation. In amides, for instance, the coupling force constant between CO and CN
stretching has been found to be roughly 15% as large as the respective diagonal bond-stretch
force constants (Fogarasi and Balázs, 1985). Stretch–bend coupling terms tend to be most
useful in highly strained systems, and for the computation of vibrational frequencies (see
Chapter 9). Stretch–torsion coupling can be useful in systems where eclipsing interactions
lead to high degrees of strain. The coupling has the form

U(rBC, ωABCD) = 1
2kBC,ABCD(rBC − rBC,eq)[1 + cos(jω + ψ)] (2.28)

where j is the periodicity of the torsional term and ψ is a phase angle. Thus, if the term
were designed to capture extra strain involving eclipsing interactions in a substituted ethane,
the periodicity would require j = 3 and the phase angle would be 0. Note that the stretching
bond, BC, is the central bond in the torsional linkage.

Other useful coupling terms include stretch–stretch coupling (typically between two adja-
cent bonds) and bend–bend coupling (typically between two angles sharing a common central
atom). In force fields that aim for spectroscopic accuracy, i.e., the reproduction of vibra-
tional spectra, still higher order coupling terms are often included. However, for purposes
of general molecular modeling, they are typically not used.

In the case of non-bonded interactions, the discussion in prior sections focused
on atom–atom type interactions. However, for larger molecules, and particularly for
biopolymers, it is often possible to adopt a more coarse-grained description of the overall
structure by focusing on elements of secondary structure, i.e., structural motifs that
recur frequently, like α-helices in proteins or base-pairing or -stacking arrangements in
polynucleotides. When such structural motifs are highly transferable, it is sometimes possible
to describe an entire fragment (e.g., an entire amino acid in a protein) using a number of
interaction sites and potential energy functions that is very much reduced compared to what
would be required in an atomistic description. Such reduced models sacrifice atomic detail
in structural analysis, but, owing to their simplicity, significantly expand the speed with
which energy evaluations may be accomplished. Such efficiency can prove decisive in the
simulation of biomolecules over long time scales, as discussed in Chapter 3. Many research
groups are now using such coarse-grained models to study, inter alia, the process whereby
proteins fold from denatured states into their native forms (see, for example, Hassinen and
Peräkylä 2001).

As a separate example, Harvey et al. (2003) have derived expressions for pseudobonds
and pseudoangles in DNA and RNA modeling that are designed to predict base-pairing and
-stacking interactions when rigid bases are employed. While this model is coarse-grained, it
is worth noting that even when a fully atomistic force field is being used, it may sometimes be
helpful to add such additional interaction sites so as better to enforce elements of secondary
structure like those found in biopolymers.

Finally, for particular biomolecules, experiment sometimes provides insight into elements
of secondary structure that can be used in conjunction with a standard force field to more
accurately determine a complete molecular structure. The most typical example of this
approach is the imposition of atom–atom distance restraints based on nuclear Overhauser
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effect (nOe) data determined from NMR experiments. For each nOe, a pseudobond between
the two atoms involved is defined, and a potential energy ‘penalty’ function depending on
their interatomic distance is added to the overall force field energy. The most typical form
for these penalty functions is a flat-bottomed linearized parabola. That is, there is no penalty
over a certain range of bond distances, but outside that range the energy increases quadrat-
ically up to a certain point and then linearly thereafter. When the structure of a particular
biomolecule is referred to as an ‘NMR structure’, what is meant is that the structure was
determined from a force-field minimization incorporating experimental NMR restraints. Typi-
cally, a set of NMR structures is generated and deposited in the relevant database(s), each
member of which satisfied the experimental restraints to within a certain level of tolerance.
The quality of any NMR structure depends on the number of restraints that were avail-
able experimentally–the more (and the more widely distributed throughout the molecule)
the better.

2.2.7 Parameterization Strategies

At this stage, it is worth emphasizing the possibly obvious point that a force field is nothing
but a (possibly very large) collection of functional forms and associated constants. With
that collection in hand, the energy of a given molecule (whose atomic connectivity must
in general be specified) can be evaluated by computing the energy associated with every
defined type of interaction occurring in the molecule. Because there are typically a rather
large number of such interactions, the process is facilitated by the use of a digital computer,
but the mathematics is really extraordinarily simple and straightforward.

Thus, we have detailed how to construct a molecular PES as a sum of energies from
chemically intuitive functional forms that depend on internal coordinates and on atomic
(and possibly bond-specific) properties. However, we have not paid much attention to the
individual parameters appearing in those functional forms (force constants, equilibrium coor-
dinate values, phase angles, etc.) other than pointing out the relationship of many of them
to certain spectroscopically measurable quantities. Let us now look more closely at the ‘Art
and Science’ of the parameterization process.

In an abstract sense, parameterization can be a very well-defined process. The goal is
to develop a model that reproduces experimental measurements to as high a degree as
possible. Thus, step 1 of parameterization is to assemble the experimental data. For molec-
ular mechanics, these data consist of structural data, energetic data, and, possibly, data on
molecular electric moments. We will discuss the issues associated with each kind of datum
further below, but for the moment let us proceed abstractly. We next need to define a ‘penalty
function’, that is, a function that provides a measure of how much deviation there is between
our predicted values and our experimental values. Our goal will then be to select force-field
parameters that minimize the penalty function. Choice of a penalty function is necessarily
completely arbitrary. One example of such a function is

Z =

Observables∑

i

Occurrences∑
j

(calci,j − expti,j )
2

w2
i




1/2

(2.29)



2.2 POTENTIAL ENERGY FUNCTIONAL FORMS 37

where observables might include bond lengths, bond angles, torsion angles, heats of forma-
tion, neutral molecular dipole moments, etc., and the weighting factors w carry units (so as
to make Z dimensionless) and take into account not only possibly different numbers of data
for different observables, but also the degree of tolerance the penalty function will have for
the deviation of calculation from experiment for those observables. Thus, for instance, one
might choose the weights so as to tolerate equally 0.01 Å deviations in bond lengths, 1◦

deviations in bond angles, 5◦ deviations in dihedral angles, 2 kcal/mol deviations in heats of
formation, and 0.3 D deviations in dipole moment. Note that Z is evaluated using optimized
geometries for all molecules; geometry optimization is discussed in Section 2.4. Minimiza-
tion of Z is a typical problem in applied mathematics, and any number of statistical or
quasi-statistical techniques can be used (see, for example, Schlick 1992). The minimization
approach taken, however, is rarely able to remove the chemist and his or her intuition from
the process.

To elaborate on this point, first consider the challenge for a force field designed to be
general over the periodic table – or, for ease of discussion, over the first 100 elements. The
number of unique bonds that can be formed from any two elements is 5050. If we were to
operate under the assumption that bond-stretch force constants depend only on the atomic
numbers of the bonded atoms (e.g., to make no distinction between so-called single, double,
triple, etc. bonds), we would require 5050 force constants and 5050 equilibrium bond lengths
to complete our force field. Similarly, we would require 100 partial atomic charges, and 5050
each values of σ and ε if we use Coulomb’s law for electrostatics and a Lennard–Jones
formalism for van der Waals interactions. If we carry out the same sort of analysis for bond
angles, we need on the order of 106 parameters to complete the force field. Finally, in the
case of torsions, somewhere on the order of 108 different terms are needed. If we include
coupling terms, yet more constants are introduced.

Since one is unlikely to have access to 100 000 000+ relevant experimental data, mini-
mization of Z is an underdetermined process, and in such a case there will be many different
combinations of parameter values that give similar Z values. What combination is optimal?
Chemical knowledge can facilitate the process of settling on a single set of parameters.
For instance, a set of parameters that involved fluorine atoms being assigned a partial posi-
tive charge would seem chemically unreasonable. Similarly, a quick glance at many force
constants and equilibrium coordinate values would rapidly eliminate cases with abnormally
large or small values. Another approach that introduces the chemist is making the optimiza-
tion process stepwise. One optimizes some parameters over a smaller data set, then holds
those parameters frozen while optimizing others over a larger data set, and this process
goes on until all parameters have been chosen. The process of choosing which parameters
to optimize in which order is as arbitrary as the choice of a penalty function, but may be
justified with chemical reasoning.

Now, one might argue that no one would be foolish enough to attempt to design a force
field that would be completely general over the first 100 elements. Perhaps if we were to
restrict ourselves to organic molecules composed of {H, C, N, O, F, Si, P, Cl, Br, and
I} – which certainly encompasses a large range of interesting molecules – then we could
ameliorate the data sparsity problem. In principle, this is true, but in practice, the results
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are not very satisfactory. When large quantities of data are in hand, it becomes quite clear
that atomic ‘types’ cannot be defined by atomic number alone. Thus, for instance, bonds
involving two C atoms fall into at least four classes, each one characterized by its own
particular stretching force constant and equilibrium distance (e.g., single, aromatic, double,
and triple). A similar situation obtains for any pair of atoms when multiple bonding is
an option. Different atomic hybridizations give rise to different angle bending equilibrium
values. The same is true for torsional terms. If one wants to include metals, usually different
oxidation states give rise to differences in structural and energetic properties (indeed, this
segregation of compounds based on similar, discrete properties is what inorganic chemists
sometimes use to assign oxidation state).

Thus, in order to improve accuracy, a given force field may have a very large number of
atom types, even though it includes only a relatively modest number of nuclei. The primarily
organic force fields MM3 and MMFF have 153 and 99 atom types, respectively. The two
general biomolecular force fields (proteins, nucleic acids, carbohydrates) OPLS (optimized
potentials for liquid simulations) and that of Cornell et al. have 41 atoms types each. The
completely general (i.e., most of the periodic table) universal force field (UFF) has 126 atom
types. So, again, the chemist typically faces an underdetermined optimization of parameter
values in finalizing the force field.

So, what steps can be taken to decrease the scope of the problem? One approach is
to make certain parameters that depend on more than one atom themselves functions of
single-atom-specific parameters. For instance, for use in Eq. (2.16), one usually defines

σAB = σA + σB (2.30)

and
εAB = (εAεB)1/2 (2.31)

thereby reducing in each case the need for N(N + 1)/2 diatomic parameters to only N

atomic parameters. [Indeed, truly general force fields, like DREIDING, UFF, and VALBOND
attempt to reduce almost all parameters to being derivable from a fairly small set of atomic
parameters. In practice, these force fields are not very robust, but as their limitations continue
to be addressed, they have good long-range potential for broad, general utility.]

Another approach that is conceptually similar is to make certain constants depend on
bond order or bond hybridization. Thus, for instance, in the VALBOND force field, angle
bending energies at metal atoms are computed from orbital properties of the metal–ligand
bonds; in the MM2 and MM3 force fields, stretching force constants, equilibrium bond
lengths, and two-fold torsional terms depend on computed π bond orders between atoms.
Such additions to the force field somewhat strain the limits of a ‘classical’ model, since
references to orbitals or computed bond orders necessarily introduce quantum mechanical
aspects to the calculation. There is, of course, nothing wrong with moving the model in this
direction – aesthetics and accuracy are orthogonal concepts – but such QM enhancements
add to model complexity and increase the computational cost.

Yet another way to minimize the number of parameters required is to adopt a so-called
‘united-atom’ (UA) model. That is, instead of defining only atoms as the fundamental units
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of the force field, one also defines certain functional groups, usually hydrocarbon groups,
e.g., methyl, methylene, aryl CH, etc. The group has its own single set of non-bonded and
other parameters – effectively, this reduces the total number of atoms by one less than the
total number incorporated into the united atom group.

Even with the various simplifications one may envision to reduce the number of parameters
needed, a vast number remain for which experimental data may be too sparse to permit
reliable parameterization (thus, for example, the MMFF94 force field has about 9000 defined
parameters). How does one find the best parameter values? There are three typical responses
to this problem.

The most common response nowadays is to supplement the experimental data with the
highest quality ab initio data that can be had (either from molecular orbital or density
functional calculations). A pleasant feature of using theoretical data is that one can compare
regions on a PES that are far from equilibrium structures by direct computation rather
than by trying to interpret vibrational spectra. Furthermore, one can attempt to make force-
field energy derivatives correspond to those computed ab initio. The only limitation to this
approach is the computational resources that are required to ensure that the ab initio data
are sufficiently accurate.

The next most sensible response is to do nothing, and accept that there will be some
molecules whose connectivity places them outside the range of chemical space to which the
force field can be applied. While this can be very frustrating for the general user (typically
the software package delivers a message to the effect that one or more parameters are lacking
and then quits), if the situation merits, the necessary new parameters can be determined in
relatively short order. Far more objectionable, when not well described, is the third response,
which is to estimate missing parameter values and then carry on. The estimation process
can be highly suspect, and unwary users can be returned nonsense results with no indication
that some parameters were guessed at. If one suspects that a particular linkage or linkages
in one’s molecule may be outside the well-parameterized bounds of the force field, it is
always wise to run a few test calculations on structures having small to moderate distortions
of those linkages so as to evaluate the quality of the force constants employed.

It is worth noting that sometimes parameter estimation takes place ‘on-the-fly’. That is, the
program is designed to guess without human intervention parameters that were not explicitly
coded. This is a somewhat pernicious aspect of so-called graphical user interfaces (GUIs):
while they make the submission of a calculation blissfully simple – all one has to do is draw
the structure – one is rather far removed from knowing what is taking place in the process
of the calculation. Ideally, prominent warnings from the software should accompany any
results derived from such calculations.

2.3 Force-field Energies and Thermodynamics

We have alluded above that one measure of the accuracy of a force field can be its ability
to predict heats of formation. A careful inspection of all of the formulas presented thus
far, however, should make it clear that we have not yet established any kind of connection
between the force-field energy and any kind of thermodynamic quantity.
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Let us review again the sense of Eqs. (2.4) and (2.9). In both instances, the minimum
value for the energy is zero (assuming positive force constants and sensible behavior for
odd power terms). An energy of zero is obtained when the bond length or angle adopts its
equilibrium value. Thus, a ‘strain-free’ molecule is one in which every coordinate adopts
its equilibrium value. Although we accepted a negative torsional term in our fluoromethanol
example above, because it provided some chemical insight, by proper choice of phase angles
in Eq. (2.10) we could also require this energy to have zero as a minimum (although not
necessarily for the dihedral angle ω = π). So, neglecting non-bonded terms for the moment,
we see that the raw force-field energy can be called the ‘strain energy’, since it represents
the positive deviation from a hypothetical strain-free system.

The key point that must be noted here is that strain energies for two different molecules
cannot be meaningfully compared unless the zero of energy is identical. This is probably
best illustrated with a chemical example. Consider a comparison of the molecules ethanol
and dimethyl ether using the MM2(91) force field. Both have the chemical formula C2H6O.
However, while ethanol is defined by the force field to be composed of two sp3 carbon atoms,
one sp3 oxygen atom, five carbon-bound hydrogen atoms, and one alcohol hydrogen atom,
dimethyl ether differs in that all six of its hydrogen atoms are of the carbon-bound type. Each
strain energy will thus be computed relative to a different hypothetical reference system, and
there is no a priori reason that the two hypothetical systems should be thermodynamically
equivalent.

What is necessary to compute a heat of formation, then, is to define the heat of formation
of each hypothetical, unstrained atom type. The molecular heat of formation can then be
computed as the sum of the heats of formation of all of the atom types plus the strain energy.
Assigning atom-type heats of formation can be accomplished using additivity methods orig-
inally developed for organic functional groups (Cohen and Benson 1993). The process is
typically iterative in conjunction with parameter determination.

Since the assignment of the atomic heats of formation is really just an aspect of parame-
terization, it should be clear that the possibility of a negative force-field energy, which could
derive from addition of net negative non-bonded interaction energies to small non-negative
strain energies, is not a complication. Thus, a typical force-field energy calculation will report
any or all of (i) a strain energy, which is the energetic consequence of the deviation of the
internal molecular coordinates from their equilibrium values, (ii) a force-field energy, which
is the sum of the strain energy and the non-bonded interaction energies, and (iii) a heat of
formation, which is the sum of the force-field energy and the reference heats of formation
for the constituent atom types (Figure 2.8).

For some atom types, thermodynamic data may be lacking to assign a reference heat of
formation. When a molecule contains one or more of these atom types, the force field cannot
compute a molecular heat of formation, and energetic comparisons are necessarily limited
to conformers, or other isomers that can be formed without any change in atom types.

2.4 Geometry Optimization
One of the key motivations in early force-field design was the development of an energy
functional that would permit facile optimization of molecular geometries. While the energy
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Figure 2.8 Molecules A and B are chemical isomers but are composed of different atomic types
(atomic typomers?). Thus, the sums of the heats of formation of their respective unstrained atom
types, which serve as their zeroes of force-field energy, are different. To each zero, strain energy and
non-bonded energy (the sum of which are force-field energy) are added to determine heat of formation.
In this example, note that A is predicted to have a lower heat of formation than B even though it has
a substantially larger strain energy (and force-field energy); this difference is more than offset by the
difference in the reference zeroes

of an arbitrary structure can be interesting, real molecules vibrate thermally about their
equilibrium structures, so finding minimum energy structures is key to describing equilibrium
constants, comparing to experiment, etc. Thus, as emphasized above, one priority in force-
field development is to adopt reasonably simple functional forms so as to facilitate geometry
optimization. We now examine the optimization process in order to see how the functional
forms enter into the problem.

2.4.1 Optimization Algorithms

Note that, in principle, geometry optimization could be a separate chapter of this text. In its
essence, geometry optimization is a problem in applied mathematics. How does one find a
minimum in an arbitrary function of many variables? [Indeed, we have already discussed that
problem once, in the context of parameter optimization. In the case of parameter optimization,
however, it is not necessarily obvious how the penalty function being minimized depends
on any given variable, and moreover the problem is highly underdetermined. In the case
of geometry optimization, we are working with far fewer variables (the geometric degrees
of freedom) and have, at least with a force field, analytic expressions for how the energy
depends on the variables. The mathematical approach can thus be quite different.] As the
problem is general, so, too, many of the details presented below will be general to any energy
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functional. However, certain special considerations associated with force-field calculations
merit discussion, and so we will proceed first with an overview of geometry optimization,
and then examine force-field specific aspects.

Because this text is designed primarily to illuminate the conceptual aspects of computa-
tional chemistry, and not to provide detailed descriptions of algorithms, we will examine only
the most basic procedures. Much more detailed treatises of more sophisticated algorithms
are available (see, for instance, Jensen 1999).

For pedagogical purposes, let us begin by considering a case where we do not know
how our energy depends on the geometric coordinates of our molecule. To optimize the
geometry, all we can do is keep trying different geometries until we are reasonably sure
that we have found the one with the lowest possible energy (while this situation is atypical
with force fields, there are still many sophisticated electronic structure methods for which
it is indeed the only way to optimize the structure). How can one most efficiently survey
different geometries?

It is easiest to proceed by considering a one-dimensional case, i.e., a diatomic with only
the bond length as a geometric degree of freedom. One selects a bond length, and computes
the energy. One then changes the bond length, let us say by shortening it 0.2 Å, and again
computes the energy. If the energy goes down, we want to continue moving the bond length
in that direction, and we should take another step (which need not necessarily be of the same
length). If the energy goes up, on the other hand, we are moving in the wrong direction,
and we should take a step in the opposite direction. Ultimately, the process will provide
three adjacent points where the one in the center is lower in energy than the other two.
Three non-collinear points uniquely define a parabola, and in this case the parabola must
have a minimum (since the central point was lower in energy than the other two). We
next calculate the energy for the bond length corresponding to the parabolic minimum (the
degree to which the computed energy agrees with that from the parabolic equation will be
an indication of how nearly harmonic the local bond stretching coordinate is). We again step
left and right on the bond stretching coordinate, this time with smaller steps (perhaps an
order of magnitude smaller) and repeat the parabolic fitting process. This procedure can be
repeated until we are satisfied that our step size falls below some arbitrary threshold we have
established as defining convergence of the geometry. Note that one can certainly envision
variations on this theme. One could use more than three points in order to fit to higher
order polynomial equations, step sizes could be adjusted based on knowledge of previous
points, etc.

In the multi-dimensional case, the simplest generalization of this procedure is to carry out
the process iteratively. Thus, for LiOH, for example, we might first find a parabolic minimum
for the OH bond, then for the LiO bond, then for the LiOH bond angle (in each case holding
the other two degrees of freedom fixed), and then repeat the process to convergence. Of
course, if there is strong coupling between the various degrees of freedom, this process will
converge rather slowly.

What we really want to do at any given point in the multi-dimensional case is move not
in the direction of a single coordinate, but rather in the direction of the greatest downward
slope in the energy with respect to all coordinates. This direction is the opposite of the
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gradient vector, g, which is defined as

g(q) =




∂U

∂q1
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...

∂U

∂qn




(2.32)

where q is an n-dimensional coordinate vector (n = 3N − 6 where N is the number of atoms
if we are working in internal coordinates, n = 3N if we are working in Cartesian coordinates,
etc.) If we cannot compute the partial derivatives that make up g analytically, we can do
so numerically. However, that numerical evaluation requires at least one additional energy
calculation for each degree of freedom. Thus, we would increase (or decrease) every degree
of freedom by some step size, compute the slope of the resulting line derived from the
energies of our initial structure and the perturbed structure, and use this slope as an estimate
for the partial derivative. Such a ‘forward difference’ estimation is typically not very accurate,
and it would be better to take an additional point in the opposite direction for each degree of
freedom, and then compute the ‘central difference’ slope from the corresponding parabola. It
should be obvious that, as the number of degrees of freedom increases, it can be particularly
valuable to have an energy function for which the first derivative is known analytically.

Let us examine this point a bit more closely for the force-field case. For this example,
we will work in Cartesian coordinates, in which case q = X of Eq. (1.4). To compute, say,
the partial derivative of the energy with respect to the x coordinate of atom A, we will need
to evaluate the changes in energy for the various terms contributing to the full force-field
energy as a function of moving atom A in the x direction. For simplicity, let us consider
only the bond stretching terms. Clearly, only the energy of those bonds that have A at one
terminus will be affected by A’s movement. We may then use the chain rule to write

∂U

∂xA

=
∑

i bonded
to A

∂U

∂rAi

∂rAi

∂xA

(2.33)

Differentiation of E with respect to rAi for Eq. (2.4) gives

∂U

∂rAi

= 1
2 [2kAi + 3k

(3)
Ai (rAi − rAi,eq) + 4k

(4)
Ai (rAi − rAi,eq)

2](rAi − rAi,eq) (2.34)
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The bond length rAi was defined in Eq. 2.15, and its partial derivative with respect to xA is

∂rAi

∂xA
= (xA − xi)√

(xA − xi)2 + (yA − yi)2 + (zA − zi)2
(2.35)

Thus, we may quickly assemble the bond stretching contributions to this particular component
of the gradient. Contributions from the other terms in the force field can be somewhat more
tedious to derive, but are nevertheless available analytically. This makes force fields highly
efficient for the optimization of geometries of very large systems.

With g in hand, we can proceed in a fashion analogous to the one-dimensional case
outlined above. We step along the direction defined by −g until we locate a minimum in
the energy for this process; since we are taking points in a linear fashion, this movement is
called a ‘line search’ (even though we may identify our minimum by fitting our points to a
polynomial curve). Then, we recompute g at the located minimum and repeat the process.
Our new search direction is necessarily orthogonal to our last one, since we minimized E in
the last direction. This particular feature of a steepest descent curve can lead to very slow
convergence in unfavorable cases.

A more robust method is the Newton–Raphson procedure. In Eq. (2.26), we expressed
the full force-field energy as a multidimensional Taylor expansion in arbitrary coordinates.
If we rewrite this expression in matrix notation, and truncate at second order, we have

U(q(k+1)) = U(q(k)) + (q(k+1) − q(k))g(k) + 1
2 (q(k+1) − q(k))†H(k)(q(k+1) − q(k)) (2.36)

where the reference point is q(k), g(k) is the gradient vector for the reference point as defined
by Eq. (2.32), and H(k) is the ‘Hessian’ matrix for the reference point, whose elements are
defined by

H(k)
ij

= ∂2U

∂qi∂qj

∣∣∣∣
q=q(k)

(2.37)

If we differentiate Eq. (2.36) term by term with respect to the ith coordinate of q(k+1), noting
that no term associated with point k has any dependence on a coordinate of point k + 1 (and
hence the relevant partial derivative will be 0), we obtain

∂U(q(k+1))

∂qk+1
i

= ∂q(k+1)

∂qk+1
i

g(k) + 1

2

∂q(k+1)†

∂qk+1
i

H(k)(q(k+1) − q(k))

+ 1

2
(q(k+1) − q(k))†H(k) ∂q(k+1)

∂qk+1
i

(2.38)

The l.h.s. of Eq. (2.38) is the ith element of the vector g(k+1). On the r.h.s. of Eq. (2.38),
since the partial derivative of q with respect to its ith coordinate is simply the unit vector
in the ith coordinate direction, the various matrix multiplications simply produce the ith
element of the multiplied vectors. Because mixed partial derivative values are indepen-
dent of the order of differentiation, the Hessian matrix is Hermitian, and we may simplify
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Eq. (2.38) as
g

(k+1)
i = g

(k)
i + [H(k)(q(k+1) − q(k))]i (2.39)

where the notation []i indicates the ith element of the product column matrix. The condition
for a stationary point is that the l.h.s. of Eq. (2.39) be 0 for all coordinates, or

0 = g(k) + H(k)(q(k+1) − q(k)) (2.40)

which may be rearranged to

q(k+1) = q(k) − (H(k))−1g(k) (2.41)

This equation provides a prescription for the location of stationary points. In principle,
starting from an arbitrary structure having coordinates q(k), one would compute its gradient
vector g and its Hessian matrix H, and then select a new geometry q(k+1) according to
Eq. (2.41). Equation (2.40) shows that the gradient vector for this new structure will be the
0 vector, so we will have a stationary point.

Recall, however, that our derivation involved a truncation of the full Taylor expansion
at second order. Thus, Eq. (2.40) is only approximate, and g(k+1) will not necessarily be 0.
However, it will probably be smaller than g(k), so we can repeat the whole process to pick
a point k + 2. After a sufficient number of iterations, the gradient will hopefully become so
small that structures k + n and k + n + 1 differ by a chemically insignificant amount, and
we declare our geometry to be converged.

There are a few points with respect to this procedure that merit discussion. First, there
is the Hessian matrix. With n2 elements, where n is the number of coordinates in the
molecular geometry vector, it can grow somewhat expensive to construct this matrix at
every step even for functions, like those used in most force fields, that have fairly simple
analytical expressions for their second derivatives. Moreover, the matrix must be inverted
at every step, and matrix inversion formally scales as n3, where n is the dimensionality of
the matrix. Thus, for purposes of efficiency (or in cases where analytic second derivatives
are simply not available) approximate Hessian matrices are often used in the optimization
process – after all, the truncation of the Taylor expansion renders the Newton–Raphson
method intrinsically approximate. As an optimization progresses, second derivatives can be
estimated reasonably well from finite differences in the analytic first derivatives over the
last few steps. For the first step, however, this is not an option, and one typically either
accepts the cost of computing an initial Hessian analytically for the level of theory in use,
or one employs a Hessian obtained at a less expensive level of theory, when such levels are
available (which is typically not the case for force fields). To speed up slowly convergent
optimizations, it is often helpful to compute an analytic Hessian every few steps and replace
the approximate one in use up to that point. For really tricky cases (e.g., where the PES is
fairly flat in many directions) one is occasionally forced to compute an analytic Hessian for
every step.

Another key issue to note is that Eq. (2.41) provides a prescription to get to what is
usually the nearest stationary point, but there is no guarantee that that point will be a
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minimum. The condition for a minimum is that all coordinate second derivatives (i.e., all
diagonal elements of the Hessian matrix) be positive, but Eq. (2.41) places no constraints
on the second derivatives. Thus, if one starts with a geometry that is very near a transition
state (TS) structure, the Newton–Raphson procedure is likely to converge to that structure.
This can be a pleasant feature, if one is looking for the TS in question, or an annoying
one, if one is not. To verify the nature of a located stationary point, it is necessary to
compute an accurate Hessian matrix and inspect its eigenvalues, as discussed in more detail
in Chapter 9. With force fields, it is often cheaper and equally effective simply to ‘kick’ the
structure, which is to say, by hand one moves one or a few atoms to reasonably distorted
locations and then reoptimizes to verify that the original structure is again found as the
lowest energy structure nearby.

Because of the importance of TS structures, a large number of more sophisticated methods
exist to locate them. Many of these methods require that two minima be specified that the
TS structure should ‘connect’, i.e., the TS structure intervenes in some reaction path that
connects them. Within a given choice of coordinates, intermediate structures are evaluated
and, hopefully, the relevant stationary point is located. Other methods allow the specification
of a particular coordinate with respect to which the energy is to be maximized while mini-
mizing it with respect to all other coordinates. When this coordinate is one of the normal
modes of the molecule, this defines a TS structure. The bottom line for all TS structure loca-
tion methods is that they work best when the chemist can provide a reasonably good initial
guess for the structure, and they tend to be considerably more sensitive to the availability of
a good Hessian matrix, since finding the TS essentially amounts to distinguishing between
different local curvatures on the PES.

Most modern computational chemistry software packages provide some discussion of the
relative merits of the various optimizers that they make available, at least on the level of
providing practical advice (particularly where the user can set certain variables in the opti-
mization algorithm with respect to step size between structures, tolerances, use of redundant
internal coordinates, etc.), so we will not try to cover all possible tricks and tweaks here. We
will simply note that it is usually a good idea to visualize the structures in an optimization
as it progresses, as every algorithm can sometimes take a pathologically bad step, and it is
usually better to restart the calculation with an improved guess than it is to wait and hope
that the optimization ultimately returns to normalcy.

A final point to be made is that most optimizers are rather good at getting you to the nearest
minimum, but an individual researcher may be interested in finding the global minimum
(i.e., the minimum having the lowest energy of all minima). Again, this is a problem in
applied mathematics for which no one solution is optimal (see, for instance, Leach 1991).
Most methods involve a systematic or random sampling of alternative conformations, and
this subject will be discussed further in the next chapter.

2.4.2 Optimization Aspects Specific to Force Fields

Because of their utility for very large systems, where their relative speed proves advanta-
geous, force fields present several specific issues with respect to practical geometry opti-
mization that merit discussion. Most of these issues revolve around the scaling behavior
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that the speed of a force-field calculation exhibits with respect to increasing system size.
Although we raise the issues here in the context of geometry optimization, they are equally
important in force-field simulations, which are discussed in more detail in the next chapter.

If we look at the scaling behavior of the various terms in a typical force field, we see that
the internal coordinates have very favorable scaling – the number of internal coordinates
is 3N − 6, which is linear in N . The non-bonded terms, on the other hand, are computed
from pairwise interactions, and therefore scale as N2. However, this scaling assumes the
evaluation of all pairwise terms. If we consider the Lennard–Jones potential, its long-range
behavior decays proportional to r−6. The total number of interactions should grow at most
as r2 (i.e., proportional to the surface area of a surrounding sphere), so the net energetic
contribution should decay with an r−4 dependence. This quickly becomes negligible (partic-
ularly from a gradient standpoint) so force fields usually employ a ‘cut-off’ range for the
evaluation of van der Waals energies – a typical choice is 10 Å. Thus, part of the calcula-
tion involves the periodic updating of a ‘pair list’, which is a list of all atoms for which the
Lennard–Jones interaction needs to be calculated (Petrella et al. 2003). The update usually
occurs only once every several steps, since, of course, evaluation of interatomic distances
also formally scales as N2.

In practice, even though the use of a cut-off introduces only small disparities in the energy,
the discontinuity of these disparities can cause problems for optimizers. A more stable
approach is to use a ‘switching function’ which multiplies the van der Waals interaction
and causes it (and possibly its first and second derivatives) to go smoothly to zero at some
cut-off distance. This function must, of course, be equal to 1 at short distances.

The electrostatic interaction is more problematic. For point charges, the interaction energy
decays as r−1. As already noted, the number of interactions increases by up to r2, so the
total energy in an infinite system might be expected to diverge! Such formal divergence is
avoided in most real cases, however, because in systems that are electrically neutral there
are as many positive interactions as negative, and thus there are large cancellation effects. If
we imagine a system composed entirely of neutral groups (e.g., functional groups of a single
molecule or individual molecules of a condensed phase), the long-range interaction between
groups is a dipole–dipole interaction, which decays as r−3, and the total energy contribution
should decay as r−1. Again, the actual situation is more favorable because of positive and
negative cancellation effects, but the much slower decay of the electrostatic interaction makes
it significantly harder to deal with. Cut-off distances (again, ideally implemented with smooth
switching functions) must be quite large to avoid structural artifacts (e.g., atoms having large
partial charges of like sign anomalously segregating at interatomic distances just in excess
of the cut-off).

In infinite periodic systems, an attractive alternative to the use of a cut-off distance is the
Ewald sum technique, first described for chemical systems by York, Darden and Pedersen
(1993). By using a reciprocal-space technique to evaluate long-range contributions, the total
electrostatic interaction can be calculated to a pre-selected level of accuracy (i.e., the Ewald
sum limit is exact) with a scaling that, in the most favorable case (called ‘Particle-mesh
Ewald’, or PME), is N logN . Prior to the introduction of Ewald sums, the modeling of
polyelectrolytes (e.g., DNA) was rarely successful because of the instabilities introduced
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by cut-offs in systems having such a high degree of localized charges (see, for instance,
Beveridge and McConnell 2000).

In aperiodic systems, another important contribution has been the development of the
so-called ‘Fast Multipole Moment’ (FMM) method (Greengard and Rokhlin 1987). In
essence, this approach takes advantage of the significant cancellations in charge–charge
interactions between widely separated regions in space, and the increasing degree to which
those interactions can be approximated by highly truncated multipole–multipole interactions.
In the most favorable case, FMM methods scale linearly with system size.

It should be remembered, of course, that scaling behavior is informative of the relative
time one system takes compared to another of different size, and says nothing about the
absolute time required for the calculation. Thus, FMM methods scale linearly, but the initial
overhead can be quite large, so that it requires a very large system before it outperforms PME
for the same level of accuracy. Nevertheless, the availability of the FMM method renders
conceivable the molecular modeling of extraordinarily large systems, and refinements of the
method, for example the use of multiple grids (Skeel, Tezcan, and Hardy 2002), are likely
to continue to be forthcoming.

An interesting question that arises with respect to force fields is the degree to which
they can be used to study reactive processes, i.e., processes whereby one minimum-energy
compound is converted into another with the intermediacy of some transition state. As noted
at the beginning of this chapter, one of the first applications of force-field methodology
was to study the racemization of substituted biphenyls. And, for such ‘conformational reac-
tions’, there seems to be no reason to believe force fields would not be perfectly appropriate
modeling tools. Unless the conformational change in question were to involve an enor-
mous amount of strain in the TS structure, there is little reason to believe that any of the
internal coordinates would be so significantly displaced from their equilibrium values that
the force-field functional forms would no longer be accurate.

However, when it comes to reactions where bonds are being made and/or broken, it is
clear that, at least for the vast majority of force fields that use polynomial expressions for
the bond stretching energy, the ‘normal’ model is inapplicable. Nevertheless, substantial
application of molecular mechanics to such TS structures has been reported, with essentially
three different approaches having been adopted.

One approach, when sufficient data are available, is to define new atom types and associ-
ated parameters for those atoms involved in the bond-making/bond-breaking coordinate(s).
This is rather tricky since, while there may be solid experimental data for activation energies,
there are unlikely to be any TS structural data. Instead, one might choose to use structures
computed from some QM level of theory for one or more members of the molecular data set.
Then, if one assumes the reaction coordinate is highly transferable from one molecule to the
next (i.e., this methodology is necessarily restricted to the study of a single reaction amongst
a reasonably closely related set of compounds), one can define a force field where TS struc-
tures are treated as ‘minima’ – minima in quotes because the equilibrium distances and force
constants for the reactive coordinate(s) have values characteristic of the transition state.

This methodology has two chief drawbacks. A philosophical drawback is that movement
along the reaction coordinate raises the force-field energy instead of lowering it, which
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is opposite to the real chemical system. A practical drawback is that it tends to be data
limited – one may need to define a fairly large number of parameters using only a rather
limited number of activation energies and perhaps some QM data. As noted in Section 2.2.7,
this creates a tension between chemical intuition and statistical rigor. Two papers applying
this technique to model the acid-catalyzed lactonization of organic hydroxy-acids illustrate
the competing extremes to which such optimizations may be taken (Dorigo and Houk 1987;
Menger 1990).

An alternative approach is one that is valence-bond like in its formulation. A possible TS
structure is one whose molecular geometry is computed to have the same energy irrespective
of whether the atomic connectivity is that of the reactant or that of the product (Olsen and
Jensen 2003). Consider the example in Figure 2.9 for a hypothetical hydride transfer from an
alkoxide carbon to a carbonyl. When the C–H bond is stretched from the reactant structure,
the energy of the reactant-bonded structure goes up, while the energy of the product-bonded
structure goes down because that structure’s C–H bond is coming closer to its equilibrium
value (from which it is initially very highly displaced). The simplest way to view this process
is to envision two PESs, one defined for the reactant and one for the product. These two
surfaces will intersect along a ‘seam’, and this seam is where the energy is independent of
which connectivity is employed. The TS structure is then defined as the minimum on the
seam. This approach is only valid when the reactant and product energies are computed
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Figure 2.9 Slice through two intersecting enthalpy ‘surfaces’ along an arbitrary coordinate describing
the location of a transferring H atom. The solid curve corresponds to bond stretching of the solid bond
from carbon to the H atom being transferred. The dashed curve corresponds analogously to the dashed
bond. At the point of intersection, the structure has the same energy irrespective of which bonding
scheme is chosen. [For chemical clarity, the negative charge is shown shifting from one oxygen to the
other, but for the method to be valid the two oxygen atom types could not change along either reaction
coordinate. Note also that the bromine atom lifts the symmetry that would otherwise be present in this
reaction.]
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relative to a common zero (e.g., heats of formation are used; see Section 2.3), but one of its
chief advantages is that it should properly reflect movement of the TS structure as a function
of reaction thermicity. Because the seam of intersection involves structures having highly
stretched bonds, care must be taken to use bond stretching functional forms that are accurate
over larger ranges than are otherwise typical. When the VB formalism goes beyond the seam
approach, and is adopted in full, a new ground-state potential energy surface can be generated
about a true TS structure; such an approach is sometimes referred to as multiconfiguration
molecular mechanics (MCMM) and is described in detail in Section 13.4.

The third approach to finding TS structures involves either adopting bond making/breaking
functional forms that are accurate at all distances (making evaluation of bond energies a rather
unpleasant N2 process), or mixing the force-field representation of the bulk of the molecule
with a QM representation of the reacting region. Mixed QM/MM models are described in
detail in Chapter 13.

2.5 Menagerie of Modern Force Fields

2.5.1 Available Force Fields

Table 2.1 contains an alphabetic listing of force fields which for the most part continue to
be in use today. Nomenclature of force fields can be rather puzzling because developers
rarely change the name of the force field as development progresses. This is not necessarily
a major issue when new development extends a force field to functionality that had not
previously been addressed, but can be singularly confusing if pre-existing parameters or
functional forms are changed from one version to the next without an accompanying name
change. Many developers have tried to solve this problem by adding to the force field name
the last two digits of the year of the most recent change to the force field. Thus, one can have
MM3(92) and MM3(96), which are characterized by, inter alia, different hydrogen bonding
parameters. Similarly, one has consistent force field (CFF) and Merck molecular force field
(MMFF) versions identified by trailing year numbers. Regrettably, the year appearing in a
version number does not necessarily correspond to the year in which the modifications were
published in the open literature. Moreover, even when the developers themselves exercise
adequate care, there is a tendency for the user community to be rather sloppy in referring
to the force field, so that the literature is replete with calculations inadequately described to
ensure reproducibility.

Further confusing the situation, certain existing force fields have been used as starting
points for development by new teams of researchers, and the name of the resulting product
has not necessarily been well distinguished from the original (which may itself be in ongoing
development by its original designers!). Thus, for instance, one has the MM2* and MM3*
force fields that appear in the commercial program MACROMODEL and that are based on
early versions of the unstarred force fields of the same name (the ∗ indicates the use of point
charges to evaluate the electrostatics instead of bond dipoles, the use of a non-directional
10–12 potential for hydrogen bonding in place of an MM3 Buckingham potential, and a
different formalism for handling conjugated systems). The commercial program Chem3D
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also has force fields based on MM2 and MM3, and makes no modification to the names of
the originals.

As a final point of ambiguity, some force fields have not been given names, per se, but
have come to be called by the names of the software packages in which they first became
widely available. Thus, the force fields developed by the Kollman group (see Table 2.1) have
tended to be referred to generically as AMBER force fields, because this software package is
where they were originally coded. Kollman preferred that they be referred to by the names
of the authors on the relevant paper describing their development, e.g., ‘the force field of
Cornell et al.’ This is certainly more informative, since at this point the AMBER program
includes within it many different force fields, so reference to the ‘AMBER force field’
conveys no information.

Because of the above ambiguities, and because it is scientifically unacceptable to publish
data without an adequate description of how independent researchers might reproduce those
data, many respected journals in the chemistry field now have requirements that papers
reporting force-field calculations include as supplementary material a complete listing of
all force field parameters (and functional forms, if they too cannot be adequately described
otherwise) required to carry out the calculations described. This also facilitates the dissem-
ination of information to those researchers wishing to develop their own codes for specific
purposes.

Table 2.1 also includes a general description of the chemical space over which the force
field has been designed to be effective; in cases where multiple subspaces are addressed,
the order roughly reflects the priority given to these spaces during development. Force fields
which have undergone many years worth of refinements tend to have generated a rather large
number of publications, and the table does not try to be exhaustive, but effort is made to
provide key references. The table also includes comments deemed to be particularly pertinent
with respect to software implementing the force fields. For an exhaustive listing, by force
field, of individual papers in which parameters for specific functional groups, metals, etc.,
were developed, readers are referred to Jalaie and Lipkowitz (2000).

2.5.2 Validation

The vast majority of potential users of molecular mechanics have two primary, related
questions: ‘How do I pick the best force field for my problem?’ and, ‘How will I know
whether I can trust the results?’ The process of testing the utility of a force field for molecules
other than those over which it was parameterized is known as ‘validation’.

The answer to the first question is obvious, if not necessarily trivial: one should pick
the force field that has previously been shown to be most effective for the most closely
related problem one can find. That demonstration of effectiveness may have taken place
within the process of parameterization (i.e., if one is interested in conformational properties
of proteins, one is more likely to be successful with a force field specifically parameterized
to model proteins than with one which has not been) or by post-development validation.
Periodically in the literature, papers appear comparing a wide variety of force fields for some
well-defined problem, and the results can be quite useful in guiding the choices of subsequent
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researchers (see also, Bays 1992). Gundertofte et al. (1991, 1996) studied the accuracy of
17 different force fields with respect to predicting 38 experimental conformational energy
differences or rotational barriers in organic molecules. These data were grouped into eight
separate categories (conjugated compounds, halocyclohexanes, haloalkanes, cyclohexanes,
nitrogen-containing compounds, oxygen-containing compounds, hydrocarbons, and rotational
barriers). A summary of these results appears for relevant force fields in Table 2.1, where the
number cited represents the sum of the mean errors over all eight categories. In some cases
a range is cited because different versions of the same force field and/or different software
packages were compared. In general, the best performances are exhibited by the MM2 and
MM3 force fields and those other force fields based upon them. In addition, MMFF93 had
similar accuracy. Not surprisingly, the most general force fields do rather badly, with UFF
faring quite poorly in every category other than hydrocarbons.

Broad comparisons have also appeared for small biomolecules. Barrows et al. (1998)
compared 10 different force fields against well-converged quantum mechanical calculations
for predicting the relative conformational energies of 11 different conformers of D-glucose.
GROMOS, MM3(96), and the force field of Weiner et al. were found to have average errors
of 1.5 to 2.1 kcal/mol in relative energy, CHARMM and MMFF had average errors of from
0.9 to 1.5, and AMBER∗, Chem-X, OPLS, and an unpublished force field of Simmerling
and Kollman had average errors from 0.6 to 0.8 kcal/mol, which compared quite well with
vastly more expensive ab initio methods. Shi et al. (2003) compared the performance of the
very general force fields ESFF, CFF91, and CVFF over five of these glucose conformers and
found average errors of 1.2, 0.6, and 1.9 kcal/mol, respectively; a more recent comparison
by Heramingsen et al. (2004) of 20 carbohydrate force fields over a larger test of sugars
and sugar–water complexes did not indicate any single force field to be clearly superior
to the others. Beachy et al. (1997) carried out a similar comparison for a large number of
polypeptide conformations and found OPLS, MMFF, and the force field of Cornell et al. to
be generally the most robust. Price and Brooks (2002) compared protein dynamical proper-
ties, as opposed to polypeptide energetics, and found that the force fields of Cornell et al.,
CHARM22, and OPLS-AA all provided similarly good predictions for radii of gyration,
backbone order parameters, and other properties for three different proteins.

Of course, in looking for an optimal force field there is no guarantee that any system
sufficiently similar to the one an individual researcher is interested in has ever been studied,
in which case it is hard to make a confident assessment of force-field utility. In that
instance, assuming some experimental data are available, it is best to do a survey of several
force fields to gauge their reliability. When experimental data are not available, recourse
to well-converged quantum mechanical calculations for a few examples is a possibility,
assuming the computational cost is not prohibitive. QM values would then take the place of
experimental data. Absent any of these alternatives, any force field calculations will simply
carry with them a high degree of uncertainty and the results should be used with caution.

Inorganic chemists may be frustrated to have reached this point having received rela-
tively little guidance on what force fields are best suited to their problems. Regrettably,
the current state of the art does not provide any single force field that is both robust
and accurate over a large range of inorganic molecules (particularly metal coordination
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compounds). As noted above, parameter transferability tends to be low, i.e., the number
of atom types potentially requiring parameterization for a single metal atom, together with
the associated very large number of geometric and non-bonded constants, tends to signifi-
cantly exceed available data. Instead, individual problems tend to be best solved with highly
tailored force fields, when they are available (see for example, Comba and Remenyi 2002),
or by combining QM and MM methods (see Chapter 13), or by accepting that the use
of available highly generalized force fields increases the risk for significant errors and
thus focusing primarily on structural perturbations over a related series of compounds
rather than absolute structures or energetics is advised (see also Hay 1993; Norrby and
Brandt 2001).

A last point that should be raised with regard to validation is that any comparison
between theory and experiment must proceed in a consistent fashion. Consider molecular
geometries. Chemists typically visualize molecules as having ‘structure’. Thus, for example,
single-crystal X-ray diffractometry can be used to determine a molecular structure, and at the
end of a molecular mechanics minimization one has a molecular structure, but is it strictly
valid to compare them?

It is best to consider this question in a series of steps. First, recall that the goal of a MM
minimization is to find a local minimum on the PES. That local minimum has a unique
structure and each molecular coordinate has a precise value. What about the structure from
experiment? Since most experimental techniques for assigning structure sample an ensemble
of molecules (or one molecule many, many times), the experimental measurement is properly
referred to as an expectation value, which is denoted by angle brackets about the measured
variable. Real molecules vibrate, even at temperatures arbitrarily close to absolute zero, so
measured structural parameters are actually expectation values over the molecular vibrations.
Consider, for example, the length of the bond between atoms A and B in its ground vibrational
state. For a quantum mechanical harmonic oscillator, 〈rAB〉 = rAB,eq, but real bond stretching
coordinates are anharmonic, and this inevitably leads to 〈rAB〉 > rAB,eq (see Section 9.3.2).
In the case of He2, mentioned above, the effect of vibrational averaging is rather extreme,
leading to a difference between 〈rAB〉 and rAB,eq of more than 50 Å! Obviously, one should
not judge the quality of the calculated rAB,eq value based on comparison to the experimental
〈rAB〉 value. Note that discrepancies between 〈rAB〉 and rAB,eq will increase if the experimental
sample includes molecules in excited vibrational states. To be rigorous in comparison, either
the calculation should be extended to compute 〈rAB〉 (by computation of the vibrational wave
function(s) and appropriate averaging) or the experiment must be analyzed to determine
rAB,eq, e.g., as described in Figure 2.1.

Moreover, the above discussion assumes that the experimental technique measures exactly
what the computational technique does, namely, the separation between the nuclear centroids
defining a bond. X-ray crystallography, however, measures maxima in scattering amplitudes,
and X-rays scatter not off nuclei but off electrons. Thus, if electron density maxima do not
correspond to nuclear positions, there is no reason to expect agreement between theory and
experiment (for heavy atoms this is not much of an issue, but for very light ones it can be).
Furthermore, the conditions of the calculation typically correspond to an isolated molecule
acting as an ideal gas (i.e., experiencing no intermolecular interactions), while a technique
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like X-ray crystallography obviously probes molecular structure in a condensed phase where
crystal packing and dielectric effects may have significant impact on the determined structure
(see, for example, Jacobson et al. 2002).

The above example illustrates some of the caveats in comparing theory to experiment for
a structural datum (see also Allinger, Zhou and Bergsma 1994). Care must also be taken in
assessing energetic data. Force-field calculations typically compute potential energy, whereas
equilibrium distributions of molecules are dictated by free energies (see Chapter 10). Thus,
the force-field energies of two conformers should not necessarily be expected to reproduce
an experimental equilibrium constant between them. The situation can become still more
confused for transition states, since experimental data typically are either activation free
energies or Arrhenius activation energies, neither of which corresponds directly with the
difference in potential energy between a reactant and a TS structure (see Chapter 15). Even
in those cases where the force field makes possible the computation of heats of formation
and the experimental data are available as enthalpies, it must be remembered that the effect
of zero-point vibrational energy is accounted for in an entirely average way when atom-type
reference heats of formation are parameterized, so some caution in comparison is warranted.

Finally, any experimental measurement carries with it some error, and obviously a compar-
ison between theory and experiment should never be expected to do better than the exper-
imental error. The various points discussed in this last section are all equally applicable to
comparisons between experiment and QM theories as well, and the careful practitioner would
do well always to bear them in mind.

2.6 Force Fields and Docking

Of particular interest in the field of drug design is the prediction of the strength and specificity
with which a small to medium sized molecule may bind to a biological macromolecule
(Lazaridis 2002; Shoichet et al. 2002). Many drugs function by binding to the active sites
of particular enzymes so strongly that the normal substrates of these enzymes are unable to
displace them and as a result some particular biochemical pathway is stalled.

If we consider a case where the structure of a target enzyme is known, but no structure
complexed with the drug (or the natural substrate) exists, one can imagine using computa-
tional chemistry to evaluate the energy of interaction between the two for various positionings
of the two species. This process is known as ‘docking’. Given the size of the total system
(which includes a biopolymer) and the very large number of possible arrangements of the
drug molecule relative to the enzyme that we may wish to survey, it is clear that speedy
methods like molecular mechanics are likely to prove more useful than others. This becomes
still more true if the goal is to search a database of, say, 100 000 molecules to see if
one can find any that bind still more strongly than the current drug, so as to prospect for
pharmaceuticals of improved efficacy.

One way to make this process somewhat more efficient is to adopt rigid structures for
the various molecules. Thus, one does not attempt to perform geometry optimizations, but
simply puts the molecules in some sort of contact and evaluates their interaction energies.
To that extent, one needs only to evaluate non-bonded terms in the force field, like those
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Figure 2.10 Docking grid constructed around a target protein. Each gridpoint can be assigned a force
field interaction potential for use in evaluating binding affinities. Note that this grid is very coarse to
improve viewing clarity; an actual grid might be considerably finer.

modeled by Eqs. (2.16) and (2.22). Moreover, to further simplify matters, one may consider
the rigid enzyme to be surrounded by a three-dimensional grid, as illustrated in Figure 2.10.
Given a fixed geometry, one may compute the interaction potential at each grid point for
a molecular mechanics atom having unit values of charge and Lennard-Jones parameters.
Then, to compute interaction energies, one places a proto-drug molecule at some arbitrary
position in space, and assigns each atom to be associated with the grid point nearest it (or
one could interpolate if one were willing to pay the computational cost). The potential for
each point is then multiplied by the appropriate atomic parameters, and the sum of all atomic
interactions defines the docking energy for that particular position and orientation. After a
suitable number of random or directed choices of position have been surveyed, the lowest
docking energy is recorded, and one moves on to the next molecule in the test set.

Of course, this analysis is rather crude, since it ignores a number of physical phenomena
in computing an interaction energy. For instance, we failed to account for the desolvation
of the enzyme and the substrate along the surfaces over which they come into contact, and
we did not consider the entropy loss associated with binding. As such, the goal of most
docking studies tends to be to provide a simple filter that can narrow a vast database down
to a merely large database, to which more refined techniques may be applied so as to further
winnow down possible leads.
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Note that after having made so many approximations in the modeling protocol, there is no
particular reason to believe that nonbonded interactions evaluated using particular force field
parameters will be better than others that might be developed specifically for the purpose of
docking. Thus, other grid-based scoring methods are widely used (see, for example, Meng,
Shoichet, and Kuntz 1992), including more recent ones that incorporate some analysis of
desolvation penalties (Zou, Sun, and Kuntz 1999; Salichs et al. 2002; Li, Chen, and Weng
2003; Kang, Shafer, and Kuntz 2004).

2.7 Case Study: (2R∗,4S ∗)-1-Hydroxy-2,4-dimethylhex-5-ene

Synopsis of Stahl et al. (1991), ‘Conformational Analysis with Carbon-Carbon Coupling
Constants. A Density Functional and Molecular Mechanics Study’.

Many natural products contain one or more sets of carbon backbones decorated with
multiple stereogenic centers. A small such fragment that might be found in propiogenic
natural products is illustrated in Figure 2.11. From a practical standpoint, the assignment
of absolute configuration to each stereogenic center (R or S), or even of the relative
configurations between centers, can be difficult in the absence of single-crystal X-ray data.
When many possibilities exist, it is an unpleasant task to synthesize each one.

An alternative means to assign the stereochemistry is to use nuclear magnetic resonance
(NMR). Coupling constant data from the NMR experiment can be particularly useful in
assigning stereochemistry. However, if the fragments are highly flexible, the interpretation
of the NMR data can be complicated when the interconversion of conformers is rapid on
the NMR timescale. In that case, rather than observing separate, overlapping spectra for
every conformer, only a population-averaged spectrum is obtained.

Deconvolution of such spectra can be accomplished in a computational fashion by
(i) determining the energies of all conformers contributing to the equilibrium population,
(ii) predicting the spectral constants associated with each conformer, and (iii) averaging
over all spectral data weighted by the fractional contribution of each conformer to the
equilibrium (the fractional contribution is determined by a Boltzmann average over the
energies, see Eq. (10.49)). The authors adopted this approach for (2R∗,4S∗)-1-hydroxy-
2,4-dimethylhex-5-ene, where the conformer energies were determined using the MM3
force field and the NMR coupling constants were predicted at the density functional level
of theory. As density functional theory is the subject of Chapter 8 and the prediction of
NMR data is not discussed until Section 9.4, we will focus here simply on the performance
of MM3 for predicting conformer energies and weighting spectral data.

In order to find the relevant conformers, the authors employed a Monte
Carlo/minimization strategy that is described in more detail in the next chapter – in practice,
(2R*,4S*)-1-hydroxy-2,4-dimethylhex-5-ene is sufficiently small that one could survey
every possible torsional isomer by brute force, but it would be very tedious. Table 2.2
shows, for the nine lowest energy conformers, their predicted energies, their contribution to
the 300 K equilibrium population, their individual 3JCC coupling constants between atoms
C(2)C(5), C(2)C(8), C(1)C(4), and C(4)C(7), and the mean absolute error in these coupling
constants compared to experiment (see Figure 2.11 for atom-numbering convention). In
addition, the spectral data predicted from a population-weighted equilibrium average over
the nine conformers making up 82% of the equilibrium population are shown.
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The population-averaged data are those in best agreement with experiment. Conformer G
shows similar agreement (the increased error is within the rounding limit for the table), but
is predicted to be sufficiently high in energy that it is unlikely that MM3 could be sufficiently
in error for it to be the only conformer at equilibrium. As a separate assessment of this point,
the authors carry out ab initio calculations at a correlated level of electronic structure theory
(MP2/TZ2P//HF/TZ2P; this notation and the relevant theories are discussed in Chapters 6
and 7, but exact details are not important here), and observe what they characterize as very
good agreement between the force-field energies and the ab initio energies (the data are
not provided).

In principle, then, when the relative configurations are not known for a flexible chain
in some natural product backbone, the technique outlined above could be used to predict
the expected NMR spectra for all possibilities, and presuming one prediction matched to
experiment significantly more closely than any other, the assignment would be regarded
as reasonably secure. At the least, it would suggest how to prioritize synthetic efforts that
would be necessary to provide the ultimate proof.
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Figure 2.11 Some plausible conformations of (2R∗,4S∗)-1-hydroxy-2,4-dimethylhex-5-ene.
How many different torsional isomers might one need to examine, and how would you go
about generating them? [Note that the notation 2R∗,4S∗ implies that the relative stereochemical
configuration at the 2 and 4 centers is R,S – by convention, when the absolute configuration is
not known the first center is always assigned to be R∗. However, the absolute conformations that
are drawn here are S,R so as to preserve correspondence with the published illustrations of Stahl
and coworkers. Since NMR in an achiral solvent does not distinguish between enantiomers, one
can work with either absolute configuration in this instance.]
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Table 2.2 Relative MM3 energies (kcal mol−1), fractional equilibrium populations F (%),
predicted NMR coupling constants (Hz), and mean unsigned error in predicted coupling constants
for different conformers and the equilibrium average of (2R*,4S*)-1-hydroxy-2,4-dimethyl-
hex 5-ene at 300 K.

3J

Conformer rel E F C(2)C(5) C(2)C(8) C(1)C(4) C(4)C(7) MUE

A 0.0 24 1.1 4.2 3.9 1.3 0.6
B 0.1 21 1.1 4.0 5.8 1.2 1.0
C 0.2 19 1.0 4.2 4.1 1.2 0.7
D 0.9 5 3.8 1.5 1.7 4.5 2.2
E 1.1 4 4.1 0.8 1.1 4.4 2.5
F 1.3 3 4.1 0.9 0.4 5.3 2.9
G 1.4 2 1.2 3.7 3.8 1.5 0.3
H 1.4 2 1.4 4.2 5.7 1.4 0.9
I 1.5 2 0.1 5.1 0.0 5.3 2.5

average 82 1.4 3.7 4.1 1.8 0.3
experiment 1.4 3.3 3.8 2.2

In that regard, this paper might have been improved by including a prediction (and ideally
an experimental measurement) for the NMR coupling data of (2R∗,4R∗)-1-hydroxy-2,4-
dimethylhex-5-ene, i.e., the stereoisomer having the R∗,R∗ relative configuration between
the stereogenic centers instead of the R∗,S∗ configuration. If each predicted spectrum
matched its corresponding experimental spectrum significantly more closely than it matched
the non-corresponding experimental spectrum, the utility of the methodology would be still
more convincingly demonstrated. Even in the absence of this demonstration, however, the
work of Stahl and his coworkers nicely illustrates how accurate force fields can be for
‘typical’ C,H,O-compounds, and also how different levels of theory can be combined to
address different parts of a computational problem in the most efficient manner. In this
case, inexpensive molecular mechanics is used to provide an accurate map of the wells on
the conformational potential energy surface and the vastly more expensive DFT method is
employed only thereafter to predict the NMR spectral data.
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3
Simulations of Molecular Ensembles

3.1 Relationship Between MM Optima and Real Systems

As noted in the last chapter within the context of comparing theory to experiment, a
minimum-energy structure, i.e., a local minimum on a PES, is sometimes afforded more
importance than it deserves. Zero-point vibrational effects dictate that, even at 0 K, the
molecule probabilistically samples a range of different structures. If the molecule is quite
small and is characterized by fairly ‘stiff’ molecular coordinates, then its ‘well’ on the PES
will be ‘narrow’ and ‘deep’ and the range of structures it samples will all be fairly close
to the minimum-energy structure; in such an instance it is not unreasonable to adopt the
simple approach of thinking about the ‘structure’ of the molecule as being the minimum
energy geometry. However, consider the case of a large molecule characterized by many
‘loose’ molecular coordinates, say polyethyleneglycol, (PEG,–(OCH2CH2)n –), which has
‘soft’ torsional modes: What is the structure of a PEG molecule having n = 50? Such a
query is, in some sense, ill defined. Because the probability distribution of possible struc-
tures is not compactly localized, as is the case for stiff molecules, the very concept of
structure as a time-independent property is called into question. Instead, we have to accept
the flexibility of PEG as an intrinsic characteristic of the molecule, and any attempt to under-
stand its other properties must account for its structureless nature. Note that polypeptides,
polynucleotides, and polysaccharides all are also large molecules characterized by having
many loose degrees of freedom. While nature has tended to select for particular examples
of these molecules that are less flexible than PEG, nevertheless their utility as biomolecules
sometimes derives from their ability to sample a wide range of structures under physiological
conditions, and attempts to understand their chemical behavior must address this issue.

Just as zero-point vibration introduces probabilistic weightings to single-molecule struc-
tures, so too thermodynamics dictates that, given a large collection of molecules, probabilistic
distributions of structures will be found about different local minima on the PES at non-zero
absolute temperatures. The relative probability of clustering about any given minimum is a
function of the temperature and some particular thermodynamic variable characterizing the
system (e.g., Helmholtz free energy), that variable depending on what experimental condi-
tions are being held constant (e.g., temperature and volume). Those variables being held
constant define the ‘ensemble’.

Essentials of Computational Chemistry, 2nd Edition Christopher J. Cramer
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09181-9 (cased); 0-470-09182-7 (pbk)
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We will delay a more detailed discussion of ensemble thermodynamics until Chapter 10;
indeed, in this chapter we will make use of ensembles designed to render the operative
equations as transparent as possible without much discussion of extensions to other ensem-
bles. The point to be re-emphasized here is that the vast majority of experimental techniques
measure molecular properties as averages – either time averages or ensemble averages or,
most typically, both. Thus, we seek computational techniques capable of accurately repro-
ducing these aspects of molecular behavior. In this chapter, we will consider Monte Carlo
(MC) and molecular dynamics (MD) techniques for the simulation of real systems. Prior to
discussing the details of computational algorithms, however, we need to briefly review some
basic concepts from statistical mechanics.

3.2 Phase Space and Trajectories

The state of a classical system can be completely described by specifying the positions and
momenta of all particles. Space being three-dimensional, each particle has associated with
it six coordinates – a system of N particles is thus characterized by 6N coordinates. The
6N -dimensional space defined by these coordinates is called the ‘phase space’ of the system.
At any instant in time, the system occupies one point in phase space

X′ = (x1, y1, z1, px,1, py,1, pz,1, x2, y2, z2, px,2, py,2, pz,2, . . .) (3.1)

For ease of notation, the position coordinates and momentum coordinates are defined as

q = (x1, y1, z1, x2, y2, z2, . . .) (3.2)

p = (px,1, py,1, pz,1, px,2, py,2, pz,2, . . .) (3.3)

allowing us to write a (reordered) phase space point as

X = (q, p) (3.4)

Over time, a dynamical system maps out a ‘trajectory’ in phase space. The trajectory is
the curve formed by the phase points the system passes through. We will return to consider
this dynamic behavior in Section 3.2.2.

3.2.1 Properties as Ensemble Averages

Because phase space encompasses every possible state of a system, the average value of
a property A at equilibrium (i.e., its expectation value) for a system having a constant
temperature, volume, and number of particles can be written as an integral over phase space

〈A〉 =
∫ ∫

A(q, p)P (q, p)dqdp (3.5)
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where P is the probability of being at a particular phase point. From statistical mechanics, we
know that this probability depends on the energy associated with the phase point according to

P(q, p) = Q−1e−E(q,p)/kBT (3.6)

where E is the total energy (the sum of kinetic and potential energies depending on p and q,
respectively) kB is Boltzmann’s constant, T is the temperature, and Q is the system partition
function

Q =
∫ ∫

e−E(q,p)/kBT dqdp (3.7)

which may be thought of as the normalization constant for P .
How might one go about evaluating Eq. (3.5)? In a complex system, the integrands of

Eqs. (3.5) and (3.7) are unlikely to allow for analytic solutions, and one must perforce
evaluate the integrals numerically. The numerical evaluation of an integral is, in the abstract,
straightforward. One determines the value of the integrand at some finite number of points,
fits those values to some function that is integrable, and integrates the latter function. With
an increasing number of points, one should observe this process to converge to a particular
value (assuming the original integral is finite) and one ceases to take more points after a
certain tolerance threshold has been reached.

However, one must remember just how vast phase space is. Imagine that one has only a
very modest goal: One will take only a single phase point from each ‘hyper-octant’ of phase
space. That is, one wants all possible combinations of signs for all of the coordinates. Since
each coordinate can take on two values (negative or positive), there are 26N such points.
Thus, in a system having N = 100 particles (which is a very small system, after all) one
would need to evaluate A and E at 4.15 × 10180 points! Such a process might be rather time
consuming . . .

The key to making this evaluation more tractable is to recognize that phase space is, for
the most part, a wasteland. That is, there are enormous volumes characterized by energies
that are far too high to be of any importance, e.g., regions where the positional coordinates
of two different particles are such that they are substantially closer than van der Waals
contact. From a mathematical standpoint, Eq. (3.6) shows that a high-energy phase point
has a near-zero probability, and thus the integrand of Eq. (3.5) will also be near-zero (as
long as property A does not go to infinity with increasing energy). As the integral of zero is
zero, such a phase point contributes almost nothing to the property expectation value, and
simply represents a waste of computational resources. So, what is needed in the evaluation of
Eqs. (3.5) and (3.7) is some prescription for picking important (i.e., high-probability) points.

The MC method, described in Section 3.4, is a scheme designed to do exactly this in
a pseudo-random fashion. Before we examine that method, however, we first consider a
somewhat more intuitive way to sample ‘useful’ regions of phase space.

3.2.2 Properties as Time Averages of Trajectories

If we start a system at some ‘reasonable’ (i.e., low-energy) phase point, its energy-conserving
evolution over time (i.e., its trajectory) seems likely to sample relevant regions of phase space.
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Certainly, this is the picture most of us have in our heads when it comes to the behavior of
a real system. In that case, a reasonable way to compute a property average simply involves
computing the value of the property periodically at times ti and assuming

〈A〉 = 1

M

M∑
i

A(ti ) (3.8)

where M is the number of times the property is sampled. In the limit of sampling continuously
and following the trajectory indefinitely, this equation becomes

〈A〉 = lim
t→∞

1

t

∫ t0+t

t0

A(τ)dτ (3.9)

The ‘ergodic hypothesis’ assumes Eq. (3.9) to be valid and independent of choice of t0. It
has been proven for a hard-sphere gas that Eqs. (3.5) and (3.9) are indeed equivalent (Ford
1973). No such proof is available for more realistic systems, but a large body of empirical
evidence suggests that the ergodic hypothesis is valid in most molecular simulations.

This point being made, we have not yet provided a description of how to ‘follow’ a
phase-space trajectory. This is the subject of molecular dynamics, upon which we now
focus.

3.3 Molecular Dynamics

One interesting property of a phase point that has not yet been emphasized is that, since it is
defined by the positions and momenta of all particles, it determines the location of the next
phase point in the absence of outside forces acting upon the system. The word ‘next’ is used
loosely, since the trajectory is a continuous curve of phase points (i.e., between any two
points can be found another point) – a more rigorous statement is that the forward trajectory
is completely determined by the initial phase point. Moreover, since time-independent Hamil-
tonians are necessarily invariant to time reversal, a single phase point completely determines
a full trajectory. As a result, phase space trajectories cannot cross themselves (since there
would then be two different points leading away (in both time directions) from a single point
of intersection). To illuminate further some of the issues involved in following a trajectory,
it is helpful to begin with an example.

3.3.1 Harmonic Oscillator Trajectories

Consider a one-dimensional classical harmonic oscillator (Figure 3.1). Phase space in this
case has only two dimensions, position and momentum, and we will define the origin of
this phase space to correspond to the ball of mass m being at rest (i.e., zero momentum)
with the spring at its equilibrium length. This phase point represents a stationary state
of the system. Now consider the dynamical behavior of the system starting from some
point other than the origin. To be specific, we consider release of the ball at time t0 from
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Figure 3.1 Phase-space trajectory (center) for a one-dimensional harmonic oscillator. As described
in the text, at time zero the system is represented by the rightmost diagram (q = b, p = 0). The system
evolves clockwise until it returns to the original point, with the period depending on the mass of the
ball and the force constant of the spring

a position b length units displaced from equilibrium. The frictionless spring, character-
ized by force constant k, begins to contract, so that the position coordinate decreases.
The momentum coordinate, which was 0 at t0, also decreases (momentum is a vector
quantity, and we here define negative momentum as movement towards the wall). As the
spring passes through coordinate position 0 (the equilibrium length), the magnitude of the
momentum reaches a maximum, and then decreases as the spring begins resisting further
motion of the ball. Ultimately, the momentum drops to zero as the ball reaches position
−b, and then grows increasingly positive as the ball moves back towards the coordinate
origin. Again, after passing through the equilibrium length, the magnitude of the momentum
begins to decrease, until the ball returns to the same point in phase space from which it
began.

Let us consider the phase space trajectory traced out by this behavior beginning with the
position vector. Over any arbitrary time interval, the relationship between two positions is

q(t2) = q(t1) +
∫ t2

t1

p(t)

m
dt (3.10)
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where we have used the relationship between velocity and momentum

v = p

m
(3.11)

Similarly, the relationship between two momentum vectors is

p(t2) = p(t1) + m

∫ t2

t1

a(t)dt (3.12)

where a is the acceleration. Equations (3.10) and (3.12) are Newton’s equations of motion.
Now, we have from Newton’s Second Law

a = F

m
(3.13)

where F is the force. Moreover, from Eq. (2.13), we have a relationship between force
and the position derivative of the potential energy. The simple form of the potential energy
expression for a harmonic oscillator [Eq. (2.2)] permits analytic solutions for Eqs. (3.10) and
(3.12). Applying the appropriate boundary conditions for the example in Figure 3.1 we have

q(t) = b cos

(√
k

m
t

)
(3.14)

and

p(t) = −b
√

mk sin

(√
k

m
t

)
(3.15)

These equations map out the oval phase space trajectory depicted in the figure.
Certain aspects of this phase space trajectory merit attention. We noted above that a

phase space trajectory cannot cross itself. However, it can be periodic, which is to say it
can trace out the same path again and again; the harmonic oscillator example is periodic.
Note that the complete set of all harmonic oscillator trajectories, which would completely fill
the corresponding two-dimensional phase space, is composed of concentric ovals (concentric
circles if we were to choose the momentum metric to be (mk)−1/2 times the position metric).
Thus, as required, these (periodic) trajectories do not cross one another.

3.3.2 Non-analytical Systems

For systems more complicated than the harmonic oscillator, it is almost never possible to
write down analytical expressions for the position and momentum components of the phase
space trajectory as a function of time. However, if we approximate Eqs. (3.10) and (3.12) as

q(t + �t) = q(t) + p(t)

m
�t (3.16)
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and
p(t + �t) = p(t) + ma(t)�t (3.17)

(this approximation, Euler’s, being exact in the limit of �t → 0) we are offered a prescrip-
tion for simulating a phase space trajectory. [Note that we have switched from the scalar
notation of the one-dimensional harmonic oscillator example to a more general vector nota-
tion. Note also that although the approximations in Eqs. (3.16) and (3.17) are introduced
here from Eqs. (3.10) and (3.12) and the definition of the definite integral, one can also
derive Eqs. (3.16) and (3.17) as Taylor expansions of q and p truncated at first order; this
is discussed in more detail below.]

Thus, given a set of initial positions and momenta, and a means for computing the forces
acting on each particle at any instant (and thereby deriving the acceleration), we have a
formalism for ‘simulating’ the true phase-space trajectory. In general, initial positions are
determined by what a chemist thinks is ‘reasonable’ – a common technique is to build the
system of interest and then energy minimize it partially (since one is interested in dynamical
properties, there is no point in looking for an absolute minimum) using molecular mechanics.
As for initial momenta, these are usually assigned randomly to each particle subject to a
temperature constraint. The relationship between temperature and momentum is

T (t) = 1

(3N − n)kB

N∑
i=1

|pi(t)|2
mi

(3.18)

where N is the total number of atoms, n is the number of constrained degrees of freedom
(vide infra), and the momenta are relative to the reference frame defined by the motion of the
center of mass of the system. A force field, as emphasized in the last chapter, is particularly
well suited to computing the accelerations at each time step.

While the use of Eqs. (3.16) and (3.17) seems entirely straightforward, the finite time
step introduces very real practical concerns. Figure 3.2 illustrates the variation of a single
momentum coordinate of some arbitrary phase space trajectory, which is described by a
smooth curve. When the acceleration is computed for a point on the true curve, it will be a
vector tangent to the curve. If the curve is not a straight line, any mass-weighted step along
the tangent (which is the process described by Eq. (3.17)) will necessarily result in a point off
the true curve. There is no guarantee that computing the acceleration at this new point will
lead to a step that ends in the vicinity of the true curve. Indeed, with each additional step, it
is quite possible that we will move further and further away from the true trajectory, thereby
ending up sampling non-useful regions of phase space. The problem is compounded for
position coordinates, since the velocity vector being used is already only an estimate derived
from Eq. (3.17), i.e., there is no guarantee that it will even be tangent to the true curve when
a point on the true curve is taken. (The atomistic picture, for those finding the mathematical
discussion opaque, is that if we move the atoms in a single direction over too long a time,
we will begin to ram them into one another so that they are far closer than van der Waals
contact. This will lead to huge repulsive forces, so that still larger atomic movements will
occur over the next time step, until our system ultimately looks like a nuclear furnace, with
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t

p

Figure 3.2 An actual phase-space trajectory (bold curve) and an approximate trajectory generated
by repeated application of Eq. (3.17) (series of arrows representing individual time steps). Note that
each propagation step has an identical �t , but individual �p values can be quite different. In the
illustration, the approximate trajectory hews relatively closely to the actual one, but this will not be
the case if too large a time step is used

atoms moving seemingly randomly. The very high energies of the various steps will preclude
their contributing in a meaningful way to any property average.)

Of course, we know that in the limit of an infinitesimally small time step, we will recover
Eqs. (3.10) and (3.12). But, since each time step requires a computation of all of the molec-
ular forces (and, presumably, of the property we are interested in), which is computationally
intensive, we do not want to take too small a time step, or we will not be able to propagate
our trajectory for any chemically interesting length of time. What then is the optimal length
for a time step that balances numerical stability with chemical utility? The general answer is
that it should be at least one and preferably two orders of magnitude smaller than the fastest
periodic motion within the system. To illustrate this, reconsider the 1-D harmonic oscillator
example of Figure 3.1: if we estimate the first position of the mass after its release, given
that the acceleration will be computed to be towards the wall, we will estimate the new
position to be displaced in the negative direction. But, if we take too large a time step, i.e.,
we keep moving the mass towards the wall without ever accounting for the change in the
acceleration of the spring with position, we might end up with the mass at a position more
negative than −b. Indeed, we could end up with the mass behind the wall!

In a typical (classical) molecular system, the fastest motion is bond vibration which, for
a heavy-atom–hydrogen bond has a period of about 10−14 s. Thus, for a system containing
such bonds, an integration time step �t should not much exceed 0.1 fs. This rather short time
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step means that modern, large-scale MD simulations (e.g., on biopolymers in a surrounding
solvent) are rarely run for more than some 10 ns of simulation time (i.e., 107 computations of
energies, forces, etc.) That many interesting phenomena occur on the microsecond timescale
or longer (e.g., protein folding) represents a severe limitation to the application of MD to
these phenomena. Methods to efficiently integrate the equations of motion over longer times
are the subject of substantial modern research (see, for instance, Olender and Elber 1996;
Grubmüller and Tavan 1998; Feenstra, Hess and Berendsen 1999).

3.3.3 Practical Issues in Propagation

Using Euler’s approximation and taking integration steps in the direction of the tangent is a
particularly simple integration approach, and as such is not particularly stable. Considerably
more sophisticated integration schemes have been developed for propagating trajectories.
If we restrict ourselves to consideration of the position coordinate, most of these schemes
derive from approximate Taylor expansions in r, i.e., making use of

q(t + �t) = q(t) + v(t)�t + 1

2!
a(t)(�t)2 + 1

3!

d3q(τ )

dt3

∣∣∣∣
τ=t

(�t)3 + · · · (3.19)

where we have used the abbreviations v and a for the first (velocity) and second (acceleration)
time derivatives of the position vector q.

One such method, first used by Verlet (1967), considers the sum of the Taylor expansions
corresponding to forward and reverse time steps �t . In that sum, all odd-order derivatives
disappear since the odd powers of �t have opposite sign in the two Taylor expansions.
Rearranging terms and truncating at second order (which is equivalent to truncating at third-
order, since the third-order term has a coefficient of zero) yields

q(t + �t) = 2q(t) − q(t − �t) + a(t)(�t)2 (3.20)

Thus, for any particle, each subsequent position is determined by the current position, the
previous position, and the particle’s acceleration (determined from the forces on the particle
and Eq. (3.13)). For the very first step (for which no position q(t − �t) is available) one
might use Eqs. (3.16) and (3.17).

The Verlet scheme propagates the position vector with no reference to the particle veloc-
ities. Thus, it is particularly advantageous when the position coordinates of phase space are
of more interest than the momentum coordinates, e.g., when one is interested in some prop-
erty that is independent of momentum. However, often one wants to control the simulation
temperature. This can be accomplished by scaling the particle velocities so that the temper-
ature, as defined by Eq. (3.18), remains constant (or changes in some defined manner), as
described in more detail in Section 3.6.3. To propagate the position and velocity vectors in a
coupled fashion, a modification of Verlet’s approach called the leapfrog algorithm has been
proposed. In this case, Taylor expansions of the position vector truncated at second order
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(not third) about t + �t/2 are employed, in particular

q
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t + 1

2
�t + 1

2
�t

)
= q
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+ v
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(3.21)

and

q
(
t + 1

2
�t − 1

2
�t

)
= q

(
t + 1

2
�t

)
− v

(
t + 1

2
�t

)
1

2
�t + 1
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(
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) (
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(3.22)

When Eq. (3.22) is subtracted from Eq. (3.21) one obtains

q(t + �t) = q(t) + v
(
t + 1

2
�t

)
�t (3.23)

Similar expansions for v give

v
(
t + 1

2
�t

)
= v

(
t − 1

2
�t

)
+ a(t)�t (3.24)

Note that in the leapfrog method, position depends on the velocities as computed one-half
time step out of phase, thus, scaling of the velocities can be accomplished to control temper-
ature. Note also that no force-field calculations actually take place for the fractional time
steps. Forces (and thus accelerations) in Eq. (3.24) are computed at integral time steps, half-
time-step-forward velocities are computed therefrom, and these are then used in Eq. (3.23)
to update the particle positions. The drawbacks of the leapfrog algorithm include ignoring
third-order terms in the Taylor expansions and the half-time-step displacements of the posi-
tion and velocity vectors – both of these features can contribute to decreased stability in
numerical integration of the trajectory.

Considerably more stable numerical integration schemes are known for arbitrary trajecto-
ries, e.g., Runge–Kutta (Press et al. 1986) and Gear predictor-corrector (Gear 1971) methods.
In Runge–Kutta methods, the gradient of a function is evaluated at a number of different
intermediate points, determined iteratively from the gradient at the current point, prior to
taking a step to a new trajectory point on the path; the ‘order’ of the method refers to
the number of such intermediate evaluations. In Gear predictor-corrector algorithms, higher
order terms in the Taylor expansion are used to predict steps along the trajectory, and then
the actual particle accelerations computed for those points are compared to those that were
predicted by the Taylor expansion. The differences between the actual and predicted values
are used to correct the position of the point on the trajectory. While Runge–Kutta and Gear
predictor-corrector algorithms enjoy very high stability, they find only limited use in MD
simulations because of the high computational cost associated with computing multiple first
derivatives, or higher-order derivatives, for every step along the trajectory.

A different method of increasing the time step without decreasing the numerical stability is
to remove from the system those degrees of freedom having the highest frequency (assuming,
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of course, that any property being studied is independent of those degrees of freedom). Thus,
if heavy-atom–hydrogen bonds are constrained to remain at a constant length, the next
highest frequency motions will be heavy-atom–heavy-atom vibrations; these frequencies are
typically a factor of 2–5 smaller in magnitude. While a factor of 2 is of only marginal utility,
reducing the number of available degrees of freedom generally offers some savings in time
and integration stability. So, when the system of interest is some solute immersed in a large
bath of surrounding solvent molecules, it can be advantageous to freeze some or all of the
degrees of freedom within the solvent molecules.

A commonly employed algorithm for eliminating these degrees of freedom is called
SHAKE (Ryckaert, Ciccotti, and Berendsen 1977). In the context of the Verlet algorithm,
the formalism for freezing bond lengths involves defining distance constraints dij between
atoms i and j according to ∣∣rij

∣∣2 − d2
ij = 0 (3.25)

where rij is the instantaneous interatomic distance vector. The position constraints can be
applied iteratively in the Verlet algorithm, for example, by first taking an unconstrained step
according to Eq. (3.20). The constraints are then taken account of according to

ri (t + �t) = r0
i (t + �t) + �ri(t) (3.26)

where r0
i (t + �t) is the position after taking the unconstrained step, and �ri(t) is the

displacement vector required to satisfy a set of coupled constraint equations. These equations
are defined as

�ri(t) = 2(�t)2

mi

∑
j

λij rij (t) (3.27)

where the Lagrange multipliers λij are determined iteratively following substitution of
Eqs. (3.25) and (3.26) into Eq. (3.20).

Finally, there are a number of entirely mundane (but still very worthwhile!) steps that
can be taken to reduce the total computer time required for a MD simulation. As a single
example, note that any force on a particle derived from a force-field non-bonded energy term
is induced by some other particle (i.e., the potential is pairwise). Newton’s Third Law tells
us that

Fij = −Fji (3.28)

so we can save roughly a factor of two in computing the non-bonded forces by only evaluating
terms for i < j and using Eq. (3.28) to establish the rest.

3.3.4 Stochastic Dynamics

When the point of a simulation is not to determine accurate thermodynamic information about
an ensemble, but rather to watch the dynamical evolution of some particular system immersed
in a larger system (e.g., a solute in a solvent), then significant computational savings can be
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had by modeling the larger system stochastically. That is, the explicit nature of the larger
system is ignored, and its influence is made manifest by a continuum that interacts with the
smaller system, typically with that influence including a degree of randomness.

In Langevin dynamics, the equation of motion for each particle is

a(t) = −ζp(t) + 1

m
[Fintra(t) + Fcontinuum(t)] (3.29)

where the continuum is characterized by a microscopic friction coefficient, ζ , and a force,
F, having one or more components (e.g., electrostatic and random collisional). Intramolec-
ular forces are evaluated in the usual way from a force field. Propagation of position and
momentum vectors proceeds in the usual fashion.

In Brownian dynamics, the momentum degrees of freedom are removed by arguing that
for a system that does not change shape much over very long timescales (e.g., a molecule,
even a fairly large one) the momentum of each particle can be approximated as zero relative
to the rotating center of mass reference frame. Setting the l.h.s. of Eq. (3.29) to zero and
integrating, we obtain the Brownian equation of motion

r(t) = r(t0) + 1

ζ

∫ t

t0

[Fintra(τ ) + Fcontinuum(τ )]dτ (3.30)

where we now propagate only the position vector.
Langevin and Brownian dynamics are very efficient because a potentially very large

surrounding medium is represented by a simple continuum. Since the computational time
required for an individual time step is thus reduced compared to a full deterministic MD
simulation, much longer timescales can be accessed. This makes stochastic MD methods
quite attractive for studying system properties with relaxation times longer than those that
can be accessed with deterministic MD simulations. Of course, if those properties involve
the surrounding medium in some explicit way (e.g., a radial distribution function involving
solvent molecules, vide infra), then the stochastic MD approach is not an option.

3.4 Monte Carlo

3.4.1 Manipulation of Phase-space Integrals

If we consider the various MD methods presented above, the Langevin and Brownian
dynamics schemes introduce an increasing degree of stochastic behavior. One may imagine
carrying this stochastic approach to its logical extreme, in which event there are no equations
of motion to integrate, but rather phase points for a system are selected entirely at random.
As noted above, properties of the system can then be determined from Eq. (3.5), but the inte-
gration converges very slowly because most randomly chosen points will be in chemically
meaningless regions of phase space.
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One way to reduce the problem slightly is to recognize that for many properties A, the
position and momentum dependences of A are separable. In that case, Eq. (3.5) can be
written as

〈A〉 =
∫

A(q)

[∫
P(p, q)dp

]
dq +

∫
A(p)

[∫
P(p, q)dq

]
dp (3.31)

Since the Hamiltonian is also separable, the integrals in brackets on the r.h.s. of Eq. (3.31)
may be simplified and we write

〈A〉 =
∫

A(q)P (q)dq +
∫

A(p)P (p)dp (3.32)

where P(q) and P(p) are probability functions analogous to Eq. (3.6) related only to the
potential and kinetic energies, respectively. Thus, we reduce the problem of evaluating a 6N -
dimensional integral to the problem of evaluating two 3N -dimensional integrals. Of course,
if the property is independent of either the position or momentum variables, then there is
only one 3N -dimensional integral to evaluate.

Even with so large a simplification, however, the convergence of Eq. (3.32) for a realisti-
cally sized chemical system and a random selection of phase points is too slow to be useful.
What is needed is a scheme to select important phase points in a biased fashion.

3.4.2 Metropolis Sampling

The most significant breakthrough in Monte Carlo modeling took place when Metropolis
et al. (1953) described an approach where ‘instead of choosing configurations randomly,
then weighting them with exp(−E/kBT ), we choose configurations with a probability
exp(−E/kBT ) and weight them evenly’.

For convenience, let us consider a property dependent only on position coordinates.
Expressing the elegantly simple Metropolis idea mathematically, we have

〈A〉 = 1

X

X∑
i=1

A(qi ) (3.33)

where X is the total number of points q sampled according to the Metropolis prescription.
Note the remarkable similarity between Eq. (3.33) and Eq. (3.8). Equation (3.33) resembles
an ensemble average from an MD trajectory where the order of the points, i.e., the temporal
progression, has been lost. Not surprisingly, as time does not enter into the MC scheme, it
is not possible to establish a time relationship between points.

The Metropolis prescription dictates that we choose points with a Boltzmann-weighted
probability. The typical approach is to begin with some ‘reasonable’ configuration q1. The
value of property A is computed as the first element of the sum in Eq. (3.33), and then q1 is
randomly perturbed to give a new configuration q2. In the constant particle number, constant
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volume, constant temperature ensemble (NVT ensemble), the probability p of ‘accepting’
point q2 is

p = min
[

1,
exp(−E2/kBT )

exp(−E1/kBT )

]
(3.34)

Thus, if the energy of point q2 is not higher than that of point q1, the point is always accepted.
If the energy of the second point is higher than the first, p is compared to a random number
z between 0 and 1, and the move is accepted if p ≥ z. Accepting the point means that the
value of A is calculated for that point, that value is added to the sum in Eq. (3.33), and the
entire process is repeated. If second point is not accepted, then the first point ‘repeats’, i.e.,
the value of A computed for the first point is added to the sum in Eq. (3.33) a second time
and a new, random perturbation is attempted. Such a sequence of phase points, where each
new point depends only on the immediately preceding point, is called a ‘Markov chain’.

The art of running an MC calculation lies in defining the perturbation step(s). If the steps
are very, very small, then the volume of phase space sampled will increase only slowly over
time, and the cost will be high in terms of computational resources. If the steps are too large,
then the rejection rate will grow so high that again computational resources will be wasted
by an inefficient sampling of phase space. Neither of these situations is desirable.

In practice, MC simulations are primarily applied to collections of molecules (e.g., molec-
ular liquids and solutions). The perturbing step involves the choice of a single molecule,
which is randomly translated and rotated in a Cartesian reference frame. If the molecule is
flexible, its internal geometry is also randomly perturbed, typically in internal coordinates.
The ranges on these various perturbations are adjusted such that 20–50% of attempted moves
are accepted. Several million individual points are accumulated, as described in more detail
in Section 3.6.4.

Note that in the MC methodology, only the energy of the system is computed at any given
point. In MD, by contrast, forces are the fundamental variables. Pangali, Rao, and Berne
(1978) have described a sampling scheme where forces are used to choose the direction(s)
for molecular perturbations. Such a force-biased MC procedure leads to higher acceptance
rates and greater statistical precision, but at the cost of increased computational resources.

3.5 Ensemble and Dynamical Property Examples

The range of properties that can be determined from simulation is obviously limited only
by the imagination of the modeler. In this section, we will briefly discuss a few typical
properties in a general sense. We will focus on structural and time-correlation properties,
deferring thermodynamic properties to Chapters 10 and 12.

As a very simple example, consider the dipole moment of water. In the gas phase, this
dipole moment is 1.85 D (Demaison, Hütner, and Tiemann 1982). What about water in
liquid water? A zeroth order approach to answering this problem would be to create a
molecular mechanics force field defining the water molecule (a sizable number exist) that
gives the correct dipole moment for the isolated, gas-phase molecule at its equilibrium
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geometry, which moment is expressed as

µ =
3∑

i=1

qi

ri

(3.35)

where the sum runs over the one oxygen and two hydrogen atoms, qi is the partial atomic
charge assigned to atom i, and ri is the position of atom i (since the water molecule has no net
charge, the dipole moment is independent of the choice of origin for r). In a liquid simulation
(see Section 3.6.1 for more details on simulating condensed phases), the expectation value
of the moment would be taken over all water molecules. Since the liquid is isotropic, we
are not interested in the average vector, but rather the average magnitude of the vector, i.e.,

〈|µ|〉 = 1

N

N∑
n=1

∣∣∣∣∣
3∑

i=1

qi,n

ri,n

∣∣∣∣∣ (3.36)

where N is the number of water molecules in the liquid model. Then, to the extent that in
liquid water the average geometry of a water molecule changes from its gas-phase equilibrium
structure, the expectation value of the magnitude of the dipole moment will reflect this
change. Note that Eq. (3.36) gives the ensemble average for a single snapshot of the system;
that is, the ‘ensemble’ that is being averaged over is intrinsic to each phase point by virtue
of their being multiple copies of the molecule of interest. By MD or MC methods, we would
generate multiple snapshots, either as points along an MD trajectory or by MC perturbations,
so that we would finally have

〈|µ|〉 = 1

MžN

M∑
m=1

N∑
n=1

∣∣∣∣∣
3∑

i=1

qi,n,m

ri,n,m

∣∣∣∣∣ (3.37)

where M is the total number of snapshots. [If we were considering the dipole moment of a
solute molecule that was present in only one copy (i.e., a dilute solution), then the sum over
N would disappear.]

Note that the expectation value compresses an enormous amount of information into a
single value. A more complete picture of the moment would be a probability distribution,
as depicted in Figure 3.3. In this analysis, the individual water dipole moment magnitudes
(all MžN of them) are collected into bins spanning some range of dipole moments. The
moments are then plotted either as a histogram of the bins or as a smooth curve reflecting
the probability of being in an individual bin (i.e., equivalent to drawing the curve through
the midpoint of the top of each histogram bar). The width of the bins is chosen so as to give
maximum resolution to the lineshape of the curve without introducing statistical noise from
underpopulation of individual bins.

Note that, although up to this point we have described the expectation value of A as
though it were a scalar value, it is also possible that A is a function of some experimentally
(and computationally) accessible variable, in which case we may legitimately ask about
its expectation value at various points along the axis of its independent variable. A good
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m

P

Figure 3.3 Hypothetical distribution of dipole moment magnitudes from a simulation of liquid water.
The dashed curve is generated by connecting the tops of histogram bins whose height is dictated by the
number of water molecules found to have dipole moments in the range spanned by the bin. Note that
although the example is illustrated to be symmetric about a central value (which will thus necessarily
be 〈µ〉) this need not be the case

example of such a property is a radial distribution function (r.d.f.), which can be determined
experimentally from X-ray or neutron diffraction measurements. The r.d.f. for two atoms A
and B in a spherical volume element is defined by

1

V
gAB(r) = 1

NAžNB

〈
NA∑
i=1

NB∑
j=1

δ
[
r − rAiBj

]〉
(3.38)

where V is the volume, N is the total number of atoms of a given type within the volume
element, δ is the Dirac delta function (the utility of which will become apparent momentarily),
and r is radial distance. The double summation within the ensemble average effectively
counts for each distance r the number of AB pairs separated by that distance. If we integrate
over the full spherical volume, we obtain

1

V

∫
gAB(r)dr = 1

NAžNB

〈
NA∑
i=1

NB∑
j=1

∫
δ
[
r − rAiBj

]
dr

〉
(3.39)

= 1

where we have made use of the property of the Dirac delta that its integral is unity. As there
are NAžNB contributions of unity to the quantity inside the ensemble average, the r.h.s. of
Eq. (3.39) is 1, and we see that the 1/V term is effectively a normalization constant on g.
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We may thus interpret the l.h.s. of Eq. (3.39) as a probability function. That is, we may
express the probability of finding two atoms of A and B within some range �r of distance
r from one another as

P {A, B, r,�r} = 4πr2

V
gAB(r)�r (3.40)

where, in the limit of small �r , we have approximated the integral as gAB(r) times the
volume of the thin spherical shell 4πr2�r .

Note that its contribution to the probability function makes certain limiting behaviors
on gAB(r) intuitively obvious. For instance, the function should go to zero very rapidly
when r becomes less than the sum of the van der Waals radii of A and B. In addition, at
very large r , the function should be independent of r in homogeneous media, like fluids,
i.e., there should be an equal probability for any interatomic separation because the two
atoms no longer influence one another’s positions. In that case, we could move g outside
the integral on the l.h.s. of Eq. (3.39), and then the normalization makes it apparent that
g = 1 under such conditions. Values other than 1 thus indicate some kind of structuring in
a medium – values greater than 1 indicate preferred locations for surrounding atoms (e.g.,
a solvation shell) while values below 1 indicate underpopulated regions. A typical example
of a liquid solution r.d.f. is shown in Figure 3.4. Note that with increasing order, e.g., on
passing from a liquid to a solid phase, the peaks in g become increasingly narrow and the
valleys increasingly wide and near zero, until in the limit of a motionless, perfect crystal, g

would be a spectrum of Dirac δ functions positioned at the lattice spacings of the crystal.
It often happens that we consider one of our atoms A or B to be privileged, e.g., A

might be a sodium ion and B the oxygen atom of a water and our interests might focus

g

r

0

1

Figure 3.4 A radial distribution function showing preferred (g > 1) and disfavored (g < 1) interpar-
ticle distances. Random fluctuation about g = 1 is observed at large r
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on describing the solvation structure of water about sodium ions in general. Then, we can
define the total number of oxygen atoms nB within some distance range about any sodium
ion (atom A) as

nB{r, �r} = NBP {A, B, r, �r} (3.41)

We may then use Eq. (3.40) to write

nB{r, �r} = 4πr2ρBgAB(r)�r (3.42)

where ρB is the number density of B in the total spherical volume. Thus, if instead of gAB(r)

we plot 4πr2ρBgAB(r), then the area under the latter curve provides the number of molecules
of B for arbitrary choices of r and �r . Such an integration is typically performed for the
distinct peaks in g(r) so as to determine the number of molecules in the first, second, and
possibly higher solvation shells or the number of nearest neighbors, next-nearest neighbors,
etc., in a solid.

Determining g(r) from a simulation involves a procedure quite similar to that described
above for determining the continuous distribution of a scalar property. For each snapshot of
an MD or MC simulation, all A–B distances are computed, and each occurrence is added
to the appropriate bin of a histogram running from r = 0 to the maximum radius for the
system (e.g., one half the narrowest box dimension under periodic boundary conditions, vide
infra). Normalization now requires taking account not only of the total number of atoms A
and B, but also the number of snapshots, i.e.,

gAB(r) = V

4πr2�rMNANB

M∑
m=1

NA∑
i=1

NB∑
j=1

Qm

(
r; rAiBj

)
(3.43)

where �r is the width of a histogram bin, M is the total number of snapshots, and Qm is
the counting function

Q
(
r; rAiBj

) =
{

1 if r − �r/2 ≤ rAiBj
< r + �r/2

0 otherwise
(3.44)

for snapshot m.
The final class of dynamical properties we will consider are those defined by time-

dependent autocorrelation functions. Such a function is defined by

C(t) = 〈a(t0)a(t0 + t)〉t0 (3.45)

where the ensemble average runs over time snapshots, and hence can only be determined
from MD, not MC. Implicit in Eq. (3.45) is the assumption that C does not depend on the
value of t0 (since the ensemble average is over different choices of this quantity), and this
will only be true for a system at equilibrium. The autocorrelation function provides a measure
of the degree to which the value of property a at one time influences the value at a later
time. An autocorrelation function attains its maximum value for a time delay of zero (i.e.,
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no time delay at all), and this quantity, 〈a2〉 (which can be determined from MC simulations
since no time correlation is involved) may be regarded as a normalization constant.

Now let us consider the behavior of C for long time delays. In a system where property
a is not periodic in time, like a typical chemical system subject to effectively random
thermal fluctuations, two measurements separated by a sufficiently long delay time should
be completely uncorrelated. If two properties x and y are uncorrelated, then 〈xy〉 is equal
to 〈x〉〈y〉, so at long times C decays to 〈a〉2.

While notationally burdensome, the discussion above makes it somewhat more intuitive
to consider a reduced autocorrelation function defined by

Ĉ(t) = 〈[a(t0) − 〈a〉][a(t0 + t) − 〈a〉]〉t0
〈[a − 〈a〉]2〉 (3.46)

which is normalized and, because the arguments in brackets fluctuate about their mean (and
thus have individual expectation values of zero) decays to zero at long delay times. Example
autocorrelation plots are provided in Figure 3.5. The curves can be fit to analytic expressions
to determine characteristic decay times. For example, the characteristic decay time for an
autocorrelation curve that can be fit to exp(−ζ t) is ζ−1 time units.

Different properties have different characteristic decay times, and these decay times can
be quite helpful in deciding how long to run a particular MD simulation. Since the point
of a simulation is usually to obtain a statistically meaningful sample, one does not want
to compute an average over a time shorter than several multiples of the characteristic
decay time.

t

C

Figure 3.5 Two different autocorrelation functions. The solid curve is for a property that shows no
significant statistical noise and appears to be well characterized by a single decay time. The dashed
curve is quite noisy and, at least initially, shows a slower decay behavior. In the absence of a very
long sample, decay times can depend on the total time sampled as well
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As for the properties themselves, there are many chemically useful autocorrelation func-
tions. For instance, particle position or velocity autocorrelation functions can be used to
determine diffusion coefficients (Ernst, Hauge, and van Leeuwen 1971), stress autocorrelation
functions can be used to determine shear viscosities (Haile 1992), and dipole autocorrela-
tion functions are related to vibrational (infrared) spectra as their reverse Fourier transforms
(Berens and Wilson 1981). There are also many useful correlation functions between two
different variables (Zwanzig 1965). A more detailed discussion, however, is beyond the
scope of this text.

3.6 Key Details in Formalism

The details of MC and MD methods laid out thus far can realistically be applied in a rigorous
fashion only to systems that are too small to meaningfully represent actual chemical systems.
In order to extend the technology in such a way as to make it useful for interpreting (or
predicting) chemical phenomena, a few other approximations, or practical simplifications,
are often employed. This is particularly true for the modeling of condensed phases, which
are macroscopic in character.

3.6.1 Cutoffs and Boundary Conditions

As a spherical system increases in size, its volume grows as the cube of the radius while its
surface grows as the square. Thus, in a truly macroscopic system, surface effects may play
little role in the chemistry under study (there are, of course, exceptions to this). However, in
a typical simulation, computational resources inevitably constrain the size of the system to
be so small that surface effects may dominate the system properties. Put more succinctly, the
modeling of a cluster may not tell one much about the behavior of a macroscopic system. This
is particularly true when electrostatic interactions are important, since the energy associated
with these interactions has an r−1 dependence.

One approach to avoid cluster artifacts is the use of ‘periodic boundary conditions’ (PBCs).
Under PBCs, the system being modeled is assumed to be a unit cell in some ideal crystal
(e.g., cubic or orthorhombic, see Theodorouo and Suter 1985). In practice, cut-off distances
are usually employed in evaluating non-bonded interactions, so the simulation cell need be
surrounded by only one set of nearest neighbors, as illustrated in Figure 3.6. If the trajectory
of an individual atom (or a MC move of that atom) takes it outside the boundary of the
simulation cell in any one or more cell coordinates, its image simultaneously enters the
simulation cell from the point related to the exit location by lattice symmetry.

Thus, PBCs function to preserve mass, particle number, and, it can be shown, total energy
in the simulation cell. In an MD simulation, PBCs also conserve linear momentum; since
linear momentum is not conserved in real contained systems, where container walls disrupt
the property, this is equivalent to reducing the number of degrees of freedom by 3. However,
this effect on system properties is typically negligible for systems of over 100 atoms. Obvi-
ously, PBCs do not conserve angular momentum in the simulation cell of an MD simulation,
but over time the movement of atoms in and out of each wall of the cell will be such that
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Figure 3.6 Exploded view of a cubic simulation cell surrounded by the 26 periodic images generated
by PBCs. If the solid particle translates to a position that is outside the simulation cell, one of its
periodic images, represented by open particles, will translate in

fluctuations will take place about a well-defined average. The key aspect of imposing PBCs
is that no molecule within the simulation cell sees ‘vacuum’ within the range of its interac-
tion cutoffs, and thus surface artifacts are avoided. Other artifacts associated with periodicity
may be introduced, particularly with respect to correlation times in dynamics simulations
(Berne and Harp 1970; Bergdorf, Peter, and Hunenberger 2003), but these can in principle
be eliminated by moving to larger and larger simulation cells so that periodicity takes place
over longer and longer length scales.

Of course, concerns about periodicity only relate to systems that are not periodic. The
discussion above pertains primarily to the simulations of liquids, or solutes in liquid solu-
tions, where PBCs are a useful approximation that helps to model solvation phenomena
more realistically than would be the case for a small cluster. If the system truly is periodic,
e.g., a zeolite crystal, then PBCs are integral to the model. Moreover, imposing PBCs can
provide certain advantages in a simulation. For instance, Ewald summation, which accounts
for electrostatic interactions to infinite length as discussed in Chapter 2, can only be carried
out within the context of PBCs.

An obvious question with respect to PBCs is how large the simulation cell should be.
The simple answer is that all cell dimensions must be at least as large as the largest cut-off
length employed in the simulation. Otherwise, some interatomic interactions would be at
least double counted (once within the cell, and once with an image outside of the cell). In
practice, one would like to go well beyond this minimum requirement if the system being
modeled is supposedly homogeneous and non-periodic. Thus, for instance, if one is modeling
a large, dilute solute in a solvent (e.g., a biomolecule), a good choice for cell size might be
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the dimensions of the molecule plus at least twice the largest cut-off distance. Thus, no two
solute molecules interact with one another nor does any solvent molecule see two copies of
the solute. (Note, however, that this does not change the fundamentally periodic nature of
the system; it simply increases the number of molecules over which it is made manifest.)

As already noted in Chapter 2, for electrostatic interactions, Ewald sums are generally to
be preferred over cut-offs because of the long-range nature of the interactions. For van der
Waals type terms, cut-offs do not introduce significant artifacts provided they are reasonably
large (typically 8–12 Å).

Because of the cost of computing interatomic distances, the evaluation of non-bonded
terms in MD is often handled with the aid of a ‘pairlist’, which holds in memory all pairs
of atoms within a given distance of one another. The pairlist is updated periodically, but
less often than every MD step. Note that a particular virtue of MC compared to MD is that
the only changes in the potential energy are those associated with a moved particle – all
other interactions remain constant. This makes evaluation of the total energy a much simpler
process in MC.

3.6.2 Polarization

As noted in Chapter 2, computation of charge–charge (or dipole–dipole) terms is a partic-
ularly efficient means to evaluate electrostatic interactions because it is pairwise additive.
However, a more realistic picture of an actual physical system is one that takes into account
the polarization of the system. Thus, different regions in a simulation (e.g., different func-
tional groups, or different atoms) will be characterized by different local polarizabilities, and
the local charge moments, by adjusting in an iterative fashion to their mutual interactions,
introduce many-body effects into a simulation.

Simulations including polarizability, either only on solvent molecules or on all atoms,
have begun to appear with greater frequency as computational resources have grown larger.
In addition, significant efforts have gone into introducing polarizability into force fields in
a general way by replacing fixed atomic charges with charges that fluctuate based on local
environment (Winn, Ferenczy and Reynolds 1999; Banks et al. 1999), thereby preserving
the simplicity of a pairwise interaction potential. However, it is not yet clear that the greater
‘realism’ afforded by a polarizable model greatly improves the accuracy of simulations.
There are certain instances where polarizable force fields seem better suited to the modeling
problem. For instance, Dang et al. (1991) have emphasized that the solvation of ions, because
of their concentrated charge, is more realistically accounted for when surrounding solvent
molecules are polarizable and Soetens et al. (1997) have emphasized its importance in the
computation of ion–ion interaction potentials for the case of two guanidinium ions in water.

In general, however, the majority of properties do not yet seem to be more accurately
predicted by polarizable models than by unpolarizable ones, provided adequate care is taken
in the parameterization process. Of course, if one wishes to examine issues associated with
polarization, it must necessarily be included in the model. In the area of solvents, for instance,
Bernardo et al. (1994) and Zhu and Wong (1994) have carefully studied the properties of
polarizable water models. In addition, Gao, Habibollazadeh, and Shao (1995) have developed
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alcohol force fields reproducing the thermodynamic properties of these species as liquids
with a high degree of accuracy, and have computed the polarization contribution to the total
energy of the liquids to be 10–20%.

However, the typically high cost of including polarization is not attractive. Jorgensen has
argued against the utility of including polarization in most instances, and has shown that bulk
liquid properties can be equally well reproduced by fixed-charge force fields given proper
care in the parameterization process (see, for instance, Mahoney and Jorgensen 2000). A
particularly interesting example is provided by the simple amines ammonia, methylamine,
dimethylamine, and trimethylamine. In the gas phase, the basicity of these species increases
with increasing methylation in the expected fashion. In water, however, solvation effects
compete with intrinsic basicity so that the four amines span a fairly narrow range of basicity,
with methylamine being the most basic and trimethylamine and ammonia the least. Many
models of solvation (see Chapters 11 and 12 for more details on solvation models) have
been applied to this problem, and the failure of essentially all of them to correctly predict
the basicity ordering led to the suggestion that in the case of explicit models, the failure
derived from the use of non-polarizable force fields. Rizzo and Jorgensen (1999), however,
parameterized non-polarizable classical models for the four amines that accurately reproduced
their liquid properties and then showed that they further predicted the correct basicity ordering
in aqueous simulations, thereby refuting the prior suggestion. [As a point of philosophy, the
above example provides a nice illustration that a model’s failure to accurately predict a
particular quantity does not necessarily imply that a more expensive model needs to be
developed – sometimes all that is required is a more careful parameterization of the existing
model.] At least for the moment, then, it appears that errors associated with other aspects of
simulation technology typically continue to be as large or larger than any errors introduced
by use of non-polarizable force fields, so the use of such force fields in everyday simulations
seems likely to continue for some time.

3.6.3 Control of System Variables

Our discussion of MD above was for the ‘typical’ MD ensemble, which holds particle
number, system volume, and total energy constant – the NVE or ‘microcanonical’ ensemble.
Often, however, there are other thermodynamic variables that one would prefer to hold
constant, e.g., temperature. As temperature is related to the total kinetic energy of the system
(if it is at equilibrium), as detailed in Eq. (3.18), one could in principle scale the velocities of
each particle at each step to maintain a constant temperature. In practice, this is undesirable
because the adjustment of the velocities, occasionally by fairly significant scaling factors,
causes the trajectories to be no longer Newtonian. Properties computed over such trajec-
tories are less likely to be reliable. An alternative method, known as Berendsen coupling
(Berendsen et al. 1984), slows the scaling process by envisioning a connection between the
system and a surrounding bath that is at a constant temperature T0. Scaling of each particle
velocity is accomplished by including a dissipative Langevin force in the equations of motion
according to

ai (t) = Fi(t)

mi

+ pi(t)

miτ

[
T0

T (t)
− 1

]
(3.47)
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where T (t) is the instantaneous temperature, and τ has units of time and is used to control
the strength of the coupling. The larger the value of τ the smaller the perturbing force and
the more slowly the system is scaled to T0 (i.e., τ is an effective relaxation time).

Note that, to start an MD simulation, one must necessarily generate an initial snapshot.
It is essentially impossible for a chemist to simply ‘draw’ a large system that actually
corresponds to a high-probability region of phase space. Thus, most MD simulations begin
with a so-called ‘equilibration’ period, during which time the system is allowed to relax
to a realistic configuration, after which point the ‘production’ portion of the simulation
begins, and property averages are accumulated. A temperature coupling is often used during
the equilibration period so that the temperature begins very low (near zero) and eventually
ramps up to the desired system temperature for the production phase. This has the effect of
damping particle movement early on in the equilibration (when there are presumably very
large forces from a poor initial guess at the geometry).

In practice, equilibration protocols can be rather involved. Large portions of the system
may be held frozen initially while subregions are relaxed. Ultimately, the entire system
is relaxed (i.e., all the degrees of freedom that are being allowed to vary) and, once the
equilibration temperature has reached the desired average value, one can begin to collect
statistics.

With respect to other thermodynamic variables, many experimental systems are not held at
constant volume, but instead at constant pressure. Assuming ideal gas statistical mechanics
and pairwise additive forces, pressure P can be computed as

P(t) = 1

V (t)


NkBT (t) + 1

3

N∑
i

N∑
j>1

Fij rij


 (3.48)

where V is the volume, N is the number of particles, F and r are the forces and distances
between particles, respectively. To adjust the pressure in a simulation, what is typically
modified is the volume. This is accomplished by scaling the location of the particles, i.e.,
changing the size of the unit cell in a system with PBCs. The scaling can be accomplished
in a fashion exactly analogous with Eq. (3.47) (Andersen 1980).

An alternative coupling scheme for temperature and pressure, the Nosé–Hoover scheme,
adds new, independent variables that control these quantities to the simulation (Nosé 1984;
Hoover 1985). These variables are then propagated along with the position and momentum
variables.

In MC methods, the ‘natural’ ensemble is the NVT ensemble. Carrying out MC simulations
in other ensembles simply requires that the probabilities computed for steps to be accepted
or rejected reflect dependence on factors other than the internal energy. Thus, if we wish
to maintain constant pressure instead of constant volume, we can treat volume as a variable
(again, by scaling the particle coordinates, which is equivalent to expanding or contracting the
unit cell in a system described by PBCs). However, in the NPT ensemble, the deterministic
thermodynamic variable is no longer the internal energy, but the enthalpy (i.e., E + PV ) and,
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moreover, we must account for the effect of a change in system volume (three dimensions)
on the total volume of phase space (3N dimensions for position) since probability is related
to phase-space volume. Thus, in the NPT ensemble, the probability for accepting a new
point 2 over an old point 1 becomes

p = min

{
1,

V N
2 exp[−(E2 + PV2)/kBT ]

V N
1 exp[−(E1 + PV1)/kBT ]

}
(3.49)

(lower case ‘p’ is used here for probability to avoid confusion with upper case ‘P ’ for
pressure).

The choices of how often to scale the system volume, and by what range of factors,
obviously influence acceptance ratios and are adjusted in much the same manner as geometric
variables to maintain a good level of sampling efficiency. Other ensembles, or sampling
schemes other than those using Cartesian coordinates, require analogous modifications to
properly account for changes in phase space volume.

Just as with MD methods, MC simulations require an initial equilibration period so that
property averages are not biased by very poor initial values. Typically various property
values are monitored to assess whether they appear to have achieved a reasonable level of
convergence prior to proceeding to production statistics. Yang, Bitetti-Putzer, and Karplus
(2004) have offered the rather clever suggestion that the equilibration period can be defined
by analyzing the convergence of property values starting from the end of the simulation, i.e.,
the time arrow of the simulation is reversed in the analysis. When an individual property
value begins to depart from the value associated with the originally late, and presumably
converged, portion of the trajectory, it is assumed that the originally early region of the
trajectory should not be included in the overall statistics as it was most probably associated
with equilibration. We now focus more closely on this issue.

3.6.4 Simulation Convergence

Convergence is defined as the acquisition of a sufficient number of phase points, through
either MC or MD methods, to thoroughly sample phase space in a proper, Boltzmann-
weighted fashion, i.e., the sampling is ergodic. While simple to define, convergence is
impossible to prove, and this is either terribly worrisome or terribly liberating, depending
on one’s personal outlook.

To be more clear, we should separate the analysis of convergence into what might be
termed ‘statistical’ and ‘chemical’ components. The former tends to be more tractable than
the latter. Statistical convergence can be operatively defined as being likely to have been
achieved when the average values for all properties of interest appear to remain roughly
constant with increased sampling. In the literature, it is fairly standard to provide one or
two plots of some particular properties as a function of time so that readers can agree that,
to their eyes, the plots appear to have flattened out and settled on a particular value. For
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instance, in the simulation of macromolecules, the root-mean-square deviation (RMSD) of
the simulation structure from an X-ray or NMR structure is often monitored. The RMSD for
a particular snapshot is defined as

RMSD =

√√√√√√
N∑

i=1

(ri,sim − ri,expt)
2

N
(3.50)

where N is the number of atoms in the macromolecule, and the positions r are determined
in a coordinate system having the center of mass at the origin and aligning the principle
moments of inertia along the Cartesian axes (i.e., the simulated and experimental structures
are best aligned prior to computing the RMSD). Monitoring the RMSD serves the dual
purpose of providing a particular property whose convergence can be assessed and also of
offering a quantitative measure of how ‘close’ the simulated structure is to the experimentally
determined one. When no experimental data are available for comparison, the RMSD is
typically computed using as a reference either the initial structure or the average simulated
structure. A typical RMSD plot is provided in Figure 3.7.

[Note that the information content in Figure 3.7 is often boiled down, when reported in the
literature, to a single number, namely 〈RMSD〉. However, the magnitude of the fluctuation
about the mean, which can be quantified by the standard deviation, is also an important
quantity, and should be reported wherever possible. This is true for all expectation values

1.00

1.50

2.00

2.50

500 1000 1500 2000

Time (ps)

R
M

S
D

 (
Å

)

Figure 3.7 RMSD plot after 500 ps of equilibration for a solvated tRNA microhelix relative to its
initial structure (Nagan et al. 1999)
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derived from simulation. The standard deviation can be interpreted as a combination of the
statistical noise (deriving from the limitations of the method) and the thermal noise (deriving
from the ‘correct’ physical nature of the system). Considerably more refined methods of error
analysis for average values from simulations have been promulgated (Smith and Wells 1984;
Straatsma, Berendsen and Stam 1986; Kolafa 1986; Flyvberg and Petersen 1989).]

A more detailed decomposition of macromolecular dynamics that can be used not only for
assessing convergence but also for other purposes is principal components analysis (PCA),
sometimes also called essential dynamics (Wlodek et al. 1997). In PCA the positional covari-
ance matrix C is calculated for a given trajectory after removal of rotational and translational
motion, i.e., after best overlaying all structures. Given M snapshots of an N atom macro-
molecule, C is a 3N × 3N matrix with elements

Cij = 1

M

M∑
k=1

(qi,k − 〈qi〉) (qj,k − 〈qj 〉) (3.51)

where qi,k is the value for snapshot k of the ith positional coordinate (x, y, or z coordinate
for one of the N atoms), and 〈qi〉 indicates the average of that coordinate over all snapshots.
Diagonalization of C provides a set of eigenvectors that describe the dynamic motions of
the structure; the associated eigenvalues may be interpreted as weights indicating the degree
to which each mode contributes to the full dynamics.

Note that the eigenvectors of C comprise an orthogonal basis set for the macromolecular
3N -dimensional space, but PCA creates them so as to capture as much structural dynamism
as possible with each successive vector. Thus, the first PCA eigenvector may account for,
say, 30 percent of the overall dynamical motion, the second a smaller portion, and so on.
The key point here is that a surprisingly large fraction of the overall dynamics may be
captured by a fairly small number of eigenvectors, each one of which may be thought of as
being similar to a macromolecular vibrational mode. Thus, for example, Sherer and Cramer
(2002) found that the first three PCA modes for a set of related RNA tetradecamer double
helices accounted for 68 percent of the total dynamics, and that these modes were well
characterized as corresponding to conceptually simple twisting and bending motions of the
helix (Figure 3.8 illustrates the dominant mode). Being able in this manner to project the
total macromolecular motion into PCA spaces of small dimensionality can be very helpful
in furthering chemical analysis of the dynamics.

Returning to the issue of convergence, as noted above the structure of each snapshot in a
simulation can be described in the space of the PCA eigenvectors, there being a coefficient for
each vector that is a coordinate value just as an x coordinate in three-dimensional Cartesian
space is the coefficient of the i Cartesian basis vector (1,0,0). If a simulation has converged,
the distribution of coefficient values sampled for each PCA eigenvector should be normal,
i.e., varying as a Gaussian distribution about some mean value.

Yet another check of convergence in MD simulations, as alluded to in Section 3.5, is to
ensure that the sampling length is longer than the autocorrelation decay time for a particular
property by several multiples of that time. In practice, this analysis is performed with less
regularity than is the simple monitoring of individual property values.
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Figure 3.8 Twisted/compressed and untwisted/elongated double helices corresponding to minimal
and maximal coefficient values for the corresponding PCA eigenvector.

It must be borne in mind, however, that the typical simulation lengths that can be achieved
with modern hardware and software are very, very rarely in excess of 1 µs. It is thus quite
possible that the simulation, although it appears to be converged with respect to the analyses
noted above, is trapped in a metastable state having a lifetime in excess of 1 µs, and as a
result the statistics are not meaningful to the true system at equilibrium. The only way to
address this problem is either to continue the simulation for a longer time or to run one
or more additional simulations with different starting conditions or both. Entirely separate
trajectories are more likely to provide data that are statistically uncorrelated with the original,
but they are also more expensive since equilibration periods are required prior to collecting
production mode data.

Problems associated with statistical convergence and/or metastability are vexing ones, but
more daunting still can be the issue of chemical convergence. This is probably best illustrated
with an example. Imagine that one would like to simulate the structure of a protein in water
at pH 7 and that the protein contains nine histidine residues. At pH 7, the protein could,
in principle, exist in many different protonation states (i.e., speciation) since the pKa of
histidine is quite near 7. Occam’s razor and a certain amount of biochemical experience
suggest that, in fact, only one or two states are likely to be populated under biological
conditions, but how to choose which one(s) for simulation, since most force fields will not
allow for protonation/deprotonation to take place? If the wrong state is chosen, it may be
possible to acquire very good statistical convergence for the associated region of phase space,
but that region is statistically unimportant compared to other regions which were not sampled.

3.6.5 The Multiple Minima Problem

A related problem, and one that is commonly encountered, has to do with molecules
possessing multiple conformations. Consider N -methylacetamide, which can exist in E and Z

forms. The latter stereoisomer is favored over the former by about 3 kcal/mol, but the barrier
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to interconversion is in excess of 18 kcal/mol. Thus, a simulation of N -methylacetamide
starting with the statistically less relevant E structure is highly unlikely ever to sample the
Z form, either using MD (since the high barrier implies an isomerization rate that will be
considerably slower than the simulation time) or MC (since with small steps, the probability
of going so far uphill would be very low, while with large steps it might be possible for
the isomers to interconvert, but the rejection rate would be enormous making the simulation
intractable). A related example with similar issues has to do with modeling phase transfer
by MC methods, e.g., the movement of a solute between two immiscible liquids, or of a
molecule from the gas phase to the liquid phase. In each case, the likelihood of moving a
molecule in its entirety is low.

A number of computational techniques have been proposed to address these limitations.
The simplest approach conceptually, which can be applied to systems where all possible
conformations can be readily enumerated, is to carry out simulations for each one and then
weight the respective property averages according to the free energies of the conformers
(means for estimating these free energies are discussed in Chapter 12). This approach is, of
course, cumbersome when the number of conformers grows large. This growth can occur with
startling rapidity. For example, 8, 18, 41, 121, and 12 513 distinct minima have been identified
for cyclononane, -decane, -undecane, -dodecane, and -heptadecane, respectively (Weinberg
and Wolfe 1994). And cycloalkanes are relatively simple molecules compared, say, to a
protein, where the holy grail of conformational analysis is prediction of a properly folded
structure from only sequence information. Nevertheless, fast heuristic methods continue to
be developed to rapidly search low-energy conformational space for small to medium-sized
molecules. For example, Smellie et al. (2003) have described an algorithm that performed
well in generating collections of low-energy conformers for 97 000 drug-like molecules with
an average time of less than 0.5 s per stereoisomer.

A different approach to the identification of multiple minima is to periodically heat the
system to a very high temperature. Since most force fields do not allow bond-breaking to
occur, high temperature simply has the effect of making conformational interconversions
more likely. After a certain amount of time, the system is cooled again to the temperature
of interest, and statistics are collected. In practice, this technique is often used for isolated
molecules in the gas phase in the hope of finding a global minimum energy structure, in
which case it is referred to as ‘simulated annealing’. In condensed phases, it is difficult
to converge the statistical weights of the different accessed conformers. Within the context
of MC simulations, other techniques to force the system to jump between minimum-energy
wells in a properly energy-weighted fashion have been proposed (see, for instance, Guarnieri
and Still 1994; Senderowitz and Still 1998; Brown and Head-Gordon 2003).

An alternative to adjusting the temperature to help the system overcome high barriers
is to artificially lower the barrier by adding an external potential energy term that is large
and positive in regions where the ‘normal’ potential energy is large and negative (i.e., in
the regions of minima). This summation effectively counterbalances the normal potential
energy barrier. For instance, if the barrier is associated with a bond rotation, a so-called
‘biasing potential’ can be added such that the rotational potential becomes completely flat.
The system can now sample freely over the entire range of possible rotations, but computed
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properties must be corrected for the proper free energy difference(s) in the absence of the
biasing potential(s) (Straatsma, T. P.; McCammon, J. A.; Andricioaei and Straub 1996). In
the absence of already knowing the shape of the PES, however, it may be rather difficult
to construct a useful biasing potential ab initio. Laio and Parrinello (2002) have described a
protocol whereby the biasing potential is history-dependent, filling in minima as it goes along
in a coarse-grained space defined by collective coordinates. Collective coordinates have also
been used by Jaqaman and Ortoleva (2002) to explore large-scale conformational changes
in macromolecules more efficiently and by Müller, de Meijere, and Grubmüller (2002) to
predict relative rates of unimolecular reactions.

Another method to artificially lower barrier heights in certain regions of phase space
is to artificially expand that space by a single extra coordinate introduced for just that
purpose–an idea analogous to the way catalysts lower barrier heights without affecting local
minima (Stolovitzky and Berne 2000). In a related fashion, Nakamura (2002) has shown
that barriers up to 3000 kcal mol−1 can be readily overcome simply by sampling in a
logarithmically transformed energy space followed by correction of the resulting probability
distribution.

An interesting alternative suggested by Verkhivker, Elber, and Nowak (1992) is to have
multiple conformers present simultaneously in a ‘single’ molecule. In the so-called ‘locally
enhanced sampling’ method, the molecule of interest is represented as a sum of different
conformers, each contributing fractionally to the total force field energy expression. When
combined with ‘softened’ potentials, Hornak and Simmerling (2003) have shown that this
technology can be useful for crossing very high barriers associated with large geometric
rearrangements.

Just as with statistical convergence, however, there can be no guarantee that any of
the techniques above will provide a thermodynamically accurate sampling of phase space,
even though on the timescale of the simulation various property values may appear to be
converged. As with most theoretical modeling, then, it is best to assess the likely utility of the
predictions from a simulation by first comparing to experimentally well-known quantities.
When these are accurately reproduced, other predictions can be used with greater confidence.
As a corollary, the modeling of systems for which few experimental data are available against
which to compare is perilous.

3.7 Force Field Performance in Simulations

As discussed in Chapter 2, most force fields are validated based primarily on comparisons
to small molecule data and moreover most comparisons involve what might be called static
properties, i.e., structural or spectral data for computed fixed conformations. There are a
few noteworthy exceptions: the OPLS and TraPPE force fields were, at least for molecular
solvents, optimized to reproduce bulk solvent properties derived from simulations, e.g.,
density, boiling point, and dielectric constant. In most instances, however, one is left with
the question of whether force fields optimized for small molecules or molecular fragments
will perform with acceptable accuracy in large-scale simulations.
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This question has been addressed with increasing frequency recently, and several useful
comparisons of the quality of different force fields in particular simulations have appeared.
The focus has been primarily on biomolecular simulations. Okur et al. (2003) assessed
the abilities of the force fields of Cornell et al. and Wang, Cieplak, and Kollman (see
Table 2.1) to predict correctly folded vs. misfolded protein structures; they found both force
fields to suffer from a bias that predicts helical secondary structure to be anomalously too
stable and suggested modifications to improve the more recent of the two force fields. Mu,
Kosov, and Stock (2003) compared six different force fields in simulations of trialanine,
an oligopeptide for which very high quality IR and NMR data are available. They found
the most recent OPLS force field to provide the best agreement with experiment for the
relative populations of three different conformers, while CHARMM, GROMOS, and force
fields coded in the AMBER program systematically overstabilized an α-helical conformer.
They also found that the timescales associated with transitions between conformers differed
by as much as an order of magnitude between different force fields, although in this instance
it is not clear which, if any, of the force fields is providing an accurate representation of
reality. Finally, Zamm et al. (2003) compared six AA and UA force fields with respect to
their predictions for the conformational dynamics of the pentapeptide neurotransmitter Met-
enkephalin; they found AA force fields to generally give more reasonable dynamics than
UA force fields.

Considering polynucleotides, Arthanari et al. (2003) showed that nOe data computed from
an unrestrained 12 ns simulation of a double-helical DNA dodecamer using the force field
of Cornell et al. agreed better with solution NMR experiments than data computed using
either the X-ray crystal structure or canonical A or B form structures. Reddy, Leclerc, and
Karplus (2003) exhaustively compared four force fields for their ability to model a double-
helical DNA decamer. They found the CHARMM22 parameter set to incorrectly favor an
A-form helix over the experimentally observed B form. The CHARMM27 parameter set
gave acceptable results as did the BMS force field and that of Cornell et al. (as modified by
Cheatham, Cieplak, and Kollman (1999) to improve performance for sugar puckering and
helical repeat).

In conclusion, it appears that the majority of the most modern force fields do well
in predicting structural and dynamical properties within wells on their respective PESs.
However, their performance for non-equilibrium properties, such as timescales for confor-
mational interconversion, protein folding, etc., have not yet been fully validated. With the
increasing speed of both computational hardware and dynamics algorithms, it should be
possible to address this question in the near future.

3.8 Case Study: Silica Sodalite

Synopsis of Nicholas et al. (1991) ‘Molecular Modeling of Zeolite Structure. 2. Structure
and Dynamics of Silica Sodalite and Silicate Force Field’.

Zeolites are mesoporous materials that are crystalline in nature. The simplest zeolites
are made up of Al and/or Si and O atoms. Also known as molecular sieves, they find
use as drying agents because they are very hygroscopic, but from an economic standpoint
they are of greatest importance as size-selective catalysts in various reactions involving
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hydrocarbons and functionalized molecules of low molecular weight (for instance, they
can be used to convert methanol to gasoline). The mechanisms by which zeolites operate
are difficult to identify positively because of the heterogeneous nature of the reactions in
which they are involved (they are typically solids suspended in solution or reacting with
gas-phase molecules), and the signal-to-noise problems associated with identifying reactive
intermediates in a large background of stable reactants and products. As a first step toward
possible modeling of reactions taking place inside the zeolite silica sodalite, Nicholas and
co-workers reported the development of an appropriate force field for the system, and MD
simulations aimed at its validation.

The basic structural unit of silica sodalite is presented in Figure 3.9. Because there are
only two atomic types, the total number of functional forms and parameters required to
define a force field is relatively small (18 parameters total). The authors restrict themselves
to an overall functional form that sums stretching, bending, torsional, and non-bonded
interactions, the latter having separate LJ and electrostatic terms. The details of the force
field are described in a particularly lucid manner. The Si–O stretching potential is chosen
to be quadratic, as is the O–Si–O bending potential. The flatter Si–O–Si bending potential
is modeled with a fourth-order polynomial with parameters chosen to fit a bending potential
computed from ab initio molecular orbital calculations (such calculations are the subject
of Chapter 6). A Urey–Bradley Si–Si non-bonded harmonic stretching potential is added
to couple the Si–O bond length to the Si–O–Si bond angle. Standard torsional potentials
and LJ expressions are used, although, in the former case, a switching function is applied
to allow the torsion energy to go to zero if one of the bond angles in the four-atom
link becomes linear (which can happen at fairly low energy). With respect to electrostatic
interactions, the authors note an extraordinarily large range of charges previously proposed
for Si and O in this and related systems (spanning about 1.5 charge units). They choose a
value for Si roughly midway through this range (which, by charge neutrality, determines
the O charge as well), and examine the sensitivity of their model to the electrostatics by
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Figure 3.9 The repeating structural unit (with connections not shown) that makes up silica
sodalite. What kinds of terms would be required in a force field designed to model such a
system?
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carrying out MD simulations with dielectric constants of 1, 2, and 5. The simulation cell is
composed of 288 atoms (quite small, which makes the simulations computationally simple).
PBCs and Ewald sums are used to account for the macroscopic nature of the real zeolite in
simulations. Propagation of MD trajectories is accomplished using a leapfrog algorithm and
1.0 fs time steps following 20 ps or more of equilibration at 300 K. Each MD trajectory
is 20 ps, which is very short by modern standards, but possibly justified by the limited
dynamics available within the crystalline environment.

The quality of the parameter set is evaluated by comparing various details from the simu-
lations to available experimental data. After testing a small range of equilibrium values for
the Si–O bond, they settle on 1.61 Å, which gives optimized values for the unit cell Si–O
bond length, and O–Si–O and Si–O–Si bond angles of 1.585 Å and 110.1◦ and 159.9◦,
respectively. These compare very favorably with experimental values of 1.587 Å and 110.3◦

and 159.7◦, respectively. Furthermore, a Fourier transform of the total dipole correlation
function (see Section 3.5) provides a model IR spectrum for comparison to experiment.
Again, excellent agreement is obtained, with dominant computed bands appearing at 1106,
776, and 456 cm−1, while experimental bands are observed at 1107, 787, 450 cm−1. Simula-
tions with different dielectric constants showed little difference from one another, suggesting
that overall, perhaps because of the high symmetry of the system, sensitivity to partial
atomic charge choice was low.

In addition, the authors explore the range of thermal motion of the oxygen atoms with
respect to the silicon atoms they connect in the smallest ring of the zeolite cage (the eight-
membered ring in the center of Figure 3.9). They determine that motion inward and outward
and above and below the plane of the ring takes place with a fair degree of facility, while
motion parallel to the Si–Si vector takes place over a much smaller range. This behavior is
consistent with the thermal ellipsoids determined experimentally from crystal diffraction.

The authors finish by exploring the transferability of their force field parameters to
a different zeolite, namely, silicalite. In this instance, a Fourier transform of the total
dipole correlation function provides another model infrared (IR) spectrum for comparison
to experiment, and again excellent agreement is obtained. Dominant computed bands appear
at 1099, 806, 545, and 464 cm−1, while experimental bands are observed at 1100, 800, 550,
and 420 cm−1. Some errors in band intensity are observed in the lower energy region of
the spectrum.

As a first step in designing a general modeling strategy for zeolites, this paper is a very
good example of how to develop, validate, and report force field parameters and results.
The authors are pleasantly forthcoming about some of the assumptions employed in their
analysis (for instance, all experimental data derive from crystals incorporating ethylene
glycol as a solvent, while the simulations have the zeolite filled only with vacuum) and set
an excellent standard for modeling papers of this type.
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4
Foundations of Molecular Orbital
Theory

4.1 Quantum Mechanics and the Wave Function

To this point, the models we have considered for representing microscopic systems have been
designed based on classical, which is to say, macroscopic, analogs. We now turn our focus
to contrasting models, whose foundations explicitly recognize the fundamental difference
between systems of these two size extremes. Early practitioners of chemistry and physics
had few, if any, suspicions that the rules governing microscopic and macroscopic systems
should be different. Then, in 1900, Max Planck offered a radical proposal that blackbody
radiation emitted by microscopic particles was limited to certain discrete values, i.e., it
was ‘quantized’. Such quantization was essential to reconciling large differences between
predictions from classical models and experiment.

As the twentieth century progressed, it became increasingly clear that quantization was
not only a characteristic of light, but also of the fundamental particles from which matter is
constructed. Bound electrons in atoms, in particular, are clearly limited to discrete energies
(levels) as indicated by their ultraviolet and visible line spectra. This phenomenon has no
classical correspondence – in a classical system, obeying Newtonian mechanics, energy can
vary continuously.

In order to describe microscopic systems, then, a different mechanics was required.
One promising candidate was wave mechanics, since standing waves are also a quantized
phenomenon. Interestingly, as first proposed by de Broglie, matter can indeed be shown
to have wavelike properties. However, it also has particle-like properties, and to prop-
erly account for this dichotomy a new mechanics, quantum mechanics, was developed.
This chapter provides an overview of the fundamental features of quantum mechanics, and
describes in a formal way the fundamental equations that are used in the construction of
computational models. In some sense, this chapter is historical. However, in order to appre-
ciate the differences between modern computational models, and the range over which they
may be expected to be applicable, it is important to understand the foundation on which all of
them are built. Following this exposition, Chapter 5 overviews the approximations inherent
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in so-called semiempirical QM models, Chapter 6 focuses on ab initio Hartree–Fock (HF)
models, and Chapter 7 describes methods for accounting for electron correlation.

We begin with a brief recapitulation of some of the key features of quantum mechanics.
The fundamental postulate of quantum mechanics is that a so-called wave function, �,
exists for any (chemical) system, and that appropriate operators (functions) which act upon
� return the observable properties of the system. In mathematical notation,

ϑ� = e� (4.1)

where ϑ is an operator and e is a scalar value for some property of the system. When
Eq. (4.1) holds, � is called an eigenfunction and e an eigenvalue, by analogy to matrix
algebra were � to be an N -element column vector, ϑ to be an N × N square matrix, and
e to remain a scalar constant. Importantly, the product of the wave function � with its
complex conjugate (i.e., |�∗�|) has units of probability density. For ease of notation, and
since we will be working almost exclusively with real, and not complex, wave functions, we
will hereafter drop the complex conjugate symbol ‘*’. Thus, the probability that a chemical
system will be found within some region of multi-dimensional space is equal to the integral
of |�|2 over that region of space.

These postulates place certain constraints on what constitutes an acceptable wave function.
For a bound particle, the normalized integral of |�|2 over all space must be unity (i.e., the
probability of finding it somewhere is one) which requires that � be quadratically integrable.
In addition, � must be continuous and single-valued.

From this very formal presentation, the nature of � can hardly be called anything
but mysterious. Indeed, perhaps the best description of � at this point is that it is an
oracle – when queried with questions by an operator, it returns answers. By the end of this
chapter, it will be clear the precise way in which � is expressed, and we should have a
more intuitive notion of what � represents. However, the view that � is an oracle is by no
means a bad one, and will be returned to again at various points.

4.2 The Hamiltonian Operator

4.2.1 General Features

The operator in Eq. (4.1) that returns the system energy, E, as an eigenvalue is called the
Hamiltonian operator, H . Thus, we write

H� = E� (4.2)

which is the Schrödinger equation. The typical form of the Hamiltonian operator with which
we will be concerned takes into account five contributions to the total energy of a system
(from now on we will say molecule, which certainly includes an atom as a possibility):
the kinetic energies of the electrons and nuclei, the attraction of the electrons to the nuclei,
and the interelectronic and internuclear repulsions. In more complicated situations, e.g., in
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the presence of an external electric field, in the presence of an external magnetic field, in
the event of significant spin–orbit coupling in heavy elements, taking account of relativistic
effects, etc., other terms are required in the Hamiltonian. We will consider some of these at
later points in the text, but we will not find them necessary for general purposes. Casting
the Hamiltonian into mathematical notation, we have

H = −
∑

i

h̄2

2me
∇2

i −
∑

k

h̄2

2mk

∇2
k −

∑
i

∑
k

e2Zk

rik

+
∑
i<j

e2

rij

+
∑
k<l

e2ZkZl

rkl

(4.3)

where i and j run over electrons, k and l run over nuclei, h̄ is Planck’s constant divided
by 2π , me is the mass of the electron, mk is the mass of nucleus k, ∇2 is the Laplacian
operator, e is the charge on the electron, Z is an atomic number, and rab is the distance
between particles a and b. Note that � is thus a function of 3n coordinates where n is the
total number of particles (nuclei and electrons), e.g., the x, y, and z Cartesian coordinates
specific to each particle. If we work in Cartesian coordinates, the Laplacian has the form

∇2
i = ∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

(4.4)

Note that the Hamiltonian operator in Eq. (4.3) is composed of kinetic energy and potential
energy parts. The potential energy terms (the last three) appear exactly as they do in classical
mechanics. The kinetic energy for a QM particle, however, is not expressed as |p|2/2m, but
rather as the eigenvalue of the kinetic energy operator

T = − h̄2

2m
∇2 (4.5)

Note also that, as described in Chapter 1, most of the constants appearing in Eq. (4.3) are
equal to 1 when atomic units are chosen.

In general, Eq. (4.2) has many acceptable eigenfunctions � for a given molecule, each
characterized by a different associated eigenvalue E. That is, there is a complete set (perhaps
infinite) of �i with eigenvalues Ei . For ease of future manipulation, we may assume without
loss of generality that these wave functions are orthonormal, i.e., for a one particle system
where the wave function depends on only three coordinates,∫ ∫ ∫

�i�jdxdydz = δij (4.6)

where δij is the Kronecker delta (equal to one if i = j and equal to zero otherwise).
Orthonormal actually implies two qualities simultaneously: ‘orthogonal’ means that the inte-
gral in Eq. (4.6) is equal to zero if i �= j and ‘normal’ means that when i = j the value of
the integral is one. For ease of notation, we will henceforth replace all multiple integrals over
Cartesian space with a single integral over a generalized 3n-dimensional volume element
dr, rendering Eq. (4.6) as ∫

�i�jdr = δij (4.7)
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Now, consider the result of taking Eq. (4.2) for a specific �i , multiplying on the left by
�j , and integrating. This process gives∫

�jH�idr =
∫

�jEi�idr (4.8)

Since the energy E is a scalar value, we may remove it outside the integral on the r.h.s. and
use Eq. (4.7) to write ∫

�jH�idr = Eiδij (4.9)

This equation will prove useful later on, but it is worth noting at this point that it also
offers a prescription for determining the molecular energy. With a wave function in hand,
one simply constructs and solves the integral on the left (where i and j are identical and
index the wave function of interest). Of course, we have not yet said much about the form
of the wave function, so the nature of the integral in Eq. (4.8) is not obvious . . . although
one suspects it might be unpleasant to solve.

4.2.2 The Variational Principle

The power of quantum theory, as expressed in Eq. (4.1), is that if one has a molecular wave
function in hand, one can calculate physical observables by application of the appropriate
operator in a manner analogous to that shown for the Hamiltonian in Eq. (4.8). Regrettably,
none of these equations offers us a prescription for obtaining the orthonormal set of molecular
wave functions. Let us assume for the moment, however, that we can pick an arbitrary
function, �, which is indeed a function of the appropriate electronic and nuclear coordinates
to be operated upon by the Hamiltonian. Since we defined the set of orthonormal wave
functions �i to be complete (and perhaps infinite), the function � must be some linear
combination of the �i , i.e.,

� =
∑

i

ci�i (4.10)

where, of course, since we don’t yet know the individual �i , we certainly don’t know the
coefficients ci either! Note that the normality of � imposes a constraint on the coefficients,
however, deriving from ∫

�2dr = 1 =
∫ ∑

i

ci�i

∑
j

cj�jdr

=
∑
ij

cicj

∫
�i�jdr

=
∑
ij

cicj δij

=
∑

i

c2
i (4.11)
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Now, let us consider evaluating the energy associated with wave function �. Taking the
approach of multiplying on the left and integrating as outlined above, we have

∫
�H�dr =

∫ (∑
i

ci�i

)
H


∑

j

cj�j


 dr

=
∑
ij

cicj

∫
�iH�jdr

=
∑
ij

cicjEjδij

=
∑

i

c2
i Ei (4.12)

where we have used Eq. (4.9) to simplify the r.h.s. Thus, the energy associated with the
generic wave function � is determinable from all of the coefficients ci (that define how the
orthonormal set of �i combine to form �) and their associated energies Ei . Regrettably,
we still don’t know the values for any of these quantities. However, let us take note of the
following. In the set of all Ei there must be a lowest energy value (i.e., the set is bounded
from below); let us call that energy, corresponding to the ‘ground state’, E0. [Notice that
this boundedness is a critical feature of quantum mechanics! In a classical system, one could
imagine always finding a state lower in energy than another state by simply ‘shrinking the
orbits’ of the electrons to increase nuclear–electronic attraction while keeping the kinetic
energy constant.]

We may now combine the results from Eqs. (4.11) and (4.12) to write

∫
�H�dr − E0

∫
�2dr =

∑
i

c2
i (Ei − E0) (4.13)

Assuming the coefficients to be real numbers, each term c2
i must be greater than or equal to

zero. By definition of E0, the quantity (Ei − E0) must also be greater than or equal to zero.
Thus, we have ∫

�H�dr − E0

∫
�2dr ≥ 0 (4.14)

which we may rearrange to ∫
�H�dr∫
�2dr

≥ E0 (4.15)

(note that when � is normalized, the denominator on the l.h.s. is 1, but it is helpful to have
Eq. (4.15) in this more general form for future use).
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Equation (4.15) has extremely powerful implications. If we are looking for the best wave
function to define the ground state of a system, we can judge the quality of wave functions
that we arbitrarily guess by their associated energies: the lower the better. This result is
critical because it shows us that we do not have to construct our guess wave function � as
a linear combination of (unknown) orthonormal wave functions �i , but we may construct it
in any manner we wish. The quality of our guess will be determined by how low a value
we calculate for the integral in Eq. (4.15). Moreover, since we would like to find the lowest
possible energy within the constraints of how we go about constructing a wave function, we
can use all of the tools that calculus makes available for locating extreme values.

4.2.3 The Born–Oppenheimer Approximation

Up to now, we have been discussing many-particle molecular systems entirely in the abstract.
In fact, accurate wave functions for such systems are extremely difficult to express because
of the correlated motions of particles. That is, the Hamiltonian in Eq. (4.3) contains pairwise
attraction and repulsion terms, implying that no particle is moving independently of all of the
others (the term ‘correlation’ is used to describe this interdependency). In order to simplify
the problem somewhat, we may invoke the so-called Born–Oppenheimer approximation.
This approximation is described with more rigor in Section 15.5, but at this point we present
the conceptual aspects without delving deeply into the mathematical details.

Under typical physical conditions, the nuclei of molecular systems are moving much,
much more slowly than the electrons (recall that protons and neutrons are about 1800 times
more massive than electrons and note the appearance of mass in the denominator of the
kinetic energy terms of the Hamiltonian in Eq. (4.3)). For practical purposes, electronic
‘relaxation’ with respect to nuclear motion is instantaneous. As such, it is convenient to
decouple these two motions, and compute electronic energies for fixed nuclear positions. That
is, the nuclear kinetic energy term is taken to be independent of the electrons, correlation
in the attractive electron–nuclear potential energy term is eliminated, and the repulsive
nuclear–nuclear potential energy term becomes a simply evaluated constant for a given
geometry. Thus, the electronic Schrödinger equation is taken to be

(Hel + VN)�el(qi; qk) = Eel�el(qi; qk) (4.16)

where the subscript ‘el’ emphasizes the invocation of the Born–Oppenheimer approximation,
Hel includes only the first, third, and fourth terms on the r.h.s. of Eq. (4.3), VN is the
nuclear–nuclear repulsion energy, and the electronic coordinates qi are independent variables
but the nuclear coordinates qk are parameters (and thus appear following a semicolon rather
than a comma in the variable list for �). The eigenvalue of the electronic Schrödinger
equation is called the ‘electronic energy’. Note that the term VN is a constant for a given set
of fixed nuclear coordinates. Wave functions are invariant to the appearance of constant terms
in the Hamiltonian, so in practice one almost always solves Eq. (4.16) without the inclusion
of VN , in which case the eigenvalue is sometimes called the ‘pure electronic energy’, and
one then adds VN to this eigenvalue to obtain Eel.



4.3 CONSTRUCTION OF TRIAL WAVE FUNCTIONS 111

In general, the Born–Oppenheimer assumption is an extremely mild one, and it is entirely
justified in most cases. It is worth emphasizing that this approximation has very profound
consequences from a conceptual standpoint – so profound that they are rarely thought about
but simply accepted as dogma. Without the Born–Oppenheimer approximation we would
lack the concept of a potential energy surface: The PES is the surface defined by Eel over all
possible nuclear coordinates. We would further lack the concepts of equilibrium and transition
state geometries, since these are defined as critical points on the PES; instead we would be
reduced to discussing high-probability regions of the nuclear wave functions. Of course, for
some problems in chemistry, we do need to consider the quantum mechanical character of
the nuclei, but the advantages afforded by the Born–Oppenheimer approximation should be
manifest.

4.3 Construction of Trial Wave Functions

Equation (4.16) is simpler than Eq. (4.2) because electron–nuclear correlation has been
removed. The remaining correlation, that between the individual electrons, is considerably
more troubling. For the moment we will take the simplest possible approach and ignore it;
we do this by considering systems with only a single electron. The electronic wave function
has thus been reduced to depending only on the fixed nuclear coordinates and the three
Cartesian coordinates of the single electron. The eigenfunctions of Eq. (4.16) for a molec-
ular system may now be properly called molecular orbitals (MOs; rather unusual ones in
general, since they are for a molecule having only one electron, but MOs nonetheless).
To distinguish a one-electron wave function from a many-electron wave function, we will
designate the former as ψel and the latter as �el. We will hereafter drop the subscript ‘el’
where not required for clarity; unless otherwise specified, all wave functions are electronic
wave functions.

The pure electronic energy eigenvalue associated with each molecular orbital is the energy
of the electron in that orbital. Experimentally, one might determine this energy by measuring
the ionization potential of the electron when it occupies the orbital (fairly easy for the
hydrogen atom, considerably more difficult for polynuclear molecules). To measure Eel,
which includes the nuclear repulsion energy, one would need to determine the ‘atomization’
energy, that is, the energy required to ionize the electron and to remove all of the nuclei
to infinite separation. In practice, atomization energies are not measured, but instead we
have compilations of such thermodynamic variables as heats of formation. The relationship
between these computed and thermodynamic quantities is discussed in Chapter 10.

4.3.1 The LCAO Basis Set Approach

As noted earlier, we may imagine constructing wave functions in any fashion we deem
reasonable, and we may judge the quality of our wave functions (in comparison to one
another) by evaluation of the energy eigenvalues associated with each. The one with the
lowest energy will be the most accurate and presumably the best one to use for computing
other properties by the application of other operators. So, how might one go about choosing
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mathematical functions with which to construct a trial wave function? This is a typical
question in mathematics – how can an arbitrary function be represented by a combination
of more convenient functions? The convenient functions are called a ‘basis set’. Indeed, we
have already encountered this formalism – Eq. (2.10) of Chapter 2 illustrates the use of a
basis set of cosine functions to approximate torsional energy functions.

In our QM systems, we have temporarily restricted ourselves to systems of one electron.
If, in addition, our system were to have only one nucleus, then we would not need to guess
wave functions, but instead we could solve Eq. (4.16) exactly. The eigenfunctions that are
determined in that instance are the familiar hydrogenic atomic orbitals, 1s, 2s, 2p, 3s, 3p,
3d, etc., whose properties and derivation are discussed in detail in standard texts on quantum
mechanics. For the moment, we will not investigate the mathematical representation of these
hydrogenic atomic orbitals in any detail, but we will simply posit that, as functions, they
may be useful in the construction of more complicated molecular orbitals. In particular, just
as in Eq. (4.10) we constructed a guess wave function as a linear combination of exact wave
functions, so here we will construct a guess wave function φ as a linear combination of
atomic wave functions ϕ, i.e.,

φ =
N∑

i=1

aiϕi (4.17)

where the set of N functions ϕi is called the ‘basis set’ and each has associated with it
some coefficient ai . This construction is known as the linear combination of atomic orbitals
(LCAO) approach.

Note that Eq. (4.17) does not specify the locations of the basis functions. Our intuition
suggests that they should be centered on the atoms of the molecule, but this is certainly not a
requirement. If this comment seems odd, it is worth emphasizing at this point that we should
not let our chemical intuition limit our mathematical flexibility. As chemists, we choose to
use atomic orbitals (AOs) because we anticipate that they will be efficient functions for the
representation of MOs. However, as mathematicians, we should immediately stop thinking
about our choices as orbitals, and instead consider them only to be functions, so that we
avoid being conceptually influenced about how and where to use them.

Recall that the wave function squared has units of probability density. In essence, the
electronic wave function is a road map of where the electrons are more or less likely to be
found. Thus, we want our basis functions to provide us with the flexibility to allow electrons
to ‘go’ where their presence at higher density lowers the energy. For instance, to describe
the bonding of a hydrogen atom to a carbon, it is clearly desirable to use a p function on
hydrogen, oriented along the axis of the bond, to permit electron density to be localized in the
bonding region more efficiently than is possible with only a spherically symmetric s function.
Does this imply that the hydrogen atom is somehow sp-hybridized? Not necessarily – the
p function is simply serving the purpose of increasing the flexibility with which the molecular
orbital may be described. If we took away the hydrogen p function and instead placed an
s function in between the C and H atoms, we could also build up electron density in the
bonding region (see Figure 4.1). Thus, the chemical interpretation of the coefficients in
Eq. (4.17) should only be undertaken with caution, as further described in Chapter 9.
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H

C

Figure 4.1 Two different basis sets for representing a C–H σ bonding orbital with the size of the
basis functions roughly illustrating their weight in the hybrid MO. The set on the right is the more
chemically intuitive since all basis functions are centered on the atoms. Note, however, that the use
of a p function to polarize the hydrogen density goes beyond a purely minimalist approach. The set
on the left is composed entirely of s functions distributed along the bond. Such a basis set may seem
odd in concept, but is quite capable of accurately representing the electron density in space. Indeed,
the basis set on the left would have certain computational advantages, chief among them the greater
simplicity of working with s functions than with p functions

One should also note that the summation in Eq. (4.17) has an upper limit N ; we cannot
work with an infinite basis in any convenient way (at least not when the basis is AOs).
However, the more atomic orbitals we allow into our basis, the closer our basis will come
to ‘spanning’ the true molecular orbital space. Thus, the chemical idea that we would limit
ourselves to, say, at most one 1s function on each hydrogen atom is needlessly confining
from a mathematical standpoint. Indeed, there may be very many ‘true’ one-electron MOs
that are very high in energy. Accurately describing these MOs may require some unusual
basis functions, e.g., very diffuse functions to describe weakly bound electrons, like those
found in Rydberg states. We will discuss these issues in much more detail in Section 6.2,
but it is worth emphasizing here, at the beginning, that the distinction between orbitals and
functions is a critical one in computational molecular orbital theory.

4.3.2 The Secular Equation

All that being said, let us now turn to evaluating the energy of our guess wave function.
From Eqs. (4.15) and (4.17) we have

E =

∫ (∑
i

aiϕi

)
H


∑

j

ajϕj


 dr

∫ (∑
i

aiϕi

) 
∑

j

ajϕj


 dr
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=

∑
ij

aiaj

∫
ϕiHϕjdr

∑
ij

aiaj

∫
ϕiϕjdr

=

∑
ij

aiajHij

∑
ij

aiajSij

(4.18)

where we have introduced the shorthand notation Hij and Sij for the integrals in the numer-
ator and denominator, respectively. These so-called ‘matrix elements’ are no longer as simple
as they were in prior discussion, since the atomic orbital basis set, while likely to be efficient,
is no longer orthonormal. These matrix elements have more common names, Hij being called
a ‘resonance integral’, and Sij being called an ‘overlap integral’. The latter has a very clear
physical meaning, namely the extent to which any two basis functions overlap in a phase-
matched fashion in space. The former integral is not so easily made intuitive, but it is worth
pointing out that orbitals which give rise to large overlap integrals will similarly give rise to
large resonance integrals. One resonance integral which is intuitive is Hii , which corresponds
to the energy of a single electron occupying basis function i, i.e., it is essentially equivalent
to the ionization potential of the AO in the environment of the surrounding molecule.

Now, it is useful to keep in mind our objective. The variational principle instructs us that
as we get closer and closer to the ‘true’ one-electron ground-state wave function, we will
obtain lower and lower energies from our guess. Thus, once we have selected a basis set, we
would like to choose the coefficients ai so as to minimize the energy for all possible linear
combinations of our basis functions. From calculus, we know that a necessary condition for
a function (i.e., the energy) to be at its minimum is that its derivatives with respect to all of
its free variables (i.e., the coefficients ai) are zero. Notationally, that is

∂E

∂ak

= 0 ∀k (4.19)

(where we make use of the mathematical abbreviation ∀ meaning ‘for all’). Performing this
fairly tedious partial differentiation on Eq. (4.18) for each of the N variables ak gives rise
to N equations which must be satisfied in order for Eq. (4.19) to hold true, namely

N∑
i=1

ai(Hki − ESki) = 0 ∀k (4.20)

This set of N equations (running over k) involves N unknowns (the individual ai). From
linear algebra, we know that a set of N equations in N unknowns has a non-trivial solution
if and only if the determinant formed from the coefficients of the unknowns (in this case
the ‘coefficients’ are the various quantities Hki − ESki) is equal to zero. Notationally again,
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that is ∣∣∣∣∣∣∣∣∣

H11 − ES11 H12 − ES12 · · · H1N − ES1N

H21 − ES21 H22 − ES22 · · · H2N − ES2N

...
...

. . .
...

HN1 − ESN1 HN2 − ESN2 · · · HNN − ESNN

∣∣∣∣∣∣∣∣∣
= 0 (4.21)

Equation (4.21) is called a secular equation. In general, there will be N roots E which
permit the secular equation to be true. That is, there will be N energies Ej (some of which
may be equal to one another, in which case we say the roots are ‘degenerate’) where each
value of Ej will give rise to a different set of coefficients, aij , which can be found by solving
the set of linear Eqs. (4.20) using Ej , and these coefficients will define an optimal wave
function φj within the given basis set, i.e.,

φj =
N∑

i=1

aijϕi (4.22)

In a one-electron system, the lowest energy molecular orbital would thus define the ‘ground
state’ of the system, and the higher energy orbitals would be ‘excited states’. Obviously, as
these are different MOs, they have different basis function coefficients. Although we have
not formally proven it, it is worth noting that the variational principle holds for the excited
states as well: the calculated energy of a guess wave function for an excited state will be
bounded from below by the true excited state energy (MacDonald 1933).

So, in a nutshell, to find the optimal one-electron wave functions for a molecular system, we:

1. Select a set of N basis functions.

2. For that set of basis functions, determine all N2 values of both Hij and Sij .

3. Form the secular determinant, and determine the N roots Ej of the secular equation.

4. For each of the N values of Ej , solve the set of linear Eqs. (4.20) in order to determine
the basis set coefficients aij for that MO.

All of the MOs determined by this process are mutually orthogonal. For degenerate MOs,
some minor complications arise, but those are not discussed here.

4.4 Hückel Theory

4.4.1 Fundamental Principles

To further illuminate the LCAO variational process, we will carry out the steps outlined
above for a specific example. To keep things simple (and conceptual), we consider a flavor
of molecular orbital theory developed in the 1930s by Erich Hückel to explain some of
the unique properties of unsaturated and aromatic hydrocarbons (Hückel 1931; for historical
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insights, see also, Berson 1996; Frenking 2000). In order to accomplish steps 1–4 of the
last section, Hückel theory adopts the following conventions:

(a) The basis set is formed entirely from parallel carbon 2p orbitals, one per atom. [Hückel
theory was originally designed to treat only planar hydrocarbon π systems, and thus
the 2p orbitals used are those that are associated with the π system.]

(b) The overlap matrix is defined by

Sij = δij (4.23)

Thus, the overlap of any carbon 2p orbital with itself is unity (i.e., the p functions are
normalized), and that between any two p orbitals is zero.

(c) Matrix elements Hii are set equal to the negative of the ionization potential of the methyl
radical, i.e., the orbital energy of the singly occupied 2p orbital in the prototypical
system defining sp2 carbon hybridization. This choice is consistent with our earlier
discussion of the relationship between this matrix element and an ionization potential.
This energy value, which is defined so as to be negative, is rarely actually written as a
numerical value, but is instead represented by the symbol α.

(d) Matrix elements Hij between neighbors are also derived from experimental information.
A 90◦ rotation about the π bond in ethylene removes all of the bonding interaction
between the two carbon 2p orbitals. That is, the (positive) cost of the following process,

E = Ep E = 2Ep

is �E = 2Ep − Eπ . The (negative) stabilization energy for the pi bond is distributed
equally to the two p orbitals involved (i.e., divided in half) and this quantity, termed
β, is used for Hij between neighbors. (Note, based on our definitions so far, then, that
Ep = α and Eπ = 2α + 2β.)

(e) Matrix elements Hij between carbon 2p orbitals more distant than nearest neighbors
are set equal to zero.

4.4.2 Application to the Allyl System

Let us now apply Hückel MO theory to the particular case of the allyl system, C3H3, as
illustrated in Figure 4.2. Because we have three carbon atoms, our basis set is determined
from convention (a) and will consist of 3 carbon 2p orbitals, one centered on each atom. We
will arbitrarily number them 1, 2, 3, from left to right for bookkeeping purposes.



4.4 HÜCKEL THEORY 117

H
C

C
C

H

H

H

H

1 3

2

pC

f1 =

f2 =

f3 =

E

a + √2b

a − √2b

a

Figure 4.2 Hückel MOs for the allyl system. One pC orbital per atom defines the basis set. Combi-
nations of these 3 AOs create the 3 MOs shown. The electron occupation illustrated corresponds to
the allyl cation. One additional electron in φ2 would correspond to the allyl radical, and a second
(spin-paired) electron in φ2 would correspond to the allyl anion

The basis set size of three implies that we will need to solve a 3 × 3 secular equation.
Hückel conventions (b)–(e) tell us the value of each element in the secular equation, so that
Eq. (4.21) is rendered as ∣∣∣∣∣∣

α − E β 0
β α − E β

0 β α − E

∣∣∣∣∣∣ = 0 (4.24)

The use of the Krönecker delta to define the overlap matrix ensures that E appears only
in the diagonal elements of the determinant. Since this is a 3 × 3 determinant, it may be
expanded using Cramer’s rule as

(α − E)3 + (β2 · 0) + (0 · β2) − [0 · (α − E) · 0] − β2(α − E) − (α − E)β2 = 0 (4.25)

which is a fairly simple cubic equation in E that has three solutions, namely

E = α + √
2β, α, α − √

2β (4.26)

Since α and β are negative by definition, the lowest energy solution is α + √
2β. To find

the MO associated with this energy, we employ it in the set of linear Eqs. (4.20), together
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with the various necessary H and S values to give

a1[α − (α + √
2β) · 1] + a2[β − (α + √

2β) · 0] + a3[0 − (α + √
2β) · 0] = 0

a1[β − (α + √
2β) · 0] + a2[α − (α + √

2β) · 1] + a3[β − (α + √
2β) · 0] = 0

a1[0 − (α + √
2β) · 0] + a2[β − (α + √

2β) · 0] + a3[α − (α + √
2β) · 1] = 0 (4.27)

Some fairly trivial algebra reduces these equations to

a2 = √
2a1

a3 = a1 (4.28)

While there are infinitely many values of a1, a2, and a3 which satisfy Eq. (4.28), the
requirement that the wave function be normalized provides a final constraint in the form
of Eq. (4.11). The unique values satisfying both equations are

a11 = 1

2
, a21 =

√
2

2
, a31 = 1

2
(4.29)

where we have now emphasized that these coefficients are specific to the lowest energy
molecular orbital by adding the second subscript ‘1’. Since we now know both the coefficients
and the basis functions, we may construct the lowest energy molecular orbital, i.e.,

ϕ1 = 1

2
p1 +

√
2

2
p2 + 1

2
p3 (4.30)

which is illustrated in Figure 4.2.
By choosing the higher energy roots of Eq. (4.24), we may solve the sets of linear

equations analogous to Eq. (4.27) in order to arrive at the coefficients required to construct
φ2 (from E = α) and φ3 (from E = α − √

2β). Although the algebra is left for the reader,
the results are

a12 =
√

2

2
, a22 = 0, a32 = −

√
2

2

a13 = 1

2
, a23 = −

√
2

2
, a33 = 1

2
(4.31)

and these orbitals are also illustrated in Figure 4.2. The three orbitals we have derived are
the bonding, non-bonding, and antibonding allyl molecular orbitals with which all organic
chemists are familiar.

Importantly, Hückel theory affords us certain insights into the allyl system, one in particular
being an analysis of the so-called ‘resonance’ energy arising from electronic delocalization
in the π system. By delocalization we refer to the participation of more than two atoms in a
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given MO. Consider for example the allyl cation, which has a total of two electrons in the
π system. If we adopt a molecular aufbau principle of filling lowest energy MOs first and
further make the assumption that each electron has the energy of the one-electron MO that it
occupies (φ1 in this case) then the total energy of the allyl cation π system is 2(α + √

2β).
Consider the alternative ‘fully localized’ structure for the allyl system, in which there is a
full (doubly-occupied) π bond between two of the carbons, and an empty, non-interacting
p orbital on the remaining carbon atom. (This could be achieved by rotating the cationic
methylene group 90◦ so that the p orbital becomes orthogonal to the remaining π bond,
but that could no longer be described by simple Hückel theory since the system would be
non-planar – the non-interaction we are considering here is purely a thought-experiment).
The π energy of such a system would simply be that of a double bond, which by our
definition of terms above is 2(α + β). Thus, the Hückel resonance energy, which is equal to
Hπ − Hlocalized, is 0.83β (remember β is negative by definition, so resonance is a favorable
phenomenon). Recalling the definition of β, the resonance energy in the allyl cation is
predicted to be about 40% of the rotation barrier in ethylene.

We may perform the same analysis for the allyl radical and the allyl anion, respectively,
by adding the energy of φ2 to the cation with each successive addition of an electron,
i.e., Hπ (allyl radical) = 2(α + √

2β) + α and Hπ (allyl anion) = 2(α + √
2β) + 2α. In the

hypothetical fully π-localized non-interacting system, each new electron would go into the
non-interacting p orbital, also contributing each time a factor of α to the energy (by definition
of α). Thus, the Hückel resonance energies of the allyl radical and the allyl anion are the
same as for the allyl cation, namely, 0.83β.

Unfortunately, while it is clear that the allyl cation, radical, and anion all enjoy some
degree of resonance stabilization, neither experiment, in the form of measured rotational
barriers, nor higher levels of theory support the notion that in all three cases the magnitude
is the same (see, for instance, Gobbi and Frenking 1994; Mo et al. 1996). So, what aspects
of Hückel theory render it incapable of accurately distinguishing between these three allyl
systems?

4.5 Many-electron Wave Functions

In our Hückel theory example, we derived molecular orbitals and molecular orbital energies
using a one-electron formalism, and we then assumed that the energy of a many-electron
system could be determined simply as the sum of the energies of the occupied one-electron
orbitals (we used our chemical intuition to limit ourselves to two electrons per orbital). We
further assumed that the orbitals themselves are invariant to the number of electrons in the
π system. One might be tempted to say that Hückel theory thus ignores electron–electron
repulsion. This is a bit unfair, however. By deriving our Hamiltonian matrix elements from
experimental quantities (ionization potentials and rotational barriers) we have implicitly
accounted for electron–electron repulsion in some sort of average way, but such an approach,
known as an ‘effective Hamiltonian’ method, is necessarily rather crude. Thus, while Hückel
theory continues to find use even today in qualitative studies of conjugated systems, it is
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rarely sufficiently accurate for quantitative assessments. To improve our models, we need to
take a more sophisticated accounting of many-electron effects.

4.5.1 Hartree-product Wave Functions

Let us examine the Schrödinger equation in the context of a one-electron Hamiltonian a little
more carefully. When the only terms in the Hamiltonian are the one-electron kinetic energy
and nuclear attraction terms, the operator is ‘separable’ and may be expressed as

H =
N∑

i=1

hi (4.32)

where N is the total number of electrons and hi is the one-electron Hamiltonian defined by

hi = −1

2
∇2

i −
M∑

k=1

Zk

rik

(4.33)

where M is the total number of nuclei (note that Eq. (4.33) is written in atomic units).
Eigenfunctions of the one-electron Hamiltonian defined by Eq. (4.33) must satisfy the

corresponding one-electron Schrödinger equation

hiψi = εiψi (4.34)

Because the Hamiltonian operator defined by Eq. (4.32) is separable, its many-electron
eigenfunctions can be constructed as products of one-electron eigenfunctions. That is

�HP = ψ1ψ2 · · · ψN (4.35)

A wave function of the form of Eq. (4.35) is called a ‘Hartree-product’ wave function.
The eigenvalue of � is readily found from proving the validity of Eq. (4.35), viz.,

H�HP = Hψ1ψ2 · · · ψN

=
N∑

i=1

hiψ1ψ2 · · ·ψN

= (h1ψ1)ψ2 · · · ψN + ψ1(h2ψ2) · · · ψN + . . . + ψ1ψ2 · · · (hNψN)

= (ε1ψ1)ψ2 · · · ψN + ψ1(ε2ψ2) · · ·ψN + . . . + ψ1ψ2 · · · (εNψN)

=
N∑

i=1

εiψ1ψ2 · · ·ψN

=
(

N∑
i=1

εi

)
�HP (4.36)
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where repeated application of Eq. (4.34) is used in proving that the energy eigenvalue of the
many-electron wave function is simply the sum of the one-electron energy eigenvalues. Note
that Eqs. (4.32)–(4.36) provide the mathematical rigor behind the Hückel theory example
presented more informally above. Note that if every ψ is normalized then �HP is also
normalized, since |�HP|2 = |ψ1|2 |ψ2|2 · · · |ψN |2.

4.5.2 The Hartree Hamiltonian

As noted above, however, the Hamiltonian defined by Eqs. (4.32) and (4.33) does not include
interelectronic repulsion, computation of which is vexing because it depends not on one elec-
tron, but instead on all possible (simultaneous) pairwise interactions. We may ask, however,
how useful is the Hartree-product wave function in computing energies from the correct
Hamiltonian? That is, we wish to find orbitals ψ that minimize 〈�HP |H |�HP〉. By applying
variational calculus, one can show that each such orbital ψi is an eigenfunction of its own
operator hi defined by

hi = −1

2
∇2

i −
M∑

k=1

Zk

rik

+ Vi{j} (4.37)

where the final term represents an interaction potential with all of the other electrons occu-
pying orbitals {j} and may be computed as

Vi{j} =
∑
j �=i

∫
ρj

rij

dr (4.38)

where ρj is the charge (probability) density associated with electron j . The repulsive third
term on the r.h.s. of Eq. (4.37) is thus exactly analogous to the attractive second term, except
that nuclei are treated as point charges, while electrons, being treated as wave functions, have
their charge spread out, so an integration over all space is necessary. Recall, however, that
ρj = |ψj |2. Since the point of undertaking the calculation is to determine the individual ψ ,
how can they be used in the one-electron Hamiltonians before they are known?

To finesse this problem, Hartree (1928) proposed an iterative ‘self-consistent field’ (SCF)
method. In the first step of the SCF process, one guesses the wave functions ψ for all of the
occupied MOs (AOs in Hartree’s case, since he was working exclusively with atoms) and
uses these to construct the necessary one-electron operators h. Solution of each differential
Eq. (4.34) (in an atom, with its spherical symmetry, this is relatively straightforward, and
Hartree was helped by his retired father who enjoyed the mathematical challenge afforded by
such calculations) provides a new set of ψ , presumably different from the initial guess. So,
the one-electron Hamiltonians are formed anew using these presumably more accurate ψ to
determine each necessary ρ, and the process is repeated to obtain a still better set of ψ . At
some point, the difference between a newly determined set and the immediately preceding
set falls below some threshold criterion, and we refer to the final set of ψ as the ‘converged’
SCF orbitals. (An example of a threshold criterion might be that the total electronic energy
change by no more than 10−6 a.u., and/or that the energy eigenvalue for each MO change by
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no more than that amount – such criteria are, of course, entirely arbitrary, and it is typically
only by checking computed properties for wave functions computed with varying degrees of
imposed ‘tightness’ that one can determine an optimum balance between convergence and
accuracy – the tighter the convergence, the more SCF cycles required, and the greater the
cost in computational resources.)

Notice, from Eq. (4.36), that the sum of the individual operators h defined by Eq. (4.37)
defines a separable Hamiltonian operator for which �HP is an eigenfunction. This separable
Hamiltonian corresponds to a ‘non-interacting’ system of electrons (in the sense that each
individual electron sees simply a constant potential with which it interacts – the nomenclature
can be slightly confusing since the potential does derive in an average way from the other
electrons, but the point is that their interaction is not accounted for instantaneously). The
non-interacting Hamiltonian is not a good approximation to the true Hamiltonian, however,
because each h includes the repulsion of its associated electron with all of the other electrons,
i.e., hi includes the repulsion between electron i and electron j , but so too does hj . Thus,
if we were to sum all of the one-electron eigenvalues for the operators hi , which according
to Eq. (4.36) would give us the eigenvalue for our non-interacting Hamiltonian, we would
double-count the electron–electron repulsion. It is a straightforward matter to correct for
this double-counting, however, and we may in principle compute E = 〈�HP |H | �HP〉 not
directly but rather as

E =
∑

i

εi − 1

2

∑
i �=j

∫ ∫ |ψi |2
∣∣ψj

∣∣2

rij

dridrj (4.39)

where i and j run over all the electrons, εi is the energy of MO i from the solution of the one-
electron Schrödinger equation using the one-electron Hamiltonian defined by Eq. (4.37), and
we have replaced ρ with the square of the wave function to emphasize how it is determined
(again, the double integration over all space derives from the wave function character of
the electron – the double integral appearing on the r.h.s. of Eq. (4.39) is called a ‘Coulomb
integral’ and is often abbreviated as Jij ). In spite of the significant difference between the
non-interacting Hamiltonian and the correct Hamiltonian, operators of the former type have
important utility, as we will see in Sections 7.4.2 and 8.3 within the contexts of perturbation
theory and density functional theory, respectively.

At this point it is appropriate to think about our Hartree-product wave function in more
detail. Let us say we have a system of eight electrons. How shall we go about placing them
into MOs? In the Hückel example above, we placed them in the lowest energy MOs first,
because we wanted ground electronic states, but we also limited ourselves to two electrons
per orbital. Why? The answer to that question requires us to introduce something we have
ignored up to this point, namely spin.

4.5.3 Electron Spin and Antisymmetry

All electrons are characterized by a spin quantum number. The electron spin function is an
eigenfunction of the operator Sz and has only two eigenvalues, ±h̄/2; the spin eigenfunctions
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are orthonormal and are typically denoted as α and β (not to be confused with the α and
β of Hückel theory!) The spin quantum number is a natural consequence of the application
of relativistic quantum mechanics to the electron (i.e., accounting for Einstein’s theory of
relativity in the equations of quantum mechanics), as first shown by Dirac. Another conse-
quence of relativistic quantum mechanics is the so-called Pauli exclusion principle, which
is usually stated as the assertion that no two electrons can be characterized by the same set
of quantum numbers. Thus, in a given MO (which defines all electronic quantum numbers
except spin) there are only two possible choices for the remaining quantum number, α or β,
and thus only two electrons may be placed in any MO.

Knowing these aspects of quantum mechanics, if we were to construct a ground-state
Hartree-product wave function for a system having two electrons of the same spin, say α,
we would write

3�HP = ψa(1)α(1)ψb(2)α(2) (4.40)

where the left superscript 3 indicates a triplet electronic state (two electrons spin parallel)
and ψa and ψb are different from one another (since otherwise electrons 1 and 2 would have
all identical quantum numbers) and orthonormal. However, the wave function defined by
Eq. (4.40) is fundamentally flawed. The Pauli exclusion principle is an important mnemonic,
but it actually derives from a feature of relativistic quantum field theory that has more general
consequences, namely that electronic wave functions must change sign whenever the coordi-
nates of two electrons are interchanged. Such a wave function is said to be ‘antisymmetric’.
For notational purposes, we can define the permutation operator Pij as the operator that
interchanges the coordinates of electrons i and j . Thus, we would write the Pauli principle
for a system of N electrons as

Pij�[q1(1), . . . , qi(i), . . . , qj (j), . . . , qN(N)]

= �[q1(1), . . . , qj (i), . . . , qi(j), . . . , qN(N)]

= −�[q1(1), . . . , qi(i), . . . , qj (j), . . . , qN(N)] (4.41)

where q now includes not only the three Cartesian coordinates but also the spin function.
If we apply P12 to the Hartree-product wave function of Eq. (4.40),

P12[ψa(1)α(1)ψb(2)α(2)] = ψb(1)α(1)ψa(2)α(2)

�= −ψa(1)α(1)ψb(2)α(2) (4.42)

we immediately see that it does not satisfy the Pauli principle. However, a slight modification
to �HP can be made that causes it to satisfy the constraints of Eq. (4.41), namely

3�SD = 1√
2

[ψa(1)α(1)ψb(2)α(2) − ψa(2)α(2)ψb(1)α(1)] (4.43)
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(the reader is urged to verify that 3�SD does indeed satisfy the Pauli principle; for the ‘SD’
subscript, see next section). Note that if we integrate |3�SD|2 over all space we have

∫ ∣∣3�SD

∣∣2
dr1dω1dr2dω2 = 1

2

[∫
|ψa(1)|2 |α(1)|2 |ψb(2)|2 |α(2)|2dr1dω1dr2dω2

− 2
∫

ψa(1)ψb(1) |α(1)|2 ψb(2)ψa(2) |α(2)|2 dr1dω1dr2dω2

+
∫

|ψa(2)|2 |α(2)|2 |ψb(1)|2 |α(1)|2dr1dω1dr2dω2

]

= 1

2
(1 − 0 + 1)

= 1 (4.44)

where ω is a spin integration variable, the simplification of the various integrals on the
r.h.s. proceeds from the orthonormality of the MOs and spin functions, and we see that the
prefactor of 2−1/2 in Eq. (4.43) is required for normalization.

4.5.4 Slater Determinants

A different mathematical notation can be used for Eq. (4.43)

3�SD = 1√
2

∣∣∣∣ ψa(1)α(1) ψb(1)α(1)

ψa(2)α(2) ψb(2)α(2)

∣∣∣∣ (4.45)

where the difference of MO products has been expressed as a determinant. Note that the
permutation operator P applied to a determinant has the effect of interchanging two of
the rows. It is a general property of a determinant that it changes sign when any two
rows (or columns) are interchanged, and the utility of this feature for use in constructing
antisymmetric wave functions was first exploited by Slater (1929). Thus, the ‘SD’ subscript
used in Eqs. (4.43)–(4.45) stands for ‘Slater determinant’. On a term-by-term basis, Slater-
determinantal wave functions quickly become rather tedious to write down, but determinantal
notation allows them to be expressed reasonably compactly as, in general,

�SD = 1√
N !

∣∣∣∣∣∣∣∣∣

χ1(1) χ2(1) · · · χN(1)

χ1(2) χ2(2) · · · χN(2)

...
...

. . .
...

χ1(N) χ2(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣
(4.46)

where N is the total number of electrons and χ is a spin-orbital, i.e., a product of a
spatial orbital and an electron spin eigenfunction. A still more compact notation that finds
widespread use is

�SD = |χ1χ2χ3 · · ·χN 〉 (4.47)
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where the prefactor (N !)−1/2 is implicit. Furthermore, if two spin orbitals differ only in
the spin eigenfunction (i.e., together they represent a doubly filled orbital) this is typically
represented by writing the spatial wave function with a superscript 2 to indicate double
occupation. Thus, if χ1 and χ2 represented α and β spins in spatial orbital ψ1, one would
write

�SD = ∣∣ψ2
1 χ3 · · ·χN 〉 (4.48)

Slater determinants have a number of interesting properties. First, note that every electron
appears in every spin orbital somewhere in the expansion. This is a manifestation of the
indistinguishability of quantum particles (which is violated in the Hartree-product wave
functions). A more subtle feature is so-called quantum mechanical exchange. Consider the
energy of interelectronic repulsion for the wave function of Eq. (4.43). We evaluate this as∫

3�SD
1

r12

3�SDdr1dω1dr2dω2

= 1

2

[∫
|ψa(1)|2 |α(1)|2 1

r12
|ψb(2)|2 |α(2)|2 dr1dω1dr2dω2

− 2
∫

ψa(1)ψb(1) |α(1)|2 1

r12
ψb(2)ψa(2) |α(2)|2 dr1dω1dr2dω2

+
∫

|ψa(2)|2 |α(2)|2 1

r12
|ψb(1)|2 |α(1)|2 dr1dω1dr2dω2

]

= 1

2

[∫
|ψa(1)|2 1

r12
|ψb(2)|2 dr1dr2

− 2
∫

ψa(1)ψb(1)
1

r12
ψb(2)ψa(2)dr1dr2

+
∫

|ψa(2)|2 1

r12
|ψb(1)|2 dr1dr2

]

= 1

2

(
Jab − 2

∫
ψa(1)ψb(1)

1

r12
ψa(2)ψb(2)dr1dr2 + Jab

)
= Jab − Kab (4.49)

Equation (4.49) indicates that for this wave function the classical Coulomb repulsion between
the electron clouds in orbitals a and b is reduced by Kab, where the definition of this integral
may be inferred from comparing the third equality to the fourth. This fascinating consequence
of the Pauli principle reflects the reduced probability of finding two electrons of the same
spin close to one another – a so-called ‘Fermi hole’ is said to surround each electron.

Note that this property is a correlation effect unique to electrons of the same spin. If we
consider the contrasting Slater determinantal wave function formed from different spins

�SD = 1√
2

[ψa(1)α(1)ψb(2)β(2) − ψa(2)α(2)ψb(1)β(1)] (4.50)
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and carry out the same evaluation of interelectronic repulsion we have∫
�SD

1

r12
�SDdr1dω1dr2dω2

= 1

2

[∫
|ψa(1)|2 |α(1)|2 1

r12
|ψb(2)|2 |β(2)|2 dr1dω1dr2dω2

− 2
∫

ψa(1)ψb(1)α(1)β(1)
1

r12
ψb(2)ψa(2)α(2)β(2)dr1dω1dr2dω2

+
∫

|ψa(2)|2 |α(2)|2 1

r12
|ψb(1)|2 |β(1)|2 dr1dω1dr2dω2

]

= 1

2

[∫
|ψa(1)|2 1

r12
|ψb(2)|2 dr1dr2

− 2 · 0

+
∫

|ψa(2)|2 1

r12
|ψb(1)|2 dr1dr2

]

= 1

2
(Jab + Jab)

= Jab (4.51)

Note that the disappearance of the exchange correlation derives from the orthogonality of
the α and β spin functions, which causes the second integral in the second equality to be
zero when integrated over either spin coordinate.

4.5.5 The Hartree-Fock Self-consistent Field Method

Fock first proposed the extension of Hartree’s SCF procedure to Slater determinantal wave
functions. Just as with Hartree product orbitals, the HF MOs can be individually determined
as eigenfunctions of a set of one-electron operators, but now the interaction of each electron
with the static field of all of the other electrons (this being the basis of the SCF approxi-
mation) includes exchange effects on the Coulomb repulsion. Some years later, in a paper
that was critical to the further development of practical computation, Roothaan described
matrix algebraic equations that permitted HF calculations to be carried out using a basis set
representation for the MOs (Roothaan 1951; for historical insights, see Zerner 2000). We
will forego a formal derivation of all aspects of the HF equations, and simply present them
in their typical form for closed-shell systems (i.e., all electrons spin-paired, two per occupied
orbital) with wave functions represented as a single Slater determinant. This formalism is
called ‘restricted Hartree-Fock’ (RHF); alternative formalisms are discussed in Chapter 6.

The one-electron Fock operator is defined for each electron i as

fi = −1

2
∇2

i −
nuclei∑

k

Zk

rik

+ V HF
i {j} (4.52)
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where the final term, the HF potential, is 2Ji − Ki , and the Ji and Ki operators are defined
so as to compute the Jij and Kij integrals previously defined above. To determine the MOs
using the Roothaan approach, we follow a procedure analogous to that previously described
for Hückel theory. First, given a set of N basis functions, we solve the secular equation

∣∣∣∣∣∣∣∣∣

F11 − ES11 F12 − ES12 · · · F1N − ES1N

F21 − ES21 F22 − ES22 · · · F2N − ES2N

...
...

. . .
...

FN1 − ESN1 FN2 − ESN2 · · · FNN − ESNN

∣∣∣∣∣∣∣∣∣
= 0 (4.53)

to find its various roots Ej . In this case, the values for the matrix elements F and S are
computed explicitly.

Matrix elements S are the overlap matrix elements we have seen before. For a general
matrix element Fµν (we here adopt a convention that basis functions are indexed by lower-
case Greek letters, while MOs are indexed by lower-case Roman letters) we compute

Fµν =
〈
µ

∣∣∣∣−1

2
∇2

∣∣∣∣ v
〉
−

nuclei∑
k

Zk

〈
µ

∣∣∣∣ 1

rk

∣∣∣∣ ν
〉

+
∑
λσ

Pλσ

[
(µν|λσ) − 1

2
(µλ|νσ)

]
(4.54)

The notation 〈µ|g|ν〉 where g is some operator which takes basis function φν as its argument,
implies a so-called one-electron integral of the form

〈µ|g|ν〉 =
∫

φµ(gφν)dr. (4.55)

Thus, for the first term in Eq. (4.54) g involves the Laplacian operator and for the second
term g is the distance operator to a particular nucleus. The notation (µν|λσ ) also implies a
specific integration, in this case

(µν|λσ) =
∫ ∫

φµ(1)φν(1)
1

r12
φλ(2)φσ (2)dr(1)dr(2) (4.56)

where φµ and φν represent the probability density of one electron and φλ and φσ the other.
The exchange integrals (µλ|νσ ) are preceded by a factor of 1/2 because they are limited to
electrons of the same spin while Coulomb interactions are present for any combination of
spins.

The final sum in Eq. (4.54) weights the various so-called ‘four-index integrals’ by elements
of the ‘density matrix’ P. This matrix in some sense describes the degree to which individual
basis functions contribute to the many-electron wave function, and thus how energetically
important the Coulomb and exchange integrals should be (i.e., if a basis function fails to
contribute in a significant way to any occupied MO, clearly integrals involving that basis
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function should be of no energetic importance). The elements of P are computed as

Pλσ = 2
occupied∑

i

aλiaσ i (4.57)

where the coefficients aζ i specify the (normalized) contribution of basis function ζ to MO
i and the factor of two appears because with RHF theory we are considering only singlet
wave functions in which all orbitals are doubly occupied.

While the process of solving the HF secular determinant to find orbital energies and
coefficients is quite analogous to that already described above for effective Hamiltonian
methods, it is characterized by the same paradox present in the Hartree formalism. That is,
we need to know the orbital coefficients to form the density matrix that is used in the Fock
matrix elements, but the purpose of solving the secular equation is to determine those orbital
coefficients. So, just as in the Hartree method, the HF method follows a SCF procedure,
where first we guess the orbital coefficients (e.g., from an effective Hamiltonian method) and
then we iterate to convergence. The full process is described schematically by the flow chart
in Figure 4.3. The energy of the HF wavefunction can be computed in a fashion analogous
to Eq. (4.39).

Hartree–Fock theory as constructed using the Roothaan approach is quite beautiful in the
abstract. This is not to say, however, that it does not suffer from certain chemical and practical
limitations. Its chief chemical limitation is the one-electron nature of the Fock operators.
Other than exchange, all electron correlation is ignored. It is, of course, an interesting question
to ask just how important such correlation is for various molecular properties, and we will
examine that in some detail in following chapters.

Furthermore, from a practical standpoint, HF theory posed some very challenging technical
problems to early computational chemists. One problem was choice of a basis set. The LCAO
approach using hydrogenic orbitals remains attractive in principle; however, this basis set
requires numerical solution of the four-index integrals appearing in the Fock matrix elements,
and that is a very tedious process. Moreover, the number of four-index integrals is daunting.
Since each index runs over the total number of basis functions, there are in principle N4

total integrals to be evaluated, and this quartic scaling behavior with respect to basis-set size
proves to be the bottleneck in HF theory applied to essentially any molecule.

Historically, two philosophies began to emerge at this stage with respect to how best
to make further progress. The first philosophy might be summed up as follows: The HF
equations are very powerful but still, after all, chemically flawed. Thus, other approximations
that may be introduced to simplify their solution, and possibly at the same time improve
their accuracy (by some sort of parameterization to reproduce key experimental quantities),
are well justified. Many computational chemists continue to be guided by this philosophy
today, and it underlies the motivation for so-called ‘semiempirical’ MO theories, which are
discussed in detail in the next chapter.

The second philosophy essentially views HF theory as a stepping stone on the way to exact
solution of the Schrödinger equation. HF theory provides a very well defined energy, one
which can be converged in the limit of an infinite basis set, and the difference between that
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Figure 4.3 Flow chart of the HF SCF procedure. Note that data for an unoptimized geometry is
referred to as deriving from a so-called ‘single-point calculation’

converged energy and reality is the electron correlation energy (ignoring relativity, spin–orbit
coupling, etc.). It was anticipated that developing the technology to achieve the HF limit with
no further approximations would not only permit the evaluation of the chemical utility of
the HF limit, but also probably facilitate moving on from that base camp to the Schrödinger
equation summit. Such was the foundation for further research on ‘ab initio’ HF theory,
which forms the subject of Chapter 6.

Bibliography and Suggested Additional Reading

Frenking, G. 2000. “Perspective on ‘Quantentheoretische Beiträge zum Benzolproblem. I. Die Elek-
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5
Semiempirical Implementations
of Molecular Orbital Theory

5.1 Semiempirical Philosophy

In the last chapter, the full formalism of Hartree–Fock theory was developed. While this
theory is impressive as a physical and mathematical construct, it has several limitations in a
practical sense. Particularly during the early days of computational chemistry, when computa-
tional power was minimal, carrying out HF calculations without any further approximations,
even for small systems with small basis sets, was a challenging task.

In spite of the technical hurdles, however, many chemists recognized the potentially
critical role that theory could play in furthering experimental progress on any number of
fronts. And the interests of that population of chemists were by no means restricted to
molecules composed of only a small handful of atoms. Accepting HF theory as a framework,
several research groups turned their attention to implementations of the theory that would
make it more tractable, and perhaps more accurate, for molecules of moderate size. These
steps ‘sideways’, if you will, led to a certain bifurcation of effort in the area of molecular
orbital theory (although certainly some research groups pursued topics in both directions)
that persists to this day. Semiempirical calculations continue to appear in large numbers
in the chemical literature; since there will always be researchers interested in molecules
that exceed the size of those practically accessible by ab initio methods, semiempirical
levels of MO theory are certain to continue to be developed and applied. This chapter
describes the underlying approximations of semiempirical methods (organizing them roughly
in chronological order of appearance) and provides detailed comparisons between methods
now in common use for the prediction of various chemical properties. Section 5.7 describes
recent developments in the area of improving/extending semiempirical models.

5.1.1 Chemically Virtuous Approximations

Let us consider how one might go about making formal Hartree–Fock theory less compu-
tationally intensive without necessarily sacrificing its accuracy. The most demanding step
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of an HF calculation, in terms of computational resources, is the assembly of the two-
electron (also called four-index) integrals, i.e., the J and K integrals appearing in the
Fock matrix elements defined by Eq. (4.54). Not only is numerical solution of the inte-
grals for an arbitrary basis set arduous, but there are so many of them (formally N4 where
N is the number of basis functions). One way to save time would be to estimate their
value accurately in an a priori fashion, so that no numerical integration need be under-
taken.

For which integrals is it easiest to make such an estimation? To answer that question, it
is helpful to keep in mind the intuitive meaning of the integrals. Coulomb integrals measure
the repulsion between two electrons in regions of space defined by the basis functions. It
seems clear, then, that when the basis functions in the integral for one electron are very
far from the basis functions for the other, the value of that integral will approach zero (the
same holds true for the one-electron integrals describing nuclear attraction, i.e., if the basis
functions for the electron are very far from the nucleus the attraction will go to zero, but
these integrals are much less computationally demanding to solve). In a large molecule, then,
one might be able to avoid the calculation of a very large number of integrals simply by
assuming them to be zero, and one would still have a reasonable expectation of obtaining a
Hartree–Fock energy close to that that would be obtained from a full calculation.

Such an approximation is what we might call a numerical approximation. That is, it
introduces error to the extent that values employed are not exact, but the calculation can be
converged to arbitrary accuracy by tightening the criteria for employing the approximation,
e.g., in the case of setting certain two-electron integrals to zero, the threshold could be the
average inter-basis-function distance, so that in the limit of choosing a distance of infinity, one
recovers exact HF theory. Other approximations in semiempirical theory, however, are guided
by a slightly different motivation, and these approximations might be well referred to as
‘chemically virtuous approximations’. It is important to keep in mind that HF wave functions
for systems having two or more electrons are not eigenfunctions of the corresponding non-
relativistic Schrödinger equations. Because of the SCF approximation for how each electron
interacts with all of the others, some electronic correlation is ignored, and the HF energy is
necessarily higher than the exact energy.

How important is the correlation energy? Let us consider a very simple system: the helium
atom. The energy of this two-electron system in the HF limit (i.e., converged with respect to
basis-set size for the number of digits reported) is −2.861 68 a.u. (Clementi and Roetti 1974).
The exact energy for the helium atom, on the other hand, is −2.903 72 a.u. (Pekeris 1959).
The difference is 0.042 04 a.u., which is about 26 kcal mol−1. Needless to say, as systems
increase in size, greater numbers of electrons give rise to considerably larger correlation
energies – hundreds or thousands of kcal mol−1 for moderately sized organic and inorganic
molecules.

At first glance, this is a terrifying observation. At room temperature (298 K), it requires a
change of 1.4 kcal mol−1 in a free energy of reaction to change an equilibrium constant by an
order of magnitude. Similarly, a change of 1.4 kcal mol−1 in a rate-determining free energy
of activation will change the rate of a chemical reaction by an order of magnitude. Thus,
chemists typically would prefer theoretical accuracies to be no worse than 1.4 kcal mol−1,
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so that room-temperature predictions can be trusted at least to within an order of magnitude
(and obviously it would be nice to do much better). How then can we ever hope to use a
theory that is intrinsically inaccurate by hundreds or thousands of kilocalories per mole to
make chemically useful predictions? Michael J. S. Dewar, who made many contributions in
the area of semiempirical MO theory, once offered the following analogy to using HF theory
to make chemical predictions: It is like weighing the captain of a ship by first weighing the
ship with the captain on board, then weighing the ship without her, and then taking the
difference – the errors in the individual measurements are likely to utterly swamp the small
difference that is the goal of the measuring.

In practice, as we shall see in Chapter 6, the situation with HF theory is not really as
bad as our above analysis might suggest. Errors from neglecting correlation energy cancel
to a remarkable extent in favorable instances, so that chemically useful interpretations of
HF calculations can be valid. Nevertheless, the intrinsic inaccuracy of ab initio HF theory
suggests that modifications of the theory introduced in order to simplify its formalism may
actually improve on a rigorous adherence to the full mathematics, provided the new ‘approx-
imations’ somehow introduce an accounting for correlation energy. Since this improves
chemical accuracy, at least in intent, we may call it a chemically virtuous approximation.
Most typically, such approximations involve the adoption of a parametric form for some
aspect of the calculation where the parameters involved are chosen so as best to reproduce
experimental data – hence the term ‘semiempirical’.

5.1.2 Analytic Derivatives

If it is computationally demanding to carry out a single electronic structure calculation, how
much more daunting to try to optimize a molecular geometry. As already discussed in detail
in Section 2.4, chemists are usually interested not in arbitrary structures, but in stationary
points on the potential energy surface. In order to find those points efficiently, many of
the optimization algorithms described in Section 2.4 make use of derivatives of the energy
with respect to nuclear motion – when those derivatives are available analytically, instead
of numerically, rates of convergence are typically enhanced.

This is particularly true when the stationary point of interest is a transition-state structure.
Unlike the case with molecular mechanics, the HF energy has no obvious bias for minimum-
energy structures compared to TS structures – one of the most exciting aspects of MO
theory, whether semiempirical or ab initio, is that it provides an energy functional from
which reasonable TS structures may be identified. However, in the early second half of
the twentieth century, it was not at all obvious how to compute analytic derivatives of
the HF energy with respect to nuclear motion. Thus, another motivation for introducing
semiempirical approximations into HF theory was to facilitate the computation of derivatives
so that geometries could be more efficiently optimized. Besides the desire to attack TS
geometries, there were also very practical motivations for geometry optimization. In the
early days of semiempirical parameterization, experimental structural data were about as
widely available as energetic data, and parameterization of semiempirical methods against
both kinds of data would be expected to generate a more robust final model.
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5.2 Extended Hückel Theory

Prior to considering semiempirical methods designed on the basis of HF theory, it is instruc-
tive to revisit one-electron effective Hamiltonian methods like the Hückel model described
in Section 4.4. Such models tend to involve the most drastic approximations, but as a result
their rationale is tied closely to experimental concepts and they tend to be intuitive. One
such model that continues to see extensive use today is the so-called extended Hückel
theory (EHT). Recall that the key step in finding the MOs for an effective Hamiltonian is
the formation of the secular determinant for the secular equation

∣∣∣∣∣∣∣∣∣

H11 − ES11 H12 − ES12 . . . H1N − ES1N

H21 − ES21 H22 − ES22 . . . H2N − ES2N

...
...

. . .
...

HN1 − ESN1 HN2 − ESN2 . . . HNN − ESNN

∣∣∣∣∣∣∣∣∣
= 0 (5.1)

The dimension of the secular determinant for a given molecule depends on the choice
of basis set. EHT adopts two critical conventions. First, all core electrons are ignored. It
is assumed that core electrons are sufficiently invariant to differing chemical environments
that changes in their orbitals as a function of environment are of no chemical consequence,
energetic or otherwise. All modern semiempirical methodologies make this approximation. In
EHT calculations, if an atom has occupied d orbitals, typically the highest occupied level of
d orbitals is considered to contribute to the set of valence orbitals.

Each remaining valence orbital is represented by a so-called Slater-type orbital (STO). The
mathematical form of a normalized STO used in EHT (in atom-centered polar coordinates) is

ϕ(r, θ, φ; ζ, n, l,m) = (2ζ )n+1/2

[(2n)!]1/2
rn−1e−ζ rY m

l (θ, φ) (5.2)

where ζ is an exponent that can be chosen according to a simple set of rules developed by
Slater that depend, inter alia, on the atomic number (Slater 1930), n is the principal quantum
number for the valence orbital, and the spherical harmonic functions Ym

l (θ, φ), depending
on the angular momentum quantum numbers l and m, are those familiar from solution of
the Schrödinger equation for the hydrogen atom and can be found in any standard quantum
mechanics text. Thus, the size of the secular determinant in Eq. (5.2) is dictated by the total
number of valence orbitals in the molecule. For instance, the basis set for the MnO4

− anion
would include a total of 25 STO basis functions: one 2s and three 2p functions for each
oxygen (for a subtotal of 16) and one 4s, three 4p, and five 3d functions for manganese.

STOs have a number of features that make them attractive. The orbital has the correct
exponential decay with increasing r , the angular component is hydrogenic, and the 1s orbital
has, as it should, a cusp at the nucleus (i.e., it is not smooth). More importantly, from a
practical point of view, overlap integrals between two STOs as a function of interatomic
distance are readily computed (Mulliken Rieke and Orloff 1949; Bishop 1966). Thus, in
contrast to simple Hückel theory, overlap matrix elements in EHT are not assumed to be
equal to the Kronecker delta, but are directly computed in every instance.



5.2 EXTENDED HÜCKEL THEORY 135

The only terms remaining to be defined in Eq. (5.1), then, are the resonance integrals
H . For diagonal elements, the same convention is used in EHT as was used for simple
Hückel theory. That is, the value for Hµµ is taken as the negative of the average ioniza-
tion potential for an electron in the appropriate valence orbital. Thus, for instance, when
µ is a hydrogen 1s function, Hµµ = −13.6 eV. Of course in many-electron atoms, the
valence-shell ionization potential (VSIP) for the ground-state atomic term may not neces-
sarily be the best choice for the atom in a molecule, so this term is best regarded as an
adjustable parameter, although one with a clear, physical basis. VSIPs have been tabulated
for most of the atoms in the periodic table (Pilcher and Skinner 1962; Hinze and Jaffé 1962;
Hoffmann 1963; Cusachs, Reynolds and Barnard 1966). Because atoms in molecular envi-
ronments may develop fairly large partial charges depending on the nature of the atoms to
which they are connected, schemes for adjusting the neutral atomic VSIP as a function of
partial atomic charge have been proposed (Rein et al. 1966; Zerner and Gouterman 1966).
Such an adjustment scheme characterizes so-called Fenske–Hall effective Hamiltonian calcu-
lations, which still find considerable use for inorganic and organometallic systems composed
of atoms having widely different electronegativities (Hall and Fenske 1972).

The more difficult resonance integrals to approximate are the off-diagonal ones. Wolfsberg
and Helmholtz (1952) suggested the following convention

Hµν = 1

2
Cµν(Hµµ + Hνν)Sµν (5.3)

where C is an empirical constant and S is the overlap integral. Thus, the energy associated
with the matrix element is proportional to the average of the VSIPs for the two orbitals µ

and ν times the extent to which the two orbitals overlap in space (note that, by symmetry,
the overlap between different STOs on the same atom is zero). Originally, the constant C

was given a different value for matrix elements corresponding to σ - and π-type bonding
interactions. In modern EHT calculations, it is typically taken as 1.75 for all matrix elements,
although it can still be viewed as an adjustable parameter when such adjustment is warranted.

All of the above conventions together permit the complete construction of the secular
determinant. Using standard linear algebra methods, the MO energies and wave functions
can be found from solution of the secular equation. Because the matrix elements do not
depend on the final MOs in any way (unlike HF theory), the process is not iterative, so
it is very fast, even for very large molecules (however, the process does become iterative
if VSIPs are adjusted as a function of partial atomic charge as described above, since the
partial atomic charge depends on the occupied orbitals, as described in Chapter 9).

The very approximate nature of the resonance integrals in EHT makes it insufficiently
accurate for the generation of PESs since the locations of stationary points are in general
very poorly predicted. Use of EHT is thus best restricted to systems for which experimental
geometries are available. For such cases, EHT tends to be used today to generate qualita-
tively correct MOs, in much the same fashion as it was used by Wolfsberg and Helmholz
50 years ago. Wolfsberg and Helmholz used their model to explain differences in the UV
spectroscopies of MnO4

−, CrO4
2−, and ClO4

− by showing how the different VSIPs of the
central atom and differing bond lengths gave rise to different energy separations between
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the relevant filled and empty orbitals in spectroscopic transitions. In the 21st century, such
a molecular problem has become amenable to more accurate treatments, so the province of
EHT is now primarily very large systems, like extended solids, where its speed makes it
a practical option for understanding band structure (a ‘band’ is a set of MOs so densely
spread over a range of energy that for practical purposes it may be regarded as a continuum;
bands derive from combinations of molecular orbitals in a solid much as MOs derive from
combinations of AOs in a molecule).

Thus, for example, EHT has been used by Genin and Hoffmann (1998) to characterize the
band structure of a series of organic polymers with the intent of suggesting likely candidates
for materials exhibiting organic ferromagnetism. Certain polymers formed from repeating
heterocycle units having seven π electrons were identified as having narrow, half-filled
valence bands, such bands being proposed as a necessary, albeit not sufficient, condition for
ferromagnetism.

Note that one drawback of EHT is a failure to take into account electron spin. There is
no mechanism for distinguishing between different multiplets, except that a chemist can, by
hand, decide which orbitals are occupied, and thus enforce the Pauli exclusion principle.
However, the energy computed for a triplet state is exactly the same as the energy for the
corresponding ‘open-shell’ singlet (i.e., the state that results from spin-flip of one of the
unpaired electrons in the triplet) – the electronic energy is the sum of the occupied orbital
energies irrespective of spin – such an equality occurs experimentally only when the partially
occupied orbitals fail to interact with each other either for symmetry reasons or because they
are infinitely separated.

5.3 CNDO Formalism

Returning to the SCF formalism of HF theory, one can proceed in the spirit of an effective
Hamiltonian method by developing a recipe for the replacement of matrix elements in the
HF secular equation, Eq. (4.53). One of the first efforts along these lines was described by
Pople and co-workers in 1965 (Pople, Santry, and Segal 1965; Pople and Segal 1965). The
complete neglect of differential overlap (CNDO) method adopted the following conventions:

1. Just as in EHT, the basis set is formed from valence STOs, one STO per valence orbital.
In the original CNDO implementation, only atoms having s and p valence orbitals were
addressed.

2. In the secular determinant, overlap matrix elements are defined by

Sµν = δµν (5.4)

where δ is the Kronecker delta.

3. All two-electron integrals are parameterized according to the following scheme. First,
define

(µν|λσ) = δµνδλσ (µµ|λλ) (5.5)
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Thus, the only integrals that are non-zero have µ and ν as identical orbitals on the
same atom, and λ and σ also as identical orbitals on the same atom, but the second
atom might be different than the first (the decision to set to zero any integrals involving
overlap of different basis functions gives rise to the model name).

4. For the surviving two-electron integrals,

(µµ|λλ) = γAB (5.6)

where A and B are the atoms on which basis functions µ and λ reside, respectively. The
term γ can either be computed explicitly from s-type STOs (note that since γ depends
only on the atoms A and B, (sAsA|sBsB) = (pApA|sBsB) = (pApA|pBpB), etc.) or it can
be treated as a parameter. One popular parametric form involves using the so-called
Pariser–Parr approximation for the one-center term (Pariser and Parr 1953).

γAA = IPA − EAA (5.7)

where IP and EA are the atomic ionization potential and electron affinity, respectively.
For the two-center term, the Mataga–Nishimoto formalism adopts

γAB = γAA + γBB

2 + rAB(γAA + γBB)
(5.8)

where rAB is the interatomic distance (Mataga and Nishimoto 1957). Note the intuitive
limits on γ in Eq. (5.8). At large distance, it goes to 1/rAB, as expected for widely
separated charge clouds, while at short distances, it approaches the average of the two
one-center parameters.

5. One-electron integrals for diagonal matrix elements are defined by

〈
µ

∣∣∣∣∣−1

2
∇2 −

∑
k

Zk

rk

∣∣∣∣∣ µ
〉

= −IPµ −
∑

k

(Zk − δZAZk
)γAk (5.9)

where µ is centered on atom A. Equation (5.9) looks a bit opaque at first glance, but
it is actually quite straightforward. Remember that the full Fock matrix element Fµµ is
the sum of the one-electron integral Eq. (5.9) and a series of two-electron integrals. If
the number of valence electrons on each atom is exactly equal to the valence nuclear
charge (i.e., every atom has a partial atomic charge of zero) then the repulsive two-
electron terms will exactly cancel the attractive nuclear terms appearing at the end of
Eq. (5.9) and we will recapture the expected result, namely that the energy associated
with the diagonal matrix element is the ionization potential of the orbital. The Kronecker
delta affecting the nuclear charge for atom A itself simply avoids correcting for a non-
existent two-electron repulsion of an electron in basis function µ with itself. (Removing
the attraction to nuclei other than A from the r.h.s. of Eq. (5.9) defines a commonly
tabulated semiempirical parameter that is typically denoted Uµ.)
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6. The only terms remaining to be defined in the assembly of the HF secular determinant
are the one-electron terms for off-diagonal matrix elements. These are defined as

〈
µ

∣∣∣∣∣−1

2
∇2 −

∑
k

Zk

rk

∣∣∣∣∣ ν
〉

= (βA + βB)Sµν

2
(5.10)

where µ and ν are centered on atoms A and B, respectively, the β values are semiem-
pirical parameters, and Sµν is the overlap matrix element computed using the STO basis
set. Note that computation of overlap is carried out for every combination of basis func-
tions, even though in the secular determinant itself S is defined by Eq. (5.4). There are,
in effect, two different S matrices, one for each purpose. The β parameters are entirely
analogous to the parameter of the same name we saw in Hückel theory – they provide
a measure of the strength of through space interactions between atoms. As they are
intended for completely general use, it is not necessarily obvious how to assign them
a numerical value, unlike the situation that obtains in Hückel theory. Instead, β values
for CNDO were originally adjusted to reproduce certain experimental quantities.

While the CNDO method may appear to be moderately complex, it represents a vast
simplification of HF theory. Equation (5.5) reduces the number of two-electron integrals
having non-zero values from formally N4 to simply N2. Furthermore, those N2 integrals are
computed by trivial algebraic formulae, not by explicit integration, and between any pair of
atoms all of the integrals have the same value irrespective of the atomic orbitals involved.
Similarly, evaluation of one-electron integrals is also entirely avoided, with numerical values
for those portions of the relevant matrix elements coming from easily evaluated formulae.
Historically, a number of minor modifications to the conventions outlined above were
explored, and the different methods had names like CNDO/1, CNDO/2, CNDO/BW, etc.; as
these methods are all essentially obsolete, we will not itemize their differences. One CNDO
model that does continue to see some use today is the Pariser–Parr–Pople (PPP) model
for conjugated π systems (Pariser and Parr 1953; Pople 1953). It is in essence the CNDO
equivalent of Hückel theory (only π-type orbitals are included in the secular equation), and
improves on the latter theory in the prediction of electronic state energies.

The computational simplifications inherent in the CNDO method are not without chemical
cost, as might be expected. Like EHT, CNDO is quite incapable of accurately predicting good
molecular structures. Furthermore, the simplification inherent in Eq. (5.6) has some fairly
dire consequences; two examples are illustrated in Figure 5.1. Consider the singlet and triplet
states of methylene. Clearly, repulsion between the two highest energy electrons in each
state should be quite different: they are spin-paired in an sp2 orbital for the singlet, and spin-
parallel, one in the sp2 orbital and one in a p orbital, for the triplet. However, in each case the
interelectronic Coulomb integral, by Eq. (5.6), is simply γCC. And, just as there is no distin-
guishing between different types of atomic orbitals, there is also no distinguishing between
the orientation of those orbitals. If we consider the rotational coordinate for hydrazine, it is
clear that one factor influencing the energetics will be the repulsion of the two lone pairs, one
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Figure 5.1 The CNDO formalism for estimating repulsive two-electron interactions fails to distin-
guish in one-center cases between different orbitals (top example for the case of methylene) and in
two-center cases either between different orbitals or different orbital orientations (bottom example for
the case of hydrazine)

on each nitrogen. However, we see from Eq. (5.8) that this repulsion, γNN, depends only on
the distance separating the two nitrogen atoms, not on the orientation of the lone pair orbitals.

5.4 INDO Formalism

5.4.1 INDO and INDO/S

Of the two deficiencies specifically noted above for CNDO, the methylene problem is
atomic in nature – it involves electronic interactions on a single center – while the hydrazine
problem is molecular insofar as it involves two centers. Many ultraviolet/visible (UV/Vis)
spectroscopic transitions in molecules are reasonably highly localized to a single center,
e.g., transitions in mononuclear inorganic complexes. Pople, Beveridge, and Dobosh (1967)
suggested modifications to the CNDO formalism to permit a more flexible handling of
electron–electron interactions on the same center in order to model such spectroscopic
transitions, and referred to this new formalism as ‘intermediate neglect of differential
overlap’ (INDO). The key change is simply to use different values for the unique one-
center two-electron integrals. When the atom is limited to a basis set of s and p orbitals,
there are five such unique integrals

(ss|ss) = Gss

(ss|pp) = Gsp

(pp|pp) = Gpp

(pp|p′p′) = Gpp′

(sp|sp) = Lsp (5.11)
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The G and L values may be regarded as free parameters, but in practice they can be estimated
from spectroscopic data. When the atomic valence orbitals include d and f functions, the
number of unique integrals increases considerably, and the estimation of appropriate values
from spectroscopy becomes considerably more complicated.

One effect of the greater flexibility inherent in the INDO scheme is that valence bond
angles are predicted with much greater accuracy than is the case for CNDO. Nevertheless,
overall molecular geometries predicted from INDO tend to be rather poor (although prelimi-
nary efforts to address this problem have been reported by Da Motta Neto and Zerner 2001).
However, if a good molecular geometry is available from some other source (ideally exper-
iment) the INDO method has considerable potential for modeling the UV/Vis spectroscopy
of the compound because of its better treatment of one-center electronic interactions.

Ridley and Zerner (1973) first described a careful parameterization of INDO specifically
for spectroscopic problems, and designated that model INDO/S. Over the course of many
years, Zerner and co-workers extended the model to most of the elements in the periodic table,
including the lanthanides (Kotzian, Rösch, and Zerner 1992), although few available modern
codes appear to include parameters for elements having f electrons, possibly because of
challenges associated with accounting for relativistic effects, especially spin–orbit coupling,
which cannot be ignored when such heavy atoms are involved. Table 5.1 lists the energetic
separations between various electronic states for three cases studied by INDO/S, ranging from
the organic molecule pyridine, to the transition metal complex Cr(H2O)6

3+, to the metal-
loenzyme oxyhemocyanin which has a bimetallic Cu2O2 core ligated by enzyme histidine
residues. Even just the ligated core of the latter system is daunting in size, but the simplifi-
cations intrinsic in semiempirical MO theory render it tractable. All of the geometries used

Table 5.1 Relative state energies (units of 1000 cm−1) as computed by the INDO/S model

System (ground state) State (transition) INDO/S prediction Experiment

Pyridine (1A1)a 1B1 (n → π∗) 34.7 35.0
1B2 (π → π∗) 38.6 38.4
1A2 (n → π∗) 43.9 –
1A1 (π → π∗) 49.7 49.8
1A1 (π → π∗) 56.9 55.0

Cr(H2O)6
3+ (4A1g)b 4T2g (t → e) 12.4 12.4

4T1g (t → e) 17.5 18.5
2T1g (t → t) 13.2 13.1
2Eg (t → t) 13.6 13.1

Oxyhemocyaninc d→d 15.0 14.3–15.0
π →SOMO 17.8 17.5–18.1
π →SOMO 18.3 17.5–18.1
π∗ → π∗ 25.3 23.5–23.6
π →SOMO 36.3 29.4–30.4

aRidley, J. E. and Zerner, M. C. 1973. Theor. Chim. Acta, 32, 111.
bAnderson, W. P., Edwards, W. D., and Zerner, M. C. 1986. Inorg. Chem., 25, 2728.
cEstiú, G. L. and Zerner, M. C. 1999. J. Am. Chem. Soc. 121, 1893.



5.4 INDO FORMALISM 141

were based on experiment, and excited state energies were computed using a CIS formalism
(see Chapter 14 for details on CIS).

The INDO/S model is very successful for d → d transitions within transition
metal complexes (typical accuracies are within 2000 cm−1), potentially less robust for
spectroscopic transitions that are not well localized to a single center (e.g., metal-to-ligand or
ligand-to-metal excitations or excitations in extended π systems), and does not do very well
in predicting Rydberg excitations since very diffuse orbitals are not a part of the basis set.
The INDO/S model also exhibits good accuracy for the prediction of ionization potentials and
oscillator strengths for weak electronic transitions (oscillator strengths for strong transitions
tend to be overestimated).

It is perhaps appropriate at this point to make a distinction between a semiempirical
‘method’ and a semiempirical ‘model’. The method describes the overall formalism for
constructing the relevant secular equation. Within that formalism, however, different choices
for free parameters may be made depending on the problem to which the method is being
applied. Thus, INDO is a method, but the INDO/S model is a particular parameterization of
the method designed for spectroscopic applications. One might say that the model is the set
of all of the parameters required by the method. While we make this distinction here in a
purely terminological sense, it has profound philosophical origins that should not be taken
for granted as they led to the development of the first truly general semiempirical model, as
described next.

5.4.2 MINDO/3 and SINDO1

Michael J. S. Dewar was trained as an organic chemist, but very early on he saw the potential
for using MO theory, and in particular quantitative formulations of MO theory, to rationalize
structure and reactivity in organic chemistry. Prior to Dewar’s work, semiempirical models
tended to be problem-specific. That is, while there were general methods like CNDO and
INDO, most specific parameterizations (i.e., models) were carried out only within the context
of narrowly defined chemical problems. Of course, if a particular chemical problem is impor-
tant, there is certainly nothing wrong with developing a model specific to it, but the generality
of the overall methods remained, for the most part, unexplored. Dewar established, as a goal,
the development of a parameter set that would be as robust as possible across the widest
possible spectrum (at the time, that spectrum was chosen to be primarily organic chemistry,
together with a few inorganic compounds comprised of second- and third-row elements).

Dewar also recognized that a truly thorough test of a general model would require the
efforts of more than one research group. To that end, he adopted a philosophy that not
only should the best parameterization be widely promulgated but so too should computer
code implementing it. Dewar’s code included geometry optimization routines, which made it
particularly attractive to non-developers interested in using the code for chemical purposes.

The first general parameterization to be reported by Dewar and co-workers was a third-
generation modified INDO model (MINDO/3; Bingham, Dewar, and Lo, 1975). Some of
the specific modifications to the INDO framework included the use of different ζ exponents
in s and p type STOs on the same atom, the definition of pair parameters βAB between two
atoms A and B that were not averages of atomic parameters (actually, four such parameters
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exist per pair, corresponding to sAsB, sApB, pAsB, and pApB orbital interactions), adoption
of a slightly different form for γAB than that of Eq. (5.8), and some empirical modifications
to the nuclear repulsion energy.

Moreover, rather than following any particular set of rules to generate parameter values
(e.g., Slater’s rules for orbital exponents), every parameter was treated as a free variable
subject to ‘chemical common-sense’ restraints. That is, parameter values were allowed to
vary freely so long as they did not clearly become physically unrealistic; thus, for instance,
a parameter set where an atomic Us value was smaller in magnitude than the corresponding
Up value would not be acceptable, since ionization of a valence s electron on an atom cannot
be more favorable than ionization of a valence p electron. To optimize parameter values,
Dewar initially took a set of 138 small molecules containing C, H, O, and N, and constructed
a penalty function depending on bond distances, valence angles, torsional angles, dipole
moments, ionization potentials, and heats of formation (most molecules had experimental
data available only for a subset of the penalty function components).

The use of the last experimental observable, the heat of formation, merits a brief digression.
Molecular heats of formation are the most widely available thermochemical quantities against
which one might imagine carrying out a parameterization (this was even more the case in
the early 1970s), but these are enthalpic quantities, not potential energies. The expectation
value from a MO calculation is the potential energy to separate all of the electrons and nuclei
to infinite separation. How can these two be compared? Dewar’s approach was to compute
or estimate the MINDO/3 SCF energy for the elements in their standard states (on a per
atom basis for those elements whose standard states are not monatomic) and to record this
as an atomic parameter. To compute the heat of formation for a molecule, the individual
standard-state atomic SCF energies were subtracted from the molecular SCF energy, and
the difference was summed with the experimental heats of formation for all the constituent
atoms (this is in effect rather similar to the atomic-type-equivalents scheme discussed for
force-field calculations in Chapter 2, except that in the semiempirical approach, there is only
a single type for each atom). Most computer codes implementing semiempirical models
continue to print out the energy in this fashion, as a so-called heat of formation.

Note, however, that zero-point vibrational energy and thermal contributions to the
experimental enthalpies have been ignored (or, perhaps more accurately, treated in some
sort of average fashion by the parameterization process). At the time, computing those
contributions was far from trivial. Now, however, it is quite straightforward to do so (see
Chapter 10 for details), leading to some ambiguity in how energies from semiempirical
calculations should be reported. As a general rule, it would probably be better to consider the
semiempirical SCF energies to have the status of potential energies, and explicitly to account
for thermochemical contributions when necessary, but the literature is full of examples where
this issue is confused. Of course, if the goal of the calculation is truly to estimate the heat
of formation of a particular molecule, then the semiempirical SCF energy should be used
uncorrected, since that enthalpic quantity was one of the targets for which parameters were
optimized.

The performance of the MINDO/3 model was impressive overall. The mean absolute
error in predicted heats of formation was 11 kcal/mol (all molecules), the corresponding
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error for ionization potentials was 0.7 eV (46 molecules), for heavy-atom bond lengths
0.022 Å (81 molecules), and for dipole moments 0.45 D (31 molecules). While mean errors
of this size exceed what would be tolerated today, they were unprecedentedly small in 1975.
Dewar’s subsequent work on other semiempirical models (see below) rendered MINDO/3
effectively obsolete, but its historical importance remains unchanged.

A modified INDO model that is not entirely obsolete is the symmetric orthogonal-
ized INDO (SINDO1) model of Jug and co-workers, first described in 1980 (Nanda and
Jug 1980). The various conventions employed by SINDO1 represent slightly different modifi-
cations to INDO theory than those adopted in the MINDO/3 model, but the more fundamental
difference is the inclusion of d functions for atoms of the second row in the periodic table.
Inclusion of such functions in the atomic valence basis set proves critical for handling hyper-
valent molecules containing these atoms, and thus SINDO1 performs considerably better for
phosphorus-containing compounds, for instance, than do other semiempirical models that
lack d functions (Jug and Schulz 1988).

5.5 Basic NDDO Formalism

The INDO model extends the CNDO model by adding flexibility to the description of the
one-center two-electron integrals. In INDO, however, there continues to be only a single
two-center two-electron integral, which takes on the value γAB irrespective of which orbitals
on atoms A and B are considered. As already noted, this can play havoc with the accurate
representation of lone pair interactions.

The neglect of diatomic differential overlap (NDDO) method relaxes the constraints on
two-center two-electron integrals in a fashion analogous to that for one-center integrals in
the INDO method. Thus, all integrals (µν|λσ ) are retained provided µ and ν are on the
same atomic center and λ and σ are on the same atomic center, but not necessarily the
center hosting µ and ν. How many different integrals are permitted? The order of µ and
ν does not affect the value of the integral, so we need only worry about combinations, not
permutations, in which case there are 10 unique combinations of s, px , py , and pz. With
10 unique combinations on each atom, there are 100 possible combinations of combinations
for the integrals. If we include d functions, the number of unique integrals increases to 2025.

Although these numbers seem large, this is still a considerable improvement over evalu-
ating every possible integral, as would be undertaken in ab initio HF theory. Most modern
semiempirical models are NDDO models. After examining the differences in their formula-
tion, we will examine their performance characteristics in some detail in Section 5.6.

5.5.1 MNDO

Dewar and Thiel (1977) reported a modified neglect of differential overlap (MNDO) method
based on the NDDO formalism for the elements C, H, O, and N. With the conventions
specified by NDDO for which integrals to keep, which to discard, and how to model one-
electron integrals, it is possible to write the NDDO Fock matrix elements individually for
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inspection. For the most complex element, a diagonal element, we have

Fµµ = Uµ −
∑
B �=A

ZB(µµ|sBsB) +
∑
ν∈A

Pνν

[
(µµ|νν) − 1

2
(µν|µν)

]

+
∑
B

∑
λ∈B

∑
σ∈B

Pλσ (µµ|λσ) (5.12)

where µ is located on atom A. The first term on the r.h.s. is the atomic orbital ionization
potential, the second term the attraction to the other nuclei where each nuclear term is
proportional to the repulsion with the valence s electron on that nucleus, the third term
reflects the Coulomb and exchange interactions with the other electrons on atom A, and the
final term reflects Coulomb repulsion with electrons on other atoms B.

An off-diagonal Fock matrix element for two basis functions µ and ν on the same atom A
is written as

Fµν = −
∑
B �=A

ZB(µν|sBsB) + Pµν

[
3

2
(µν|µν) − 1

2
(µµ|νν)

]
+

∑
B

∑
λ∈B

∑
σ∈B

Pλσ (µν|λσ)

(5.13)

where each term on the r.h.s. has its analogy in Eq. (5.12). When µ is on atom A and ν on
atom B, this matrix element is written instead as

Fµν = 1

2
(βµ + βν)Sµν − 1

2

∑
λ∈A

∑
σ∈B

Pλσ (µλ|νσ) (5.14)

where the first term on the r.h.s. is the resonance integral that encompasses the one-electron
kinetic energy and nuclear attraction terms; it is an average of atomic resonance integrals
‘β’ times the overlap of the orbitals involved. The second term on the r.h.s. captures favor-
able exchange interactions. Note that the MNDO model did not follow Dewar’s MINDO/3
approach of having β parameters specific to pairs of atoms. While the latter approach allowed
for some improved accuracy, it made it quite difficult to add new elements, since to be
complete all possible pairwise β combinations with already existing elements would require
parameterization.

The only point not addressed in Eqs. (5.12) to (5.14) is how to go about evaluating all
of the necessary two-electron integrals. Unlike one-center two-electron integrals, it is not
easy to analyze spectroscopic data to determine universal values, particularly given the large
number of integrals not taken to be zero. The approach taken by Dewar and co-workers was to
evaluate these integrals by replacing the continuous charge clouds with classical multipoles.
Thus, an ss product was replaced with a point charge, an sp product was replaced with
a classical dipole (represented by two point charges slightly displaced from the nucleus
along the p orbital axis), and a pp product was replaced with a classical quadrupole (again
represented by point charges). The magnitudes of the moments, being one-center in nature,
are related to the parameterized integrals in Eq. (5.11). By adopting such a form for the
integrals, their evaluation is made quite simple, and so too is evaluation of their analytic
derivatives with respect to nuclear motion.
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To complete the energy evaluation by the MNDO method, the nuclear repulsion energy
is added to the SCF energy. The MNDO nuclear repulsion energy is computed as

VN =
nuclei∑
k<l

ZkZl(sksk|slsl)
(
1 + τe−αZk

rkl + e−αZl
rkl

)
(5.15)

where Z is the valence atomic number, α is a parameter having a specific value for each
atom type, r is the interatomic distance, and τ is equal to 1 unless the two nuclei k and l are
an O/H or N/H pair, in which case it is rXH. Thus, internuclear repulsion is proportional
to the repulsion between s electrons on the same centers, and the repulsion is empirically
increased slightly at short bond lengths to make up for imbalances in the electronic part of
the calculation.

As with MINDO/3, Dewar and Thiel optimized the parameters of the MNDO model
against a large test set of molecular properties. Within the assumption of a valence orbital
set comprised only of s and p orbitals, MNDO parameters are now available for H, He, Li,
Be, B, C, N, O, F, Mg, Al, Si, P, S, Cl, Zn, Ge, Br, Sn, I, Hg, and Pb. The MNDO model
is typically not used as often as the NDDO models discussed next, but MNDO calculations
still appear in the literature. MNDO forms the foundation for MNDO/d, which is discussed
in Section 5.7.2. In addition, a modified MNDO model explicitly adding electron correlation
effects (MNDOC) by second-order perturbation theory (see Section 7.4) was described by
Thiel in 1981 (Thiel 1981; Schweig and Thiel 1981). By explicitly accounting for electron
correlation in the theory, the parameters do not have to absorb the effects of its absence from
HF theory in some sort of average way. Thus, in principle, MNDOC should be more robust
in application to problems with widely varying degrees of electron correlation. In practice,
the model has not yet been compared to other NDDO models to the degree necessary to
evaluate whether the formalism lives up to that potential.

5.5.2 AM1

Although a detailed discussion of the performance of MNDO is deferred until Section 5.6,
one critical flaw in the method is that is does very poorly in the prediction of hydrogen
bonding geometries and energies. Recognizing this to be a major drawback, particularly
with respect to modeling systems of biological interest, Dewar and co-workers modified
the functional form of their NDDO model; since the primary error was one involving bond
lengths, the key modification was to the nuclear repulsion term. In Austin Model 1 (AM1;
Dewar, at the time, was a faculty member at the University of Texas, Austin), originally
described in 1985 for the elements C, H, O, and N (Dewar et al. 1985), the nuclear repulsion
energy between any two nuclei A and B is computed as

VN(A, B) = V MNDO
AB + ZAZB

rAB

4∑
i=1

�aA,ie
−bA,i (rAB−cA,i )

2 + aB,ie
−bB,i (rAB−cB,i )

2� (5.16)

where the variables are for the most part those in Eq. (5.15) and in addition every atom has up
to 4 each parameters a, b, and c describing Gaussian functions centered at various distances
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c that modify the potential of mean force between the two atoms. Simultaneous optimization
of the original MNDO parameters with the Gaussian parameters led to markedly improved
performance, although the Gaussian form of Eq. (5.16) is sufficiently force-field-like in
nature that one may quibble about this method being entirely quantum mechanical in nature.

Since the report for the initial four elements, AM1 parameterizations for B, F, Mg, Al, Si,
P, S, Cl, Zn, Ge, Br, Sn, I, and Hg have been reported. Because AM1 calculations are so fast
(for a quantum mechanical model), and because the model is reasonably robust over a large
range of chemical functionality, AM1 is included in many molecular modeling packages,
and results of AM1 calculations continue to be reported in the chemical literature for a wide
variety of applications.

5.5.3 PM3

One of the authors on the original AM1 paper and a major code developer in that effort, James
J. P. Stewart, subsequently left Dewar’s labs to work as an independent researcher. Stewart
felt that the development of AM1 had been potentially non-optimal, from a statistical point of
view, because (i) the optimization of parameters had been accomplished in a stepwise fashion
(thereby potentially accumulating errors), (ii) the search of parameter space had been less
exhaustive than might be desired (in part because of limited computational resources at the
time), and (iii) human intervention based on the perceived ‘reasonableness’ of parameters had
occurred in many instances. Stewart had a somewhat more mathematical philosophy, and felt
that a sophisticated search of parameter space using complex optimization algorithms might
be more successful in producing a best possible parameter set within the Dewar-specific
NDDO framework.

To that end, Stewart set out to optimize simultaneously parameters for H, C, N, O, F,
Al, Si, P, S, Cl, Br, and I. He adopted an NDDO functional form identical to that of AM1,
except that he limited himself to two Gaussian functions per atom instead of the four in
Eq. (5.16). Because his optimization algorithms permitted an efficient search of parameter
space, he was able to employ a significantly larger data set in evaluating his penalty function
than had been true for previous efforts. He reported his results in 1989; as he considered his
parameter set to be the third of its ilk (the first two being MNDO and AM1), he named it
Parameterized Model 3 (PM3; Stewart 1989).

There is a possibility that the PM3 parameter set may actually be the global minimum in
parameter space for the Dewar-NDDO functional form. However, it must be kept in mind
that even if it is the global minimum, it is a minimum for a particular penalty function, which
is itself influenced by the choice of molecules in the data set, and the human weighting of
the errors in the various observables included therein (see Section 2.2.7). Thus, PM3 will
not necessarily outperform MNDO or AM1 for any particular problem or set of problems,
although it is likely to be optimal for systems closely resembling molecules found in the
training set. As noted in the next section, some features of the PM3 parameter set can lead
to very unphysical behaviors that were not assessed by the penalty function, and thus were
not avoided. Nevertheless, it is a very robust NDDO model, and continues to be used at
least as widely as AM1.
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In addition to the twelve elements noted above, PM3 parameters for Li, Be, Na, Mg,
Ca, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi have been reported. The
PM3 methodology is available in essentially all molecular modeling packages that carry out
semiempirical calculations.

5.6 General Performance Overview of Basic NDDO Models
Many comparisons of the most widely used semiempirical models have been reported. They
range from narrowly focused anecdotal discussions for specific molecules to detailed tests
over large sets of molecules for performance in the calculation of various properties. We will
discuss here a subset of these comparisons that have the broadest impact – those looking for
a more thorough overview are referred to the bibliography at the end of the chapter.

5.6.1 Energetics

5.6.1.1 Heats of formation

The primary energetic observable against which NDDO models were parameterized was heat
of formation. Table 5.2 compares the mean unsigned errors for MNDO, AM1, and PM3 for
various classes of molecules (the column labeled MNDO/d is discussed in Section 5.7.2).
The greater accuracies of AM1 and PM3 compared to MNDO are manifest in every case.
PM3 appears to offer a slight advantage over AM1 for estimating the heats of formation
of molecules composed of lighter elements (C, H, O, N, F), and a clear advantage for

Table 5.2 Mean unsigned errors (kcal mol−1) in predicted heats of formation from basic NDDO
models

Elements (number) Subset (number) MNDO AM1 PM3 MNDO/d

Lighter (181) 7.35 5.80 4.71
CH (58) 5.81 4.89 3.79
CHN (32) 6.24 4.65 5.02
CHNO (48) 7.12 6.79 4.04
CHNOF (43) 10.50 6.76 6.45
Radicals (14) 9.3 8.0 7.4

Heavier (488) 29.2 15.3 10.0 4.9
Al (29) 22.1 10.4 16.4 4.9
Si (84) 12.0 8.5 6.0 6.3
P (43) 38.7 14.5 17.1 7.6
S (99) 48.4 10.3 7.5 5.6
Cl (85) 39.4 29.1 10.4 3.9
Br (51) 16.2 15.2 8.1 3.4
I (42) 25.4 21.7 13.4 4.0
Hg (37) 13.7 9.0 7.7 2.2
Normal (421) 11.0 8.0 8.4 4.8
Hypervalent (67) 143.2 61.3 19.9 5.4

Cations (34) 9.55 7.62 9.46
Anions (13) 11.36 7.11 8.81
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heavier elements. However, in the latter case, the difference is essentially entirely within
the subset of hypervalent molecules included in the test set, e.g., PBr5, IF7, etc. Over the
‘normal’ subset of molecules containing heavy atoms, the performance of AM1 and PM3 is
essentially equivalent. Analysis of the errors in predicted heats of formation suggests that
they are essentially random, i.e., they reflect the ‘noise’ introduced into the Schrödinger
equation by the NDDO approximations and cannot be corrected for in a systematic fashion
without changing the theory. This random noise can be problematic when the goal is to
determine the relative energy differences between two or more isomers (conformational or
otherwise), since one cannot be as confident that errors will cancel as is the case for more
complete quantum mechanical methods.

Errors for charged and open-shell species tend to be somewhat higher than the corre-
sponding errors for closed-shell neutrals. This may be at least in part due to the greater
difficulty in measuring accurate experimental data for some of these species, but some prob-
lems with the theory are equally likely. For instance, the more loosely held electrons of an
anion are constrained to occupy the same STO basis functions as those used for uncharged
species, so anions are generally predicted to be anomalously high in energy. Radicals are
systematically predicted to be too stable (the mean signed error over the radical test set in
Table 5.2 is only very slightly smaller than the mean unsigned error) meaning that bond
dissociation energies are usually predicted to be too low. Note that for the prediction of
radicals all NDDO methods were originally parameterized with a so-called ‘half-electron
RHF method’, where the formalism of the closed-shell HF equations is used even though
the molecule is open-shell (Dewar, Hashmall, and Venier 1968). Thus, while use of so-called
‘unrestricted Hartree–Fock (UHF)’ technology (see Section 6.3.3) is technically permitted
for radicals in semiempirical theory, it tends to lead to unrealistically low energies and is thus
less generally useful for thermochemical prediction (Pachkovski and Thiel 1996). Finally,
PM3 exhibits a large, non-systematic error in the prediction of proton affinities; AM1 is
more successful for the prediction of these quantities.

For the particular goal of computing accurate heats of formation, Repasky, Chandrasekhar,
and Jorgensen (2002) have suggested a modification to the original approach taken by Dewar
as outlined in Section 5.4.2. Instead of treating a molecule as being composed of atoms as
its fundamental building blocks, they propose 61 common bond and group equivalents that
may instead be considered as small transferable elements. Each such bond or group is then
assigned its own characteristic heat of formation, and a molecular heat of formation is
derived from adding the difference between the molecular electronic energy and the sum of
the fragment electronic energies to the sum of the bond and group heats of formation. In the
form of a general equation we have

�H o
f,298(molecule) =

[
E(molecule) −

N∑
i=1

E(fragmenti )

]

+
N∑

i=1

�H o
f,298(fragmenti )

(5.17)

where E is the semiempirical electronic energy. In the original Dewar protocol, the fragments
were atoms and N was the total number of atoms in the molecule. In the bond/group
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approach, the fragments are larger and N is smaller than the total number of atoms. Over
583 neutral, closed-shell molecules, Repasky, Chandrasekhar, and Jorgensen found that
the mean unsigned errors from MNDO, AM1, and PM3 were reduced from 8.2, 6.6, and
4.2 kcal mol−1, respectively, to 3.0, 2.3, and 2.2 kcal mol−1, respectively, when bond/group
equivalents were used in place of atoms as the fundamental fragments.

5.6.1.2 Other energetic quantities

Another energetic quantity of some interest is the ionization potential (IP). Recall that in
HF theory, the eigenvalue associated with each MO is the energy of an electron in that
MO. Thus, a good estimate of the negative of the IP is the energy of the highest occu-
pied MO – this simple approximation is one result from a more general statement known
as Koopmans’ theorem (Koopmans, 1933; this was Koopmans’ only independent paper in
theoretical physics/chemistry–immediately thereafter he turned his attention to economics
and went on to win the 1975 Nobel Prize in that field). Employing this approximation, all
of the semiempirical methods do reasonably well in predicting IPs for organic molecules.
On a test set of 207 molecules containing H, C, N, O, F, Al, S, P, Cl, Br, and I, the average
error in predicted IP for MNDO, AM1, and PM3 is 0.7, 0.6, and 0.5 eV, respectively. For
purely inorganic compounds, PM3 shows essentially unchanged performance, while MNDO
and AM1 have errors increased by a few tenths of an electron volt.

With respect to the energetics associated with conformational changes and reactions, a few
general comments can be made. MNDO has some well-known shortcomings; steric crowding
tends to be too strongly disfavored and small ring compounds are predicted to be too stable.
The former problem leads to unrealistically high heats of formation for sterically congested
molecules (e.g., neopentane) and similarly too high heats of activation for reactions charac-
terized by crowded TS structures. For the most part, these problems are corrected in AM1
and PM3 through use of Eq. (5.16) to modify the non-bonded interactions. Nevertheless,
activation enthalpies are still more likely to be too high than too low for the semiempirical
methods because electron correlation energy tends to be more important in TS structures
than in minima (see also Table 8.3), and since correlation energy is introduced in only an
average way by parameterization of the semiempirical HF equations, it cannot distinguish
well between the two kinds of structures.

For intermolecular interactions that are weak in nature, e.g., those arising from London
forces (dispersion) or hydrogen bonding, semiempirical methods are in general unreliable.
Dispersion is an electron correlation phenomenon, so it is not surprising that HF-based
semiempirical models fail to make accurate predictions. As for hydrogen bonding, one of
the primary motivations for moving from MNDO to AM1 was to correct for the very weak
hydrogen bond interactions predicted by the former. Much of the focus in the parameter-
ization efforts of AM1 and PM3 was on reproducing the enthalpy of interaction of the
water dimer, and both methods do better in matching the experimental value of 3.6 kcal
mol−1 than does MNDO. However, detailed analyses of hydrogen bonding in many different
systems have indicated that in most instances the interaction energies are systematically too
small by up to 50 percent and that the basic NDDO methods are generally not well suited
to the characterization of hydrogen bonded systems (Dannenberg 1997). Bernal-Uruchurtu
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et al. (2000) have suggested that the form of Eq. 5.16 is inadequate for describing hydrogen
bonding; by use of an alternative parameterized interaction function, they were able to modify
PM3 so that the PES for the water dimer was significantly improved.

Energetic barriers to rotation about bonds having partial double bond character tend to
be significantly too low at semiempirical levels. In amides, for instance, the rotation barrier
about the C–N bond is underestimated by about 15 kcal/mol. In several computer programs
implementing NDDO methods, an ad hoc molecular mechanics torsional potential can be
added to amide bond linkages to correct for this error. Smaller errors, albeit still large as a
fraction of total barrier height, are observed about C–C single bonds in conjugated chains.

With respect to conformational analysis, the NDDO models are not quantitatively very
accurate. Hehre has reported calculations for eight different sets of conformer pairs having
an average energy difference between pairs of 2.3 kcal mol−1. Predictions from MNDO,
AM1, and PM3 gave mean unsigned errors of 1.4, 1.3, and 1.8 kcal mol−1, respectively,
although in four of the eight cases AM1 was within 0.5 kcal mol−1. In addition, AM1 and
PM3 have been compared for the 11 D-glucopyranose conformers discussed in Chapter 2 in
the context of analyzing force field performance; AM1 and PM3 had mean unsigned errors
of 1.4 and 0.8 kcal mol−1, respectively, making them less accurate than the better force
fields. The PM3 number is misleadingly good in this instance; although the method does
reasonably well for the 11 conformers studied, the PM3 PES also includes highly unusual
minimum energy structures not predicted by any other method (vide infra).

5.6.2 Geometries

Correct molecular structures are dependent on the proper location of wells in the PES, so they
are intimately related to the energetics of conformational analysis. For organic molecules,
most gross structural details are modeled with a reasonable degree of accuracy. Dewar,
Jie, and Yu (1993) evaluated AM1 and PM3 for 344 bond lengths and 146 valence angles
in primarily organic molecules composed of H, C, N, O, F, Cl, Br, and I; the average
unsigned errors were 0.027 and 0.022 Å, respectively, for the bond lengths, and 2.3 and
2.8◦, respectively, for the angles. In the parameterization of PM3, Stewart (1991) performed
a similar analysis for a larger set of molecules, some of them including Al, Si, P, and S. For
460 bond lengths, the mean unsigned errors were 0.054, 0.050, and 0.036 Å for MNDO,
AM1, and PM3, respectively. For 196 valence angles, the errors were 4.3, 3.3, and 3.9◦,
respectively. In the case of MNDO, bond angles at the central O and S atoms in ethers
and sulfides, respectively, were found to be up to 9◦ too large, presumably owing to the
overestimation of steric repulsion between the substituting groups.

Comparing all of the sets of comparisons, it is evident that the geometries for the molecules
containing second-row elements are considerably more difficult to predict accurately than
are those for simpler organics. Furthermore, MNDO and AM1 are less successful when
extended to these species than is PM3.

Stewart also carried out an analysis for dihedral angles, and found errors of 21.6, 12.5,
and 14.9◦, respectively, for MNDO, AM1, and PM3. However, only 16 data points were
available and the accurate measurement of dihedral angles is challenging. Nevertheless, there



5.6 GENERAL PERFORMANCE OVERVIEW OF BASIC NDDO MODELS 151

appear to be systematic errors in dihedral angles for small- to medium-sized ring systems,
where predicted geometries tend to be too ‘flat’, again probably because of overestimated
steric repulsion between non-bonded ring positions (Ferguson et al. 1992). Four-membered
rings are typically predicted to be planar instead of puckered.

A few additional geometric pathologies have been discovered over the years for the various
semiempirical methods. While many are for species that might be described as exotic, others
have considerably more potential to be troublesome.

Heteroatom–heteroatom linkages are often problematic. MNDO and AM1 both predict
peroxide O–O bonds to be 0.018 Å too short. In hydrazines, the N–N bond rotamer placing
the two nitrogen lone pairs antiperiplanar to one another is usually overstabilized relative
to the gauche rotamer. Thus, even though experimentally hydrazine has been determined to
have a C2 gauche structure, all of the methods predict the global minimum to be the trans
C2v structure (PM3 does not find the C2 structure to be a stationary point at all). In nitroxyl
compounds, N–N bonds are predicted to be too short by up to 0.7 Å. AM1 has similar
problems with P–P bond lengths. In silyl halides, Si–X bonds are predicted to be too short
by tenths of an ångström by PM3.

PM3 shows additional problems that are disturbing. Nitrogen atoms formally possessing
a lone pair tend to be significantly biased towards pyramidal geometries. In addition, there
is an anomalous, deep well in the non-bonded H–H interaction expressed by Eq. (5.16) at a
distance of about 1.4 Å (Csonka 1993), which can lead to such odd situations as hydroxyl
groups preferring to interact with one another by H–H contacts instead of typical hydrogen
bonding contacts in D-glucopyranose conformers (Barrows et al. (1995)). Additional work
by Casadesus et al. (2004) found that similarly unphysical H−H distances were predicted
for cyclodextrin inclusion complexes using AM1, PM3, PDDG/MNDO, or PDDG/PM3 (the
last two models are described in Section 5.7.5). Only PM5 (described in Section 5.7.2) was
judged to provide acceptable geometries.

As already noted above, the energetics of normal hydrogen bonding is not handled well by
any semiempirical method; geometries are similarly problematic. PM3 predicts the expected
near-linear single hydrogen bond for most systems, but typically it is too short by as much
as 0.2 Å. AM1 predicts heavy-atom–heavy-atom bond distances in hydrogen bonds that
are about right, but strongly favors bifurcated hydrogen bonds in those systems where that
is possible (e.g., in the water dimer, the water molecule acting as a hydrogen bond donor
interacts with the other water molecule through both its protons equally). MNDO hydrogen
bonds are much, much too long, since the interaction energies at this level are predicted to
be far too small.

5.6.3 Charge Distributions

One of the most useful features of a QM model is its ability to provide information about the
molecular charge distribution. It is a general rule of thumb that even very low quality QM
methods tend to give reasonable charge distributions. For neutral molecules, the dominant
moment in the overall charge distribution is the usually dipole moment (unless symmetry
renders the dipole moment zero). For a 125-molecule test set including H, C, N, O, F, Al,
Si, P, S, Cl, Br, and I functionality, Stewart found mean unsigned errors in dipole moments
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of 0.45, 0.35, and 0.38 D, respectively, for MNDO, AM1, and PM3 (Stewart 1989). PM3
seems to be somewhat more robust for compounds incorporating phosphorus.

An alternative measure of the charge distribution involves a partitioning into partial atomic
charges. While such partitioning is always arbitrary (see Chapter 9) simple methods tend to
give reasonably intuitive results when small basis sets are used, as is the case for the NDDO
models. While MNDO and AM1 present no particular issues for such analysis, PM3 tends to
predict nitrogen atoms to be too weakly electronegative. Thus, in the ammonium cation, PM3
predicts the charge on nitrogen to be +1.0 while the charge on each hydrogen is predicted
to be 0.0 (Storer et al. 1995).

Finally, some attention has been paid to the quality of the complete electrostatic potential
about the molecule at the NDDO level. This topic is discussed in Chapter 9, as are additional
details associated with the performance of semiempirical models in comparison to other levels
of electronic structure theory for a variety of more specialized properties.

5.7 Ongoing Developments in Semiempirical MO Theory

Semiempirical theory is still in widespread use today not because it competes effectively
with more sophisticated theories in terms of accuracy, but because it competes effectively in
terms of demand for computational resources. Indeed, if one has either an enormously large
molecule, or an enormously large number of small molecules to be compared at a consistent
level (the next section describes a particular example of this case), semiempirical theory is
the only practical option. Of course, with each improvement in technology, the size horizon
of the more sophisticated levels expands, but there seems little danger that chemists will not
always be able to imagine still larger systems meriting quantum chemical study. Therefore,
considerable interest remains in improving semiempirical models in a variety of directions.
We close this chapter with a brief overview of some of the most promising of these.

5.7.1 Use of Semiempirical Properties in SAR

This area is a development in the usage of NDDO models that emphasizes their utility for
large-scale problems. Structure–activity relationships (SARs) are widely used in the phar-
maceutical industry to understand how the various features of biologically active molecules
contribute to their activity. SARs typically take the form of equations, often linear equations,
that quantify activity as a function of variables associated with the molecules. The molecular
variables could include, for instance, molecular weight, dipole moment, hydrophobic surface
area, octanol–water partition coefficient, vapor pressure, various descriptors associated with
molecular geometry, etc. For example, Cramer, Famini, and Lowrey (1993) found a strong
correlation (r = 0.958) between various computed properties for 44 alkylammonium ions
and their ability to act as acetylcholinesterase inhibitors according to the equation

log
(

1

Ki

)
= −2.583 − 0.636

100
V + 4.961

0.1
π − 2.234q+ (5.18)
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where Ki is the inhibition constant, V is the molecular volume, π derives from the molecular
polarizability, q+ is the largest positive charge on a hydrogen atom, and all of the variables
on the r.h.s. of Eq. (5.18) were computed at the MNDO level.

Once a SAR is developed, it can be used to prioritize further research efforts by focusing
first on molecules predicted by the SAR to have the most desirable activity. Thus, if a drug
company has a database of several hundred thousand molecules that it has synthesized over
the years, and it has measured molecular properties for those compounds, once it identifies
a SAR for some particular bio-target, it can quickly run its database through the SAR to
identify other molecules that should be examined. However, this process is not very useful
for identifying new molecules that might be better than any presently existing ones. It can be
quite expensive to synthesize new molecules randomly, so how can that process be similarly
prioritized?

One particularly efficient alternative is to develop SARs not with experimental molecular
properties, but with predicted ones. Thus, if the drug company database is augmented with
predicted values, and a SAR on predicted values proves useful based on data for compounds
already assayed, potential new compounds can be examined in a purely computational fashion
to evaluate whether they should be priority targets for synthesis. In 1998, Beck et al. (1998)
optimized the geometries of a database of 53 000 compounds with AM1 in 14 hours on a
128-processor Origin 2000 computer. Such speed is presently possible only for semiempirical
levels of theory. Once the geometries and wave functions are in hand, it is straightforward
(and typically much faster) to compute a very wide variety of molecular properties in order
to survey possible SARs. Note that for the SAR to be useful, the absolute values of the
computed properties do not necessarily need to be accurate – only their variation relative to
their activity is important.

5.7.2 d Orbitals in NDDO Models

To extend NDDO methods to elements having occupied valence d orbitals that participate
in bonding, it is patently obvious that such orbitals need to be included in the formalism.
However, to accurately model even non-metals from the third row and lower, particularly
in hypervalent situations, d orbitals are tremendously helpful to the extent they increase the
flexibility with which the wave function may be described. As already mentioned above,
the d orbitals present in the SINDO1 and INDO/S models make them extremely useful for
spectroscopy. However, other approximations inherent in the INDO formalism make these
models poor choices for geometry optimization, for instance. As a result, much effort over
the last decade has gone into extending the NDDO formalism to include d orbitals.

Thiel and Voityuk (1992, 1996) described the first NDDO model with d orbitals included,
called MNDO/d. For H, He, and the first-row atoms, the original MNDO parameters are
kept unchanged. For second-row and heavier elements, d orbitals are included as a part of
the basis set. Examination of Eqs. (5.12) to (5.14) indicates what is required parametrically
to add d orbitals. In particular, one needs Ud and βd parameters for the one-electron inte-
grals, additional one-center two-electron integrals analogous to those in Eq. (5.11) (there are
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formally 12 such integrals), and a prescription for handling two-center two-electron inte-
grals including d functions. In MNDO/d, the U , β, and Gdd terms are treated as adjustable
parameters, the remaining one-center two-electron integrals are analytic functions of Gdd

and the integrals in Eq. (5.11), and the Dewar convention whereby two-center two-electron
integrals are evaluated using classical multipole expansions is retained, except that multi-
polar representations beyond quadrupole (e.g., a dd cloud would be a hexadecapole) are
ignored, since testing indicates they typically contribute negligibly to the total electronic
energy. Parameterization of the various new terms proceeds in the same fashion as for prior
NDDO models, with a penalty function focused on molecular thermochemical and structural
data. The performance of the model for heavy elements is summarized in Table 5.2 (for light
elements MNDO/d is identical to MNDO). MNDO/d represents an enormous improvement
over AM1 and PM3 in its ability to handle hypervalent molecules, and in most cases the
error over the various test sets is reduced by half or more when MNDO/d is used.

It appears, then, that MNDO/d has high utility for thermochemical applications. In addition
to the elements specified in Table 5.2, MNDO/d parameters have been determined for Na,
Mg, Zn, Zr, and Cd. However, since the model is based on MNDO and indeed identical
to MNDO for light elements, it still performs rather poorly with respect to intermolecular
interactions, and with respect to hydrogen bonding in particular.

The approach of Thiel and Voityuk has also been adopted by Hehre and co-workers,
who have applied it in extending the PM3 Hamiltonian to include d orbitals. This model,
which to date has not been fully described in the literature and is only available as part of
a commercial software package (SPARTAN), is called PM3(tm), where the ‘tm’ emphasizes
a focus on transition metals. The parameterization philosophy has been different from prior
efforts insofar as only geometrical data (primarily from X-ray crystallography) have been
included in the penalty function. This choice was motivated at least in part by the general
scarcity of thermochemical data for molecules containing transition metals. Thus, the model
may be regarded as an efficient way to generate reasonable molecular geometries whose
energies may then be evaluated using more complete levels of theory. For example, a study
by Goh and Marynick (2001) found that the geometries of metallofullerenes predicted at
the PM3(tm) level compared well with those predicted from much more expensive density
functional calculations. PM3(tm) includes parameters for Ca, Ti, Cr−Br, Zr, Mo, Ru, Rh,
Pd, Cd−I, Hf, Ta, W, Hg, and Gd.

Very recent extensions of the formalism of Thiel and Voityuk to AM1 have been reported
by multiple groups. Voityuk and Rösch (2000) first described an AM1/d parameter set for
Mo, and, using the same name for the method, Lopez and York (2003) reported a parameter
set for P designed specifically to facilitate the study of nucleophilic substitutions of biological
phosphates. Winget et al. (2003) described an alternative model, named AM1*, that adds d
orbitals to P, S, and Cl. As with MNDO/d, the primary improvement of this model is in its
general ability to describe hypervalent molecules more accurately. Subtle differences in the
various individual formalisms will not be further delved into here.

A semiempirical model including d orbitals has also been reported by Dewar and co-
workers (Dewar, Jie, and Yu 1993; Holder, Dennington, and Jie 1994), although the full
details of its functional form still await publication. Semi-ab initio model 1 (SAM1, or
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SAM1D if d orbitals are included), however, is not quite so straightforward an exten-
sion of the NDDO formalism, but represents a rather different approach to constructing
the Fock matrix. In SAM1, the valence-orbital basis set is made up not of Slater-type
orbitals but instead of Gaussian-type orbitals; in particular the STO-3G basis set is used (see
Section 6.2.2). Using this basis set, one- and two-electron integrals not explicitly set to zero
in the NDDO formalism are analytically calculated in an ab initio fashion (see Section 6.1),
but the resulting values are then treated as input to parameterized scaling functions depending
on, inter alia, interatomic distance. Parameters exist for H, Li, C, N, O, F, Si, P, S, Cl, Fe,
Cu, Br, and I. For molecules made up of light elements, SAM1 performs better than AM1
and very slightly better than PM3. The same is true for non-hypervalent molecules made up
of heavier elements, while very large improvements are observed for molecules containing
hypervalent heavy atoms – across 404 compounds containing Si, P, S, Cl, Br, and/or I as
heavy elements, the mean unsigned errors in heats of formation for AM1, PM3, SAM1, and
MNDO/d are 16.2, 9.5, 9.3, and 5.1 kcal/mol (Thiel and Voityuk 1996).

Finally, Stewart has also generated a new NDDO parameterization including d orbitals that
he has called PM5. As of 2004, a publication describing this method had yet to appear. The
model is available in the commercial code MOPAC2002, and a fairly detailed comparison of its
performance to earlier semiempirical models may be found at http://www.cachesoftware.
com/mopac/Mopac2002manual/node650.html. It would appear that the chief advantage
of PM5 lies in its ability to better handle metals, heavy non-metals, and hypervalent species
and in its incorporation of dispersion effects via inclusion of Lennard-Jones terms between
non-bonded atoms. Further assessments necessarily await the publication of results from
specific applications of the model. A noteworthy feature of the comparisons made on the
website is that data are listed for MNDO, AM1, and PM3, as well as for PM5, for all of the
thousands of molecules examined, many of which include atoms for which parameters have
not been published for any of the NDDO methods. It would thus appear that MOPAC2002
includes such parameters, whose provenance is uncertain. [Finally, for those wondering about
the nomenclature gap between PM3 and PM5, Stewart reserved the name PM4 for a separate,
collaborative parameterization effort results for which have not yet been reported. One differ-
ence between PM4 and PM5 is that PM4 includes dispersion energies between nonbonded
atoms based on computed atomic polarizabilities (Martin, Gedeck, and Clark 2000).]

5.7.3 SRP Models

SRP, a term first coined by Rossi and Truhlar (1995), stands for ‘specific reaction (or range)
parameters’. An SRP model is one where the standard parameters of a semiempirical model
are adjusted so as to foster better performance on a particular problem or class of problems.
In a sense, the SRP concept represents completion of a full circle in the philosophy of
semiempirical modeling. It tacitly recognizes the generally robust character of some under-
lying semiempirical model, and proceeds from there to optimize that model for a particular
system of interest. In application, then, SRP models are similar to the very first semiem-
pirical models, which also tended to be developed on an ad hoc, problem-specific basis.
The difference, however, is that the early models typically were developed essentially from
scratch, while SRP models may be viewed as perturbations of more general models.
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Figure 5.2 AM1 and AM1-SRP parameters (eV) optimized to reproduce the C–H bond dissociation
energy of methanol, the H–H bond dissociation energy of hydrogen, and the experimental energy for
the illustrated hydrogen-atom transfer (kcal mol−1). Note that in all cases but one, the magnitude of
the parameter change on going from AM1 to AM1-SRP is less than 10 percent

The concept is best illustrated with an example. Chuang et al. (1999) used an AM1-
SRP model to study the hydrogen-atom-mediated destruction of organic alcohols in water.
As illustrated in Figure 5.2, the AM1 model itself makes a very poor prediction for the
dissociation energy of the C–H bond in methanol, and hence for the reaction exothermicity.
By minor adjustment of a few of the AM1 parameters, however, the SRP model gives good
agreement with experiment. The resulting SRP model in this case was used as a very efficient
QM method for generation of a PES from which tunneling contributions to the reaction rate
constant could be estimated (see Section 15.3). The very large number of QM calculations
required to generate the PES made use of an SRP model preferable to more complete levels
of electronic structure theory like those discussed in Chapter 7. Ridder et al. (2002) followed
a similar protocol in determining SRP AM1 sulfur parameters so as to study the dynamics of
the conjugation of glutathione to phenanthrene-9,10-oxide as catalyzed by a rat glutathione
S-transferase enzyme (the enzyme was treated using molecular mechanics). Again, the very
large number of quantum calculations required during the dynamics made a semiempirical
model like AM1 an attractive choice.

A more global SRP reparameterization has been described by Sherer, York, and Cramer
(2003). In this case, select PM3 parameters for H, C, N, and O were modified to improve
the performance of the resulting SRP model, named PM3BP, for the computation of base-
pairing energies between hydrogen-bonded nucleic-acid bases. The PM3BP model has a
root-mean-square error of about 1.5 kcal mol−1 for 31 such base pairing energies compared
to either experiment or well benchmarked higher-level theoretical calculations. This compares
to RMS errors of about 11, 6, and 6 kcal mol−1 for MNDO, AM1, and PM3 over the same
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test set. Such a reparameterization of a semiempirical Hamiltonian for a focused set of
molecules is completely analogous to the targeted parameterization of a force field, and the
usual caveats apply with respect to application of a focused model to anything other than
molecules falling within the target category.

5.7.4 Linear Scaling

As already touched upon in Section 2.4.2, the development of methods that scale linearly with
respect to system size opens the door to the modeling of very large systems with maximal
computational efficiency. Because the NDDO approximation is already rather efficient when
it comes to forming the Fock matrix (because so many integrals are assumed to be zero,
etc.), it serves as an excellent basis on which to build a linear-scaling QM model. Such
models have been reported; the details associated with achieving linear scaling are sufficiently
technical that interested readers are referred to the original literature (van der Vaart et al.
2000; Khandogin, Hu, and York 2000; see also Stewart 1996).

It is worth a pause, however, to consider how such models should best be used. Part of
the motivation for developing linear scaling models has been to permit QM calculations
to be carried out on biomolecules, e.g., proteins or polynucleic acids. However, one may
legitimately ask whether there is any point in such a calculation, beyond demonstrating that
it can be done. Because of the relatively poor fashion with which semiempirical models
handle non-bonded interactions, there is every reason to expect that such models would be
disastrously bad at predicting biomolecular geometries – or at the very least inferior to the
far more efficient force fields developed and optimized for this exact purpose.

Instead, the virtue of the semiempirical models when applied to such molecules tends to
be that they permit the charge distribution to be predicted more accurately given a partic-
ular structure. To the extent that biomolecules often employ charge–charge interactions to
enhance reactivity and or specificity in the reaction and recognition of smaller molecules,
such predictions can be quite useful. Since the QM calculation intrinsically permits polar-
ization of the overall electronic structure, it is capable of showing greater sensitivity to
group–group interactions as they modify the charge distribution than is the case for the
typical fixed-atomic-charge, non-polarizable force field.

Of course, one may also be interested in the modeling of a bond-making/bond-breaking
reaction that takes place within a very large molecular framework, in which case the avail-
ability of appropriate force-field models is extremely limited and one must perforce resort to
some QM approach in practice. Recognition of the complementary strengths and weaknesses
of QM and MM models has led to extensive efforts to combine them in ways that allow
maximum advantage to be taken of the good points of both; such QM/MM hybrid models
are the subject of Chapter 13.

5.7.5 Other Changes in Functional Form

Two modifications to the fundamental forms of modern NDDO functions have been reported
recently that merit particular attention. First, Weber and Thiel (2000) have reconsidered the
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NDDO approximation that all two-electron integrals (µν|λσ) are set to zero unless atomic-
orbital basis functions µ and ν are on a single atom and λ and σ are on a single atom. One
basis for this approximation is that early studies showed that all other two-electron integrals
did indeed tend to have values rather close to zero provided that the basis set functions are
orthogonal to one another. However, the Slater-type AOs used in NDDO calculations are
not orthogonal to one another (cf. the first term of Eq. (5.14)). The energetic consequences
of the NDDO two-electron integral approximation in the context of a non-orthogonal basis
set are thus open to question.

To address this point, Weber and Thiel have developed two levels of orthogonalization
corrections to the MNDO model. Orthogonalization Method 1 (OM1) includes corrections to
one- and two-center terms, while Orthogonalization Method 2 (OM2) also includes correc-
tions to three-center terms. The details of these corrections are sufficiently technical that we
will not examine them closely. It suffices to note that the OM2 model involves simply the
addition of two new parameters per atom, these being optimized in the usual semiempir-
ical fashion, and that the various correction terms themselves are expressed entirely using
terms already computed in the course of an NDDO calculation. Thus, the OM1 and OM2
models run in about the same time as required for a standard MNDO calculation. Over
81 small molecules composed of C, H, N, and O, the mean unsigned error in predicted
heats of formation dropped from 7.8 to 4.4 to 3.4 kcal mol−1 on going from MNDO to
OM1 to OM2, respectively. In addition, OM2 shows qualitative improvements over MNDO
for such phenomena as rotational barriers, ring conformations, relative energies of isomers,
hydrogen-bond strengths and geometries, and barriers for pericyclic reactions.

A second modification recently described by Repasky, Chandrasekhar, and Jorgensen
(2002) focuses on improving the core-repulsion functions in MNDO and PM3. In particular,
they define a pairwise distance directed Gaussian function (PDDG) to compute a contribution
to the nuclear repulsion energy between atoms A and B as

V PDDG
N (A,B) =

(
1

nA + nB

) 2∑
i=1

2∑
j=1

(nAPi,A + nBPj,B) e−[(rAB−Di,A−Dj,B)2/10] (5.19)

where n is the number of atomic valence electrons, parameters P are preexponential factors,
and parameters D are distance terms in Å. The total nuclear repulsion energy is then defined
to be the sum of the usual MNDO or PM3 terms (Eqs. (5.15) and (5.16), respectively) and
the new PDDG component. Repasky, Chandrasekhar, and Jorgensen optimized all MNDO
and PM3 parameters together with the four new P and D parameters per atom to arrive at
final PDDG/MNDO and PDDG/PM3 models that were initially defined for H, C, N, and O
only. Over a test set of 622 molecules, they found mean unsigned errors in molecular heats
of formation to be 8.4 and 4.4 kcal mol−1 for MNDO and PM3, respectively, and these
were reduced to 5.2 and 3.2 kcal mol−1 for PDDG/MNDO and PDDG/PM3, respectively.
Other key energetic improvements were observed for small rings, polyheterocyclic rings, and
isomeric equilibria. Subsequent work has extended the two models to the halogens (Tubert-
Brohman et al. 2004). This work represents a likely limit for what may be accomplished by
adjustment of the nuclear repulsion energy.
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5.8 Case Study: Asymmetric Alkylation of Benzaldehyde

Synopsis of Goldfuss and Houk (1998) ‘Origin of Enantioselectivities in Chiral β-Amino
Alcohol Catalyzed Asymmetric Additions of Organozinc Reagents to Benzaldehyde: PM3
Transition State Modeling’.

A major goal of organic synthesis is the preparation of chiral molecules in an optically
pure fashion, i.e., as single enantiomers. Any such process must involve discrimination
between enantiomerically related transition states based on a chiral environment, and a
popular method for establishing such an environment is to employ a so-called chiral auxil-
iary as part of one or more of the involved reagents. Since the auxiliary must itself be pure
in order to be maximally effective, and since optically pure molecules can be expensive,
even when derived from natural products, it is especially desirable to design processes
where the chiral auxiliary forms part of a catalyst rather than part of a stoichiometric
reagent. An example of such a process is the addition of organozinc reagents to aldehydes.
In the presence of β-amino alcohols, one equivalent of dialkylzinc reacts with the alcohol
to liberate ethane and form an amino-coordinated zinc alkoxide. This alkoxide catalyzes
the addition of a second equivalent of dialkylzinc to aldehydes by forming supermolecular
complexes like those illustrated in Figure 5.3.

When the β-amino alcohol ligand is chiral and optically pure, there are four potentially
low-energy TS structures that may lead to products. Several chiral ligands have been shown
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Figure 5.3 Four alternative TS structures for catalyzed addition of diethylzinc to benzaldehyde.
The descriptors refer to the side of the four-membered ring on which the aldehyde carbon is found
relative to the alkoxide carbon – same (syn) or opposite (anti ) – and the absolute configuration
of the new stereogenic center formed following ethyl transfer, R or S. In the absence of chirality
in the β-amino alcohol ligand, indicated by the G* group(s), the TS structures at opposite
corners would be enantiomeric with one another, and no preference for R over S product would
be observed. At least four other TS structures can be readily imagined while maintaining the
atomic connectivities of those shown here. What are they and why might they be intuitively
discounted? Are there still other TS structures one might imagine? How does one decide when
all relevant TS structures have been considered?
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to give high enantioselectivities in the alkyl addition, indicating that either a single one of
the four TS structures is significantly lower in energy, or, if not, the two associated with
one enantiomer are significantly lower than either of the two for the other enantiomer.

To better determine the specific steric and/or electronic influences giving rise to high
observed enantioselectivities, Goldfuss and Houk studied the energies of the four TS struc-
tures in Figure 5.3 for different chiral β-amino alcohols at the PM3 level of theory.

One possible concern in such an approach is the quality of the Zn parameters in PM3,
since experimental data for zinc compounds are considerably more sparse than for more
quotidian organic compounds. Thus, as a first step, Goldfuss and Houk considered the small
complex formed from formaldehyde, dimethylzinc, and unsubstituted β-aminoethanol. They
compared the geometries of the two TS structures predicted at the PM3 level to those
previously obtained by another group at the ab initio HF/3-21G level (note that since
the amino alcohol is not chiral, there are two TS structures, not four); they observed
that agreement was reasonable for the gross shapes of the TS structures, although there
were fairly substantial differences in various bond lengths – up to 0.2 Å in Zn–O bonds
and the forming C–C bond. They also compared the relative energies for the two TS
structures at the PM3 level to those previously reported from small, correlated ab initio
calculations. Agreement was at best fair, with PM3 giving an energy difference between
the two structures of 6.8 kcal mol−1, compared to the prior result of 2.9 kcal mol−1.

Comparison between PM3 and the previously reported levels of theory is interesting from
a methodological perspective. However, to the extent that there are significant disagreements
between the methods, PM3 is as likely to be the most accurate as any, given the rather low
levels of ab initio theory employed (ab initio theory is discussed in detail in the next two
chapters). Insofar as the size of the chemical problem makes it impractical to seek converged
solutions of the Schrödinger equation, Goldfuss and Houk turned instead to a comparison
of PM3 to available experimental data. In particular, they computed product ratios based on
the assumption that these would reflect a 273 K Boltzmann distribution of corresponding TS
structures (this follows from transition state theory, discussed in Section 15.3, for a reaction
under kinetic control). For the TS energies, they employed the relative PM3 electronic
energies plus zero-point vibrational energies obtained from frequency calculations (see
Section 10.2). Then, for a variety of different chiral β-amino alcohols, they compared
predicted enantiomeric excess, defined as

%ee = |%R − %S| (5.20)

to experimental values obtained under a variety of different conditions. This comparison,
summarized in Table 5.3, shows remarkably good agreement between PM3 and experiment.

It is worth a brief digression to note that, from a theoretical standpoint, it is rather easy to
make predictions in cases where a single product is observed. When experimentalists report
a single product, they typically mean that to within the detection limits of their analysis,
they observe only a single compound – unless special efforts are undertaken, this might
imply no better than 20:1 excess of the observed product over any other possibilities.
At 298 K, this implies that the TS structure of lowest energy lies at least 2 kcal mol−1

below any competing TS structures. Of course, it might be 20 or 200 kcal mol−1 below
competing TS structures – when experiment reports only a single product, there is no way
to quantify this. Thus, even if theory is badly in error, as long as the correct TS structure is
predicted to be lowest by more than 2 kcal mol−1, there will be ‘perfect’ agreement with
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Table 5.3 Comparison of predicted and experimental enan-
tiomeric excesses for diethylzinc addition to benzaldehyde in the
presence of various β-amino alcohols

β-Amino alcohol Configuration %ee

PM3 Experiment

OH
NMe2

S 100 99

OH
NMe2

R 99 95

Ph

H

Ph
Et2N

H
OH S 100 94

Ph

Ph

H
Et2N

H
OH S 98 81

H
H

N

Ph
OH

R 97 100

H
H

N

Ph
OH

R 82 72

N

OH

S 33 49

experiment. If, however, two or more products are reported with a quantitative ratio, the
quality of the theoretical results can be much more accurately judged. At 298 K, every error
of 1.4 kcal mol−1 in predicted relative energies between two TS structures will change the
ratios of predicted products by an order of magnitude. Thus, in the case of two competing
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TS structures leading to different enantiomers, a %ee of 0 would result from equal TS
energies, a %ee of 82 from relative energies of 1.4 kcal mol−1, and a %ee of 98 from
relative energies of 2.8 kcal mol−1. Given this analysis, the near quantitative agreement
between PM3 and those experimental cases showing %ee values below 90 reflects startlingly
good accuracy for a semiempirical level of theory.

Armed with such solid agreement between theory and experiment, Goldfuss and Houk
go on to analyze the geometries of the various TS structures to identify exactly which inter-
actions lead to unfavorably high energies and can be used to enhance chiral discrimination.
They infer in particular that the optimal situation requires that the alkoxide carbon atom be
substituted by two groups of significantly different size, e.g., a hydrogen atom and a bulky
alkyl or aryl group. This work thus provides a nice example of how preliminary experi-
mental work can be used to validate an economical theoretical model that can then be used
to suggest future directions for further experimental optimization. However, it must not be
forgotten that the success of the model must derive in part from favorable cancellation of
errors – the theoretical model, after all, fails to account for solvent, thermal contributions
to free energies, and various other possibly important experimental conditions. As such,
application of the model in a predictive mode should be kept within reasonable limits,
e.g., results for new β-amino alcohol structures would be expected to be more secure than
results obtained for systems designed to use a substituted 1,2-diaminoethane ligand in place
of the β-amino alcohol.
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Voityuk, A. A. and Rösch, N. 2000. J. Phys. Chem. A, 104, 4089.
Weber, W. and Thiel, W. 2000. Theor. Chem. Acc., 103, 495.
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6
Ab Initio Implementations of
Hartree–Fock Molecular Orbital
Theory

6.1 Ab Initio Philosophy

The fundamental assumption of HF theory, that each electron sees all of the others as an
average field, allows for tremendous progress to be made in carrying out practical MO calcu-
lations. However, neglect of electron correlation can have profound chemical consequences
when it comes to determining accurate wave functions and properties derived therefrom. As
noted in the preceding chapter, the development of semiempirical theories was motivated
in part by the hope that judicious parameterization efforts could compensate for this feature
of HF theory. While such compensation has no rigorous foundation, to the extent it permits
one to make accurate chemical predictions, it may have great practical utility.
Early developers of so-called ‘ab initio’ (Latin for ‘from the beginning’) HF theory, however,
tended to be less focused on making short-term predictions, and more focused on long-term
development of a rigorous methodology that would be worth the wait (a dynamic tension
between the need to make predictions now and the need to make better predictions tomorrow
is likely to characterize computational chemistry well into the future). Of course, the ultimate
rigor is the Schrödinger equation, but that equation is insoluble in a practical sense for all
but the most simple of systems. Thus, HF theory, in spite of its fairly significant fundamental
assumption, was adopted as useful in the ab initio philosophy because it provides a very well
defined stepping stone on the way to more sophisticated theories (i.e., theories that come
closer to accurate solution of the Schrödinger equation). To that extent, an enormous amount
of effort has been expended on developing mathematical and computational techniques to
reach the HF limit, which is to say to solve the HF equations with the equivalent of an
infinite basis set, with no additional approximations. If the HF limit is achieved, then the
energy error associated with the HF approximation for a given system, the so-called electron
correlation energy Ecorr, can be determined as

Ecorr = E − EHF (6.1)

Essentials of Computational Chemistry, 2nd Edition Christopher J. Cramer
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09181-9 (cased); 0-470-09182-7 (pbk)
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where E is the ‘true’ energy and EHF is the system energy in the HF limit. Chapter 7 is
devoted to the discussion of techniques for estimating Ecorr.

Along the way it became clear that, perhaps surprisingly, HF energies could be chemically
useful. Typically their utility was manifest for situations where the error associated with
ignoring the correlation energy could be made unimportant by virtue of comparing two or
more systems for which the errors could be made to cancel. The technique of using isodesmic
equations, discussed in Section 10.6, represents one example of how such comparisons can
successfully be made.

In addition, the availability of HF wave functions made possible the testing of how useful
such wave functions might be for the prediction of properties other than the energy. Simply
because the HF wave function may be arbitrarily far from being an eigenfunction of the
Hamiltonian operator does not a priori preclude it from being reasonably close to an eigen-
function for some other quantum mechanical operator.

This chapter begins with a discussion of basis sets, the mathematical functions used to
construct the HF wave function. Key technical details associated with open-shell vs. closed-
shell systems are also addressed. A performance overview and case study are provided in
conclusion.

6.2 Basis Sets

The basis set is the set of mathematical functions from which the wave function is cons-
tructed. As detailed in Chapter 4, each MO in HF theory is expressed as a linear combination
of basis functions, the coefficients for which are determined from the iterative solution of the
HF SCF equations (as flow-charted in Figure 4.3). The full HF wave function is expressed
as a Slater determinant formed from the individual occupied MOs. In the abstract, the
HF limit is achieved by use of an infinite basis set, which necessarily permits an optimal
description of the electron probability density. In practice, however, one cannot make use of
an infinite basis set. Thus, much work has gone into identifying mathematical functions that
allow wave functions to approach the HF limit arbitrarily closely in as efficient a manner as
possible.

Efficiency in this case involves three considerations. As noted in Chapter 4, in the absence
of additional simplifying approximations like those present in semiempirical theory, the
number of two-electron integrals increases as N4 where N is the number of basis functions.
So, keeping the total number of basis functions to a minimum is computationally attractive.
In addition, however, it can be useful to choose basis set functional forms that permit
the various integrals appearing in the HF equations to be evaluated in a computationally
efficient fashion. Thus, a larger basis set can still represent a computational improvement
over a smaller basis set if evaluation of the greater number of integrals for the former can
be carried out faster than for the latter. Finally, the basis functions must be chosen to have
a form that is useful in a chemical sense. That is, the functions should have large amplitude
in regions of space where the electron probability density (the wave function) is also large,
and small amplitudes where the probability density is small. The simultaneous optimization
of these three considerations is at the heart of basis set development.
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6.2.1 Functional Forms

Slater-type orbitals were introduced in Section 5.2 (Eq. (5.2)) as the basis functions used
in extended Hückel theory. As noted in that discussion, STOs have a number of attractive
features primarily associated with the degree to which they closely resemble hydrogenic
atomic orbitals. In ab initio HF theory, however, they suffer from a fairly significant limi-
tation. There is no analytical solution available for the general four-index integral (Eq.
(4.56)) when the basis functions are STOs. The requirement that such integrals be solved by
numerical methods severely limits their utility in molecular systems of any significant size.
Nevertheless, high quality STO basis sets have been developed for atomic and diatomic
calculations, where such limitations do not arise (Ema et al. 2003).

Boys (1950) proposed an alternative to the use of STOs. All that is required for there to be
an analytical solution of the general four-index integral formed from such functions is that
the radial decay of the STOs be changed from e−r to e−r2

. That is, the AO-like functions are
chosen to have the form of a Gaussian function. The general functional form of a normalized
Gaussian-type orbital (GTO) in atom-centered Cartesian coordinates is

φ (x, y, z; α, i, j, k) =
(

2α

π

)3/4 [
(8α)i+j+ki!j !k!

(2i)!(2j)!(2k)!

]1/2

xiyj zke−α(x2+y2+z2) (6.2)

where α is an exponent controlling the width of the GTO, and i, j , and k are non-negative
integers that dictate the nature of the orbital in a Cartesian sense.

In particular, when all three of these indices are zero, the GTO has spherical symmetry,
and is called an s-type GTO. When exactly one of the indices is one, the function has axial
symmetry about a single Cartesian axis and is called a p-type GTO. There are three possible
choices for which index is one, corresponding to the px , py , and pz orbitals.

When the sum of the indices is equal to two, the orbital is called a d-type GTO. Note
that there are six possible combinations of index values (i, j, k) that can sum to two. In
Eq. (6.2), this leads to possible Cartesian prefactors of x2, y2, z2, xy, xz, and yz. These six
functions are called the Cartesian d functions. In the solution of the Schrödinger equation for
the hydrogen atom, only five functions of d-type are required to span all possible values of
the z component of the orbital angular momentum for l = 2. These five functions are usually
referred to as xy, xz, yz, x2 − y2, and 3z2 − r2. Note that the first three of these canonical
d functions are common with the Cartesian d functions, while the latter two can be derived
as linear combinations of the Cartesian d functions. A remaining linear combination that
can be formed from the Cartesian d functions is x2 + y2 + z2, which, insofar as it has
spherical symmetry, is actually an s-type GTO. Different Gaussian basis sets adopt different
conventions with respect to their d functions: some use all six Cartesian d functions, others
prefer to reduce the total basis set size and use the five linear combinations. [Note that if
the extra function is kept, the linear combination having s-like symmetry still has the same
exponent α governing its decay as the rest of the d set. As d orbitals are more diffuse than s
orbitals having the same principal quantum number (which is to say the magnitude of α for
the nd GTOs will be smaller than that for the α of the ns GTOs), the extra s orbital does not
really contribute at the same principal quantum level, as discussed in more detail below.]
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As one increases the indexing, the disparity between the number of Cartesian functions
and the number of canonical functions increases. Thus, with f-type GTOs (indices summing
to 3) there are 10 Cartesian functions and 7 canonical functions, with g-type 15 and 10, etc.
GTOs can be taken arbitrarily high in angular momentum.

6.2.2 Contracted Gaussian Functions

Although they are convenient from a computational standpoint, GTOs have specific features
that diminish their utility as basis functions. One issue of key concern is the shape of the
radial portion of the orbital. For s type functions, GTOs are smooth and differentiable at the
nucleus (r = 0), but real hydrogenic AOs have a cusp (Figure 6.1). In addition, all hydrogenic
AOs have a radial decay that is exponential in r while the decay of GTOs is exponential in
r2; this results in too rapid a reduction in amplitude with distance for the GTOs.

In order to combine the best feature of GTOs (computational efficiency) with that of STOs
(proper radial shape), most of the first basis sets developed with GTOs used them as building
blocks to approximate STOs. That is, the basis functions ϕ used for SCF calculations were
not individual GTOs, but instead a linear combination of GTOs fit to reproduce as accurately
as possible a STO, i.e.,

ϕ(x, y, z; {α}, i, j, k) =
M∑

a=1

caφ(x, y, z;αa, i, j, k) (6.3)

where M is the number of Gaussians used in the linear combination, and the coefficients
c are chosen to optimize the shape of the basis function sum and ensure normalization.
When a basis function is defined as a linear combination of Gaussians, it is referred to as a
‘contracted’ basis function, and the individual Gaussians from which it is formed are called
‘primitive’ Gaussians. Thus, in a basis set of contracted GTOs, each basis function is defined
by the contraction coefficients c and exponents α of each of its primitives. The ‘degree of
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contraction’ refers to the total number of primitives used to make all of the contracted
functions, as described in more detail below. Contracted GTOs when used as basis functions
continue to permit analytical evaluation of all of the four-index integrals.

Hehre, Stewart, and Pople (1969) were the first to systematically determine optimal
contraction coefficients and exponents for mimicking STOs with contracted GTOs for a
large number of atoms in the periodic table. They constructed a series of different basis
sets for different choices of M in Eq. (6.3). In particular, they considered M = 2 to 6, and
they called these different basis sets STO-MG, for ‘Slater-Type Orbital approximated by
M Gaussians’. Obviously, the more primitives that are employed, the more accurately a
contracted function can be made to match a given STO. However, note that a four-index
two-electron integral becomes increasingly complicated to evaluate as each individual basis
function is made up of increasingly many primitive functions, according to

(µν|λσ) =
∫ ∫

ϕµ(1)ϕν(1)
1

r12
ϕλ(2)ϕσ (2)dr1dr2

=
∫ ∫ Mµ∑

aµ=1

caµ
φaµ

(1)

Mν∑
aν=1

caν
φaν

(1)
1

r12

Mλ∑
aλ=1

caλ
φaλ

(2)

Mσ∑
aσ =1

caσ
φaσ

(2)dr1dr2

=
Mµ∑

aµ=1

Mν∑
aν=1

Mλ∑
aλ=1

Mσ∑
aσ =1

caµ
caν

caλ
caσ

∫
φaµ

(1)φaν
(1)

1

r12
φaλ

(2)φaσ
(2)dr1dr2 (6.4)

It was discovered that the optimum combination of speed and accuracy (when comparing
to calculations using STOs) was achieved for M = 3. Figure 6.2 compares a 1s function
using the STO-3G formalism to the corresponding STO and shows also the 3 primitives
from which the contracted basis function is constructed. STO-3G basis functions have been
defined for most of the atoms in the periodic table.

Gaussian functions have another feature that would be undesirable if they were to be used
individually to represent atomic orbitals: they fail to exhibit radial nodal behavior. Thus,
no choice of variables permits Eq. (6.2) to mimic a 2s orbital, which is negative near the
origin and positive beyond a certain radial distance. Use of a contraction scheme, however,
alleviates this problem; contraction coefficients c in Eq. (6.3) can be chosen to have either
negative or positive sign, and thus fitting to functions having radial nodal behavior poses no
special challenges.

While the acronym STO-3G is designed to be informative about the contraction scheme,
it is appropriate to mention an older and more general notation that appears in much of the
earlier literature, although it has mostly fallen out of use today. In that notation, the STO-3G
H basis set would be denoted (3s)/[1s]. The material in parentheses indicates the number and
type of primitive functions employed, and the material in brackets indicates the number and
type of contracted functions. If first-row atoms are specified too, the notation for STO-3G
would be (6s3p/3s)/[2s1p/1s]. Thus, for instance, lithium would require 3 each (since it is
STO-3G) of 1s primitives, 2s primitives, and 2p primitives, so the total primitives are 6s3p,
and the contraction schemes creates a single 1s, 2s, and 2p set, so the contracted functions are
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Figure 6.2 The radial behavior of various basis functions in atom-centered coordinates. The bold
solid line at top is the STO (ζ = 1) for the hydrogen 1s function; for the one-electron H system, it is
also the exact solution of the Schrödinger equation. Nearest it is the contracted STO-3G 1s function
(- - - - - -) optimized to match the STO. It is the sum of a set of one each tight (-· -· -· -·), medium (– – –),
and loose ( ) Gaussian functions shown below. The respective Gaussian primitive exponents α

are 2.227660, 0.405771, and 0.109818, and the associated contraction coefficients c are 0.154329,
0.535328, and 0.444635. Note that from 0.5 to 4.0 a.u., the STO-3G orbital matches the correct orbital
closely. However, near the origin there is a notable difference and, were the plot to extend to very
large r , it would be apparent that the decay of the STO-3G orbital is more rapid than the correct
orbital, in analogy to Figure 6.1

2s1p. These are separated from the hydrogenic details by a slash in each instance. Extensions
to higher rows follow by analogy. Variations on this nomenclature scheme exist, but we will
not examine them here.

As a final comment on the STO-MG series of basis sets, note that for higher rows than H
and He, there is some efficiency to be gained by choosing the exponents used for the primitive
Gaussians in the s and p contractions to be the same (then the radial parts of all four-index
integrals are identical irrespective of whether they are (ss|ss), (ss|sp), (ss|pp), (sp|sp), etc.).
Of course, the shape of s- and p-type functions are different, so the contraction coefficients
are not identical. When common exponents are chosen in this fashion, the basis functions are
sometimes called sp basis functions. Table 6.1 lists the exponents and contraction coefficients
for the 2s and 2p functions of oxygen. Note the negative sign of the coefficient for the tightest
function in the 2s expansion, thereby providing the proper radial nodal characteristics.

6.2.3 Single-ζ , Multiple-ζ , and Split-Valence

The STO-3G basis set is what is known as a ‘single-ζ ’ basis set, or, more commonly, a
‘minimal’ basis set. This nomenclature implies that there is one and only one basis function
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Table 6.1 STO-3G 2sp basis set for oxygen

α2sp c2s c2p

5.0331527 −0.099967 0.155916
1.1695944 0.399513 0.607684
0.3803892 0.700115 0.391957

defined for each type of orbital core through valence. Thus for H and He, there is only a 1s
function. For Li to Ne, there are five functions, 1s, 2s, 2px , 2py , and 2pz. For Na to Ar, 3s,
3px , 3py , and 3pz are added to the second-row set, making a total of nine functions, etc. This
number is the absolute minimum required, and it is certainly nowhere near the infinite basis
set limit. Other minimal basis sets include the MINI sets of Huzinaga and co-workers, which
are named MINI-1, MINI-2, etc., and vary in the number of primitives used for different
kinds of functions.

One way to increase the flexibility of a basis set is to ‘decontract’ it. That is, we might
imagine taking the STO-3G basis set, and instead of constructing each basis function as a
sum of three Gaussians, we could construct two basis functions for each AO, the first being
a contraction of the first two primitive Gaussians, while the second would simply be the
normalized third primitive. This prescription would not double the size of our basis set, since
we would have all the same individual integrals to evaluate as previously, but the size of our
secular equation would be increased. A basis set with two functions for each AO is called a
‘double-ζ ’ basis. Of course, we could decontract further, and treat each primitive as a full-
fledged basis function, in which case we would have a ‘triple-ζ ’ basis, and we could then
decide to add more functions indefinitely creating higher and higher multiple-ζ basis sets.
Modern examples of such basis sets are the cc-pCVDZ, cc-pCVTZ, etc. sets of Dunning
and co-workers, where the acronym stands for ‘correlation-consistent polarized Core and
Valence (Double/Triple/etc.) Zeta’ (Woon and Dunning 1995); correlation consistency and
polarization are described in more detail below.

The advantage of such a scheme is, naturally, that these increasingly large basis sets must
come closer and closer to the HF limit. Let us step back for a moment, however, and consider
the chemical consequences of providing extra basis functions for a given AO. Recall that a
final MO from an HF calculation is a linear combination of all of the basis functions. Indeed,
if we were to examine the 1s core orbital resulting from an HF calculation on atomic oxygen
using the fully uncontracted set of STO-3G Gaussian primitives as a basis (i.e., a triple-ζ
basis), we might well find it to be a linear combination of the 1s functions very similar to
that defining the STO-3G contracted oxygen 1s function. And, if we were to look at the
MOs resulting from an equivalent calculation on, say, formaldehyde (H2C=O), we would
probably find another orbital which we would assign as the oxygen 1s orbital having very
similar AO coefficients. Indeed, we would find this same orbital little changed in almost any
molecule incorporating oxygen we might choose to examine. The reason for this is that core
orbitals are only weakly affected by chemical bonding.

Valence orbitals, on the other hand, can vary widely as a function of chemical bonding.
Atoms bonded to significantly more electronegative elements take on partial positive charge
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from loss of valence electrons, and thus their remaining density is distributed more compactly.
The reverse is true when the bonding is to a more electropositive element. From a chemical
standpoint, then, there is more to be gained by having flexibility in the valence basis functions
than in the core, and recognition of this phenomenon led to the development of so-called
‘split-valence’ or ‘valence-multiple-ζ ’ basis sets. In such basis sets, core orbitals continue
to be represented by a single (contracted) basis function, while valence orbitals are split into
arbitrarily many functions.

Amongst the most widely used split-valence basis sets are those of Pople et al. These
basis sets include 3-21G, 6-21G, 4-31G, 6-31G, and 6-311G. The nomenclature is a guide
to the contraction scheme. The first number indicates the number of primitives used in the
contracted core functions. The numbers after the hyphen indicate the numbers of primitives
used in the valence functions – if there are two such numbers, it is a valence-double-ζ basis,
if there are three, valence-triple-ζ . This notation is somewhat more informative than the
older style noted in the previous section. Thus, for a calculation on water, for instance, the
6-311G basis would be represented (11s5p/5s)/[4s3p/3s]. The latter notation does not specify
how many primitives are devoted to which contracted basis functions, while 6-311G makes
this point clear. Like the STO-MG basis sets, the split-valence sets use sp basis functions
having common exponents.

An interesting question arises for split-valence and multiple-ζ basis sets: how should one
go about choosing exponents and coefficients for the contracted functions? As the basis is
no longer minimal, there is no particular virtue in fitting to STOs (which were originally
used because they were thought to represent the optimal single-function approximation to an
AO). Pople and co-workers, like most other researchers in the field, relied on the variational
principle. That is, some test set of atoms and/or molecules was established, and exponents
and coefficients were optimized so as to give the minimum energy over the test set. In
the end, just as the name of a force field refers to its functional form and a list of all its
parameters, so too the name of a basis set refers to its contraction scheme and a list of all
of its exponents and coefficients for each atom.

One feature of the Pople basis sets is that they use a so-called ‘segmented’ contraction.
This implies that the primitives used for one basis function are not used for another of the
same angular momentum (e.g., no common primitives between the 2s and 3s basis functions
for phosphorus). Such a contraction scheme is typical of older basis sets. Other segmented
split-valence basis sets include the MIDI and MAXI basis sets of Huzinaga and co-workers,
which are named MIDI-1, MIDI-2, etc., MAXI-1, MAXI-2, etc. and vary in the number of
primitives used for different kinds of functions.

The Pople basis sets have seen sufficient use in the literature that certain trends have
clearly emerged. While a more complete discussion of the utility of HF theory and its basis-
set dependence appears at the end of this chapter, we note here that, in general, the 4-31G
basis set is inferior to the less expensive 3-21G, so there is little point in ever using it. The
6-21G basis set is obsolete.

An alternative method to carrying out a segmented contraction is to use a so-called
‘general’ contraction (Raffenetti 1973). In a general contraction, there is a single set of primi-
tives that are used in all contracted basis functions, but they appear with different coefficients
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in each. The general contraction scheme has some technical advantages over the segmented
one. One advantage in terms of efficiency is that integrals involving the same primitives,
i.e., those occurring in the final line of Eq. (6.4), need in principle be calculated only once,
and the value can be stored for later reuse as needed. Examples of split-valence basis sets
using general contractions are the cc-pVDZ, cc-pVTZ, etc. sets of Dunning and co-workers,
where the acronym stands for ‘correlation-consistent polarized Valence (Double/Triple/etc.)
Zeta’ (Dunning 1989; Woon and Dunning 1993). The ‘correlation-consistent’ part of the
name implies that the exponents and contraction coefficients were variationally optimized
not only for HF calculations, but also for calculations including electron correlation, methods
for which are described in Chapter 7. The subject of polarization is what we turn to next.

6.2.4 Polarization Functions

The distinction between atomic orbitals and basis functions in molecular calculations has
been emphasized several times now. An illustrative example of why the two should not
necessarily be thought of as equivalent is offered by ammonia, NH3. The inversion barrier
for interconversion between equivalent pyramidal minima in ammonia has been measured
to be 5.8 kcal mol−1. However, a HF calculation with the equivalent of an infinite, atom-
centered basis set of s and p functions predicts the planar geometry of ammonia to be a
minimum-energy structure!

The problem with the calculation is that s and p functions centered on the atoms do
not provide sufficient mathematical flexibility to adequately describe the wave function for
the pyramidal geometry. This is true even though the atoms nitrogen and hydrogen can
individually be reasonably well described entirely by s and p functions. The molecular
orbitals, which are eigenfunctions of a Schrödinger equation involving multiple nuclei at
various positions in space, require more mathematical flexibility than do the atoms.

Because of the utility of AO-like GTOs, this flexibility is almost always added in the form
of basis functions corresponding to one quantum number of higher angular momentum than
the valence orbitals. Thus, for a first-row atom, the most useful polarization functions are
d GTOs, and for hydrogen, p GTOs. Figure 6.3 illustrates how a d function on oxygen can
polarize a p function to improve the description of the O–H bonds in the water molecule.
The use of p functions to polarize hydrogen s functions has already been mentioned in
Section 4.3.1. [An alternative way to introduce polarization is to allow basis functions not
to be centered on atoms. Such floating Gaussian orbitals (FLOGOs) are illustrated on the
left-hand side of Figure 4.1. While the use of FLOGOs reduces the need to work with inte-
grals involving high-angular-momentum functions, the process of geometry optimization is
rendered considerably more complicated, so they are rarely employed in modern calcula-
tions.] Adding d functions to the nitrogen basis set causes HF theory to predict correctly a
pyramidal minimum for ammonia, although some error in prediction of the inversion barrier
still exists even at the HF limit because of the failure to account for electron correlation.

A variety of other molecular properties prove to be sensitive to the presence of polar-
ization functions. While a more complete discussion occurs in Section 6.4, we note here
that d functions on second-row atoms are absolutely required in order to make reasonable
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Figure 6.3 The MO formed by interaction between the antisymmetric combination of H 1s orbitals
and the oxygen px orbital (see also Figure 6.7). Bonding interactions are enhanced by mixing a small
amount of O dxz character into the MO

predictions for the geometries of molecules including such atoms in formally hypervalent
bonding situations, e.g., phosphates, sulfoxides, siliconates, etc.

A variety of empirical rules exist for choosing the exponent(s) for a set of polarization
functions. If only a single set is desired, one possible choice is to make the maximum in the
radial density function, 〈r2〉, equal to that for the existing valence set (e.g., the 3d functions
that best ‘overlap’ the 2p functions for a first-row atom – note that the radial density is used
instead of the actual overlap integral because the latter, by symmetry, must be zero).

Because of the expense associated with adding polarization functions – the total number
of functions begins to grow rather quickly with their inclusion – early calculations typically
made use of only a single set. Pople and co-workers introduced a simple nomenclature
scheme to indicate the presence of these functions, the ‘*’ (pronounced ‘star’). Thus, 6-
31G∗ implies a set of d functions added to polarize the p functions in 6-31G. A second star
implies p functions on H and He, e.g., 6-311G∗∗ (Krishnan, Frisch, and Pople 1980).

Subsequent work has shown that there is a rough correspondence between the value of
adding polarization functions and the value of decontracting the valence basis function(s).
In particular, there is a rough equality between each decontraction step and adding one new
set of polarization functions, including a new set of higher angular momentum. Put more
succinctly, ‘balanced’ double-ζ basis sets should include d functions on heavy atoms and p
functions on H, triple-ζ basis sets should include 1 set of f and 2 sets of d functions on heavy
atoms, and 1 set of d and 2 sets of p functions on H, etc. This is the polarization prescription
adopted by the cc-pVnZ basis sets of Dunning and co-workers already mentioned above,
where n ranges over D (double), T (triple), Q (quadruple), five, and six (Wilson, van Mourik,
and Dunning 1996). Thus, for cc-pV6Z, for example, each heavy atom has one i function, two
h functions, three g functions, four f functions, five d functions, and six valence s and p func-
tions, in addition to core functions (using the canonical numbers of these functions, we have
140 basis functions for a single second-row atom, so this basis set presently finds use only for
the smallest of systems). Note that while it would be an unpleasant exercise to try to draw an i
function, it is straightforwardly defined by taking the sum of i, j , and k equal to 6 in Eq. (6.2).

A somewhat more detailed analysis of the correct ratio of number of polarization functions
to number of valence functions has been carried out by Jensen (2001) in the context of the
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polarization consistent basis sets pc-n, where n indicates the largest increment in angular
momentum above the valence maximum used in the basis set. The ratio is not fixed, per
se, but varies depending on an analysis of energetic convergence over a test set of first-row
molecules. The pc-n basis sets are presently defined for H−F for n = 0–4.

Recognizing the tendency to use more than one set of polarization functions in modern
calculations, the standard nomenclature for the Pople basis sets now typically includes an
explicit enumeration of those functions instead of the star nomenclature. Thus, 6-31G(d) is
to be preferred over 6-31G∗ because the former obviously generalizes to allow names like
6-31G(3d2fg,2pd), which implies heavy atoms polarized by three sets of d functions, two
sets of f functions, and a set of g functions, and hydrogen atoms by two sets of p functions
and one of d (note that since this latter basis set is only valence double-ζ , it is somewhat
unbalanced by having so many polarization functions).

A partially polarized basis set, MIDI! (where the ‘!’ is pronounced ‘bang’; in some
electronic structure programs, the abbreviation MIDIX is employed to avoid complications
associated with interpretation of the exclamation point), has been introduced by Cramer and
Truhlar and co-workers, who adopted a different philosophy in its development (Easton et al.
1996; Li, Cramer, and Truhlar 1998). Rather than optimizing the basis set with respect to
molecular energies, they sought to design an economical basis set for geometry optimizations
and partial charge calculations on medium-sized molecules, including neutrals, cations, and
anions, with special emphasis on functional groups that are important for biomolecules. The
MIDI! basis set has d functions on all atoms heavier than H for which it is defined with
the exception of carbon (i.e., on heteroatoms). Although much smaller than the 6-31G(d)
basis set, for instance, in direct comparisons it yields more accurate geometries and charges
as judged by comparison to much higher level calculations. For cases where p polarization
functions on H might be expected to be important, the MIDIY basis set includes these as an
extension to MIDI! (Lynch and Truhlar 2004).

Finally, an important nomenclature point is that most basis sets are defined to use the five
spherical d functions, but an important exception is 6-31G∗ (or 6-31G(d)), which is defined
to use the six Cartesian d functions. Some electronic structure programs are not flexible
about permitting the user to choose how many d functions are used, so it is important to
check that a consistent scheme has been employed when comparing to existing literature
data. To avoid ambiguity, it is helpful to modify the basis set name when the number of d
functions employed is not the same as that assumed as the default, e.g., MIDI!(6d) to denote
use of the six Cartesian d functions instead of the normal spherical five with the MIDI!
basis. Another nomenclature issue of importance involves the basis set ‘3-21G∗’. While this
notation pervades the literature, it is ambiguous and should be avoided. Pople and co-workers
suggested taking from 6-31G∗ the polarization functions for second-row atoms and beyond
and using them directly (i.e., without any reoptimization of exponents) with the smaller
basis 3-21G. The motivation for this was to address the serious geometry problems that
arise for hypervalent second-row atoms without d functions whilst maintaining a very cheap
description of first-row atoms. To distinguish this situation from the normal ‘*’, they named
this basis set 3-21G(∗), and that is the notation that should always be used to emphasize that
no d functions are present on first-row atoms.
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6.2.5 Diffuse Functions

The highest energy MOs of anions, highly excited electronic states, and loose supermolecular
complexes, tend to be much more spatially diffuse than garden-variety MOs. When a basis
set does not have the flexibility necessary to allow a weakly bound electron to localize far
from the remaining density, significant errors in energies and other molecular properties can
occur. To address this limitation, standard basis sets are often ‘augmented’ with diffuse basis
functions when their use is warranted.

In the Pople family of basis sets, the presence of diffuse functions is indicated by a ‘+’
in the basis set name. Thus, 6-31+G(d) indicates that heavy atoms have been augmented
with an additional one s and one set of p functions having small exponents. A second plus
indicates the presence of diffuse s functions on H, e.g., 6-311++G(3df,2pd). For the Pople
basis sets, the exponents for the diffuse functions were variationally optimized on the anionic
one-heavy-atom hydrides, e.g., BH2

−, and are the same for 3-21G, 6-31G, and 6-311G. In
the general case, a rough rule of thumb is that diffuse functions should have an exponent
about a factor of four smaller than the smallest valence exponent. Diffuse sp sets have
also been defined for use in conjunction with the MIDI! and MIDIY basis sets, generating
MIDIX+ and MIDIY+, respectively (Lynch and Truhlar 2004); the former basis set appears
particularly efficient for the computation of accurate electron affinities.

In the Dunning family of cc-pVnZ basis sets, diffuse functions on all atoms are indicated
by prefixing with ‘aug’. Moreover, one set of diffuse functions is added for each angular
momentum already present. Thus, aug-cc-pVTZ has diffuse f, d, p, and s functions on heavy
atoms and diffuse d, p, and s functions on H and He. An identical prescription for diffuse
functions has been used by Jensen (2002) in connection with the pc-n basis sets.

Particularly for the calculation of acidities and electron affinities, diffuse functions are
absolutely required. For instance, the acidity of HF (not Hartree-Fock in this case, but
hydrogen fluoride) increases by 44 kcal/mol when the 6-31+G(d) basis set is used instead
of unaugmented 6-31G(d).

6.2.6 The HF Limit

Solution of the HF equations with an infinite basis set is defined as the HF limit. Actu-
ally carrying out such a calculation is almost never a practical possibility. However, it is
sometimes the case that one may extrapolate to the HF limit with a fair degree of confidence.

Of the basis sets discussed thus far, the cc-pVnZ and cc-pCVnZ examples were designed
expressly for this purpose. As they increase in size in a consistent fashion with each increment
of n, one can imagine plotting some particular computed property as a function of n−1 and
extrapolating a curve fit through those points back to the intercept; the intercept corresponds
to n = ∞, i.e., the infinite basis limit (Figure 6.4).

Note that certain issues do arise in how one should carry out this extrapolation. If the
property is sensitive to geometry, should the geometry be optimized at each level, or should a
single geometry be chosen, thereby permitting the extrapolating equation to account for basis-
set effects only? Are there any fundamental principles dictating what form the extrapolating
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Figure 6.4 Use of an extrapolation procedure to estimate the expectation value for some property
at the HF limit. The abscissa is marked off as n−1 in cc-pVnZ notation (see page 162). Note the
sensitivity of the limiting value, which is to say the ordinate intercept, that might be expected based
on the use of different curve-fitting procedures

equation should take, or can any arbitrary curve fitting approach be applied? In general,
the answers to these questions are case-dependent, and the chemist cannot be completely
removed from the calculation.

Note that the cost of the extrapolation procedure outlined above becomes increasingly large
as points for n = 4, 5, and 6 are added. For systems having more than five or six atoms,
these calculations can be staggeringly demanding in terms of computational resources.

A somewhat more common approach is one that does not try explicitly to extrapolate to
the HF limit but uses similar concepts to try to correct for some basis-set incompleteness. The
assumption is made that the effects of ‘orthogonal’ increases in basis set size can be consid-
ered to be additive (a substantial amount of work suggests that this assumption is typically
not too bad, at least for molecular energies), and thus the individual effects can be summed
together to estimate the full-basis-set result. This is best illustrated by example. Consider
HF calculations carried out for the chemical warfare agent VX (C11H26NO2PS, Figure 6.5)
with the following basis sets: 6-31G, 6-31++G, 6-31G(d,p), 6-311G, and 6-311++G(d,p).
With these basis sets, the total number of basis functions for VX are 204, 378, 294, 294,
and 542, respectively.

The additivity assumption can be expressed as

E[HF/6-311++G(d,p)] ≈ E[HF/6-31G]

+ {E[HF/6-31G(d,p)] − E[HF/6-31G]}
+ {E[HF/6-311G] − E[HF/6-31G]}
+ {E[HF/6-31++G] − E[HF/6-31G]} (6.5)
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Figure 6.5 The chemical warfare agent VX and a conceptual illustration of the additivity concept
embodied in Eq. (6.5). Each boldface line in the additivity cube represents one line on the r.h.s. of the
equation

where the notation ‘x/y’ implies ‘level of theory x using basis set y’. Each successive line
on the r.h.s. of Eq. (6.5) reflects the incremental contribution from a particular basis set
improvement – first polarization functions, then valence decontraction, then diffuse func-
tions. As already noted, the calculation on the l.h.s. requires 542 basis functions. Although
there are four different calculations on the r.h.s., if we recall that the amount of time for
an HF calculation scales formally as the fourth power of the number of basis functions,
the amount of time to carry out those four calculations, expressed as a fraction of the
amount of time to carry out the full calculation, is (2044 + 3784 + 2944 + 2944)/5424 = 0.43.
That is, evaluation of the r.h.s. of Eq. (6.5) takes less than half the time of evaluation of
the l.h.s.

While the above schemes are interesting from a technical standpoint, it must be recalled
that chemically there are potentially large errors associated with the HF approximation, so the
HF limit is of more interest from a formal standpoint than from a chemical one. Thus, we will
defer additional discussion of extrapolation and additivity concepts until Section 7.7, where
it is re-examined in the additional context of accounting for electron correlation effects.

6.2.7 Effective Core Potentials

The periodic table is rich and complex, and very heavy elements pose rather distinct chal-
lenges to MO theory. First, there is the purely technical hurdle that such elements have large
numbers of electrons, and there is thus a concomitant requirement to use a large number of
basis functions to describe them. Of course, these extra electrons are mostly core electrons,
and thus a minimal representation will probably be adequate. Nevertheless, if one wants to
model a small cluster of uranium atoms, for instance, the basis set size quickly becomes
intractable. Not surprisingly, more electrons means more energy associated with electron
correlation, too.
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It was Hellmann (1935) who first proposed a rather radical solution to this problem –
replace the electrons with analytical functions that would reasonably accurately, and much
more efficiently, represent the combined nuclear–electronic core to the remaining electrons.
Such functions are referred to as effective core potentials (ECPs). In a sense, we have
already seen ECPs in a very crude form in semiempirical MO theory, where, since only
valence electrons are treated, the ECP is a nuclear point charge reduced in magnitude by the
number of core electrons.

In ab initio theory, ECPs are considerably more complex. They properly represent not only
Coulomb repulsion effects, but also adherence to the Pauli principle (i.e., outlying atomic
orbitals must be orthogonal to core orbitals having the same angular momentum). This being
said, we will not dwell on the technical aspects of their construction. Interested readers are
referred to the bibliography at the end of the chapter.

Note that were ECPs to do nothing more than reduce the scope of the electronic structure
problem for heavy elements, they would still have great value. However, they have another
virtue as well. The core electrons in very heavy elements reach velocities sufficiently near the
speed of light that they manifest relativistic effects. A non-relativistic Hamiltonian operator
is incapable of accounting for such effects, which can be significant for many chemical
properties (see, for example, Kaltsoyannis 2003). A full discussion of modeling relativistic
effects, while a fascinating topic, is well beyond the scope of this book, although some details
are discussed in Section 7.4.4. We note here simply that, to the extent an ECP represents the
behavior of an atomic core, relativistic effects can be folded in, and thereby removed from
the problem of finding suitable wave functions for the remaining electrons.

A key issue in the construction of ECPs is just how many electrons to include in the
core. So-called ‘large-core’ ECPs include everything but the outermost (valence) shell, while
‘small-core’ ECPs scale back to the next lower shell. Because polarization of the sub-valence
shell can be chemically important in heavier metals, it is usually worth the extra cost to
explicitly include that shell in the calculations. Thus, the most robust ECPs for the elements
Sc–Zn, Y–Cd, and La–Hg, employ [Ne], [Ar], and [Kr] cores, respectively. There is less
consensus on the small-core vs. large-core question for the non-metals.

Popular pseudopotentials in modern use include those of Hay and Wadt (sometimes also
called the Los Alamos National Laboratory (or LANL) ECPs; Hay and Wadt 1985), those
of Stevens et al. (1992), and the Stuttgart–Dresden pseudopotentials developed by Dolg and
co-workers (2002). The Hay–Wadt ECPs are non-relativistic for the first row of transition
metals while most others are not; as relativistic effects are usually quite small for this region
of the periodic table, the distinction is not particularly important. Lovallo and Klobukowski
(2003) have recently provided additional sets of both relativistic and non-relativistic ECPs
for these metals. For the p block elements, Check et al. (2001) have optimized polarization
and diffuse functions to be used in conjunction with the LANL double-ζ basis set.

Another recent set of pseudopotentials for the 4p, 5p, and 6p elements has been devel-
oped by Dyall (1998, 2002). These ECPs are designed to be the ECP-equivalent to the
correlation-consistent basis sets of Dunning insofar as (i) prescriptions for double-ζ and
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triple-ζ contractions are provided, (ii) polarization functions of increasingly higher angular
momentum are included for the triple-ζ case, and (iii) diffuse functions were optimized for
negative ions at a correlated level of electronic structure theory.

6.2.8 Sources

Most electronic structure programs come with a library of built-in basis sets, to include
many if not all of those mentioned above. A tremendously useful electronic resource is the
Environmental Molecular Sciences Laboratory Gaussian Basis Set Order Form, a website that
permits the download of a very large number of different basis sets formatted for a variety
of different software packages. Moreover, the site has reference information that typically
includes values for test calculations as published by the original authors. Since different
software packages may have different conventions for how to deal with certain aspects of
the basis set (e.g., five spherical vs. six Cartesian d functions), it is always a good idea to
carry out such test calculations to ensure that the basis set is being used in a manner consistent
with its definition and, hopefully, with previously reported calculations in the literature.

So, how to choose the ‘best’ basis set for the problem at hand? Obviously a fair rule of
thumb is that bigger is better, keeping in mind issues of balance between valence decontrac-
tion and presence of polarization functions. As noted above, diffuse functions are warranted
in certain specific situations, but in the absence of those situations, there tends to be no
strong reason to include them.

Additionally, access to particular software packages may play some role in motivating the
choice of basis set. Some packages are equipped to take advantage of efficiencies possible
for such features as combined s and p exponents, or general contractions, while others are
not, and there may thus be significant timing issues differentiating basis sets.

Finally, and perhaps most important for the vast majority of chemical problems where
saturation of the basis set is not a practical possibility, the choice should consider the degree
to which other results from that particular basis set at that particular level of theory are
available for comparison. For instance, to the extent that there are an enormous number
of HF/6-31G(d) results published, and thus a reasonably firm understanding of the specific
successes and failures of the model, this can assist in the interpretation of new results – Pople
has referred to the collection of all data from a given theoretical prescription as comprising
a ‘model chemistry’ and emphasized the utility of analyzing theoretical performance (and
future model development efforts) within such a framework.

6.3 Key Technical and Practical Points of Hartree–Fock Theory

A deep understanding of the underlying theory is, alas, of only limited value in successfully
carrying out a HF calculation with any given software package. This section is not designed
to supplant program users’ manuals, the utility of reading which cannot be overemphasized,
but discusses aspects of practical HF calculations that are often glossed over in formal
presentations of the theory.
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6.3.1 SCF Convergence

As noted in Chapter 4, there is never any guarantee that the SCF process will actually
converge to a stable solution. A fairly common problem is so-called ‘SCF oscillation’. This
occurs when a particular density matrix, call it P(a), is used to construct a Fock matrix F(a)

(and thus the secular determinant), diagonalization of which permits the construction of an
updated density matrix P(b); this is a general description of any step in the SCF cycle. In
the oscillatory case, however, the diagonalization of the Fock matrix created using P(b) (i.e.,
F(b)) gives a density matrix indistinguishable from P(a). Thus, the SCF simply bounces back
and forth from P(a) to P(b) and never converges. This behavior can be recognized easily by
looking at the SCF energy for each step, which itself bounces back and forth between the
two discrete values associated with the two different unconverged wave functions defined
by P(a) and P(b).

In more pathological cases, the SCF behaves even more badly, with large changes occur-
ring in the density matrix at every step. Again, observation of the energies associated with
each step is diagnostic for this problem; they are observed to vary widely and seemingly
randomly. Such behavior is not uncommon for the first three or four steps of a typical SCF,
but usually beyond this point there is a ‘zeroing-in’ process that leads to convergence.

In the abstract sense, converging the SCF equations is a problem in applied mathematics,
and many algorithms have been developed for this process. While the technical details are
not presented here, the process is quite analogous to the process of finding a minimum
on a PES as described in Chapter 2. In the SCF problem, instead of a space of molecular
coordinates we operate in a space of orbital coefficients (so-called ‘Fock space’), and there
are certain constraints beyond the purely energetic ones, but many of the search strategies
are analogous. Similarly analogous is the degree to which they tend to balance speed and
stability. Usually the default optimizer in a given program is the fastest one available, while
other methods (e.g., quadratically convergent methods) typically take more steps to converge
but are less likely to suffer from oscillation or other problems. Thus, one option for dealing
with a system where convergence proves difficult is simply to run through all the different
convergence schemes offered by the electronic structure package and hope that one proves
sufficiently robust.

In general, however, it is more efficient to solve the problem using chemistry rather than
mathematics. If the SCF equations are failing to converge, the problem lies in the initial guess
(this is, of course, something of a truism, for if you were to guess the proper eigenfunction,
obviously there would be no problem with convergence). Most programs use as their default
option a semiempirical method to generate a guess wave function, e.g., EHT or INDO. The
resulting wave function (remember that a wave function is simply the list of coefficients
describing how the basis functions are put together to form the occupied MOs) is then used
to construct a guess for the HF calculation by mapping coefficients from the basis set of the
semiempirical method to the basis set for the HF calculation.

When the HF basis set is minimal, this is fairly simple (there is a one-to-one correspon-
dence in basis functions) but when it is larger, some algorithmic choices are made about
how to carry out the mapping (e.g., always map to the tightest function or map based on
overlap between the semiempirical STO and the large-basis contracted GTO). Thus, it is
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usually easier to converge a small-basis-set HF calculation than a larger one. This suggests
a method for bootstrapping one’s way to the convergence of a large-basis-set calculation:
First, obtain a wave function from a minimal basis set (e.g., STO-3G), then use that as an
initial guess for a calculation with a small split-valence basis set (e.g., 3-21G), and repeat
this process with increasingly larger basis sets until the target is reached. Because of the
exponential scaling, the early calculations typically represent a negligible time investment,
especially if they are saving steps in a slowly converging SCF for the full-sized basis set by
providing a more accurate initial guess.

The above process has another possible utility that is associated with the molecular geom-
etry. Often when an SCF is difficult to converge, the problem is that the molecular structure
is very bad. If that is the case, there can be a very small separation between the highest occu-
pied MO (HOMO) and the lowest unoccupied MO (LUMO). Such small separations wreak
havoc on the SCF process, because it is possible that occupation of either orbital could lead
to HF eigenfunctions of similar energy. In that case, the characters of the two orbitals are very
sensitive to all the remaining occupied orbitals, which generate the static potential felt by the
highest energy electrons, and their coefficients can undergo large changes that fail to converge
(an issue of non-dynamical electron correlation, see Section 7.1). Optimizing the geometry
at a low level of theory, where the wave function can be coaxed to converge, is typically an
efficient way to overcome this problem. Some care must be exercised, however, in systems
where the lowest levels of theory may not be reliable for molecular geometries. As a general
rule, however, visualization of the structure, and some thoughtful analysis of it by comparison
to whatever analogs or prior calculations may be available, is nearly always worth the effort.

Very complete basis sets, or those with many diffuse functions, pose some of the worst
problems for SCF convergence because of near-linear dependencies amongst the basis
functions. That is, some basis functions may be fairly well described as linear combinations
of other basis functions. This is most readily appreciated by considering two very diffuse s
orbitals on adjacent atoms; if they have maxima in their radial density at 40 Å but the two
atoms are only 1.5 Å apart, the two basis functions are really almost indistinguishable from
one another throughout most of space. If a basis set has a true linear dependence, then it is
necessarily impossible to assure orthogonality of all of the MOs (a division by zero occurs at
a particular point of the SCF process), so very near-linear dependence can lead to numerical
instabilities. Thus, it is again important to have a good guess. In a case like this, sometimes
it is useful not only to carry out bootstrap calculations in terms of basis sets, but in terms of
electrons. Thus, if one is interested in an anion, for instance, one can first try to converge
a large-basis-set wave function for the neutral (or the cation), to get a good estimate of the
more compact MOs, and then import that wave function as a guess for the anionic system,
trying thereby to reduce the impact of possible numerical instabilities.

6.3.2 Symmetry

The presence of symmetry in a molecule can be used to great advantage in electronic structure
calculations, although some care is required to avoid possible pitfalls that are simultaneously
introduced (Appendix B provides a brief overview of nomenclature (e.g., the term “irrep”,
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which is used below) and key principles of group theory as they apply to MO calculations
and symmetry). The advantages of symmetry are primarily associated with computational
efficiency.

The most obvious advantage is one step removed from the electronic structure problem,
namely geometry optimization. The presence of symmetry elements removes some of the
3N − 6 degrees of molecular freedom (where N is the number of atoms) that would otherwise
be present for an asymmetric molecule. This reduction in the dimensionality of the PES can
make the search for stationary points more efficient. Consider benzene (C6H6), for example.
With 12 atoms, the PES formally has 30 dimensions, and a complete representation would
be graphically challenging. However, if we restrict ourselves to structures of D6h symmetry,
then there are only two degrees of freedom – one’s first choice for defining those degrees
of freedom might be the C–C and C–H bond lengths; an equally valid choice, which may
be more useful as input to a software program that will ensure preservation of symmetry, is
the O –C and O –H radial distances, where O is the point at the center of the benzene ring.
Finding a minimum on a two-dimensional PES is obviously quite a bit simpler than on a
30-dimensional one (Figure 6.6).

Symmetry is also tremendously useful in several aspects of solving the SCF equations.
A key feature is the degree to which it simplifies evaluation of the four-index integrals.
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Figure 6.6 Illustration of two two-dimensional PESs for benzene in D6h symmetry. The surfaces
differ in choice of coordinates, which may affect optimizer efficiency, ease of input, etc., but will
have no effect on the equilibrium structure. Contour lines reflect constant energy intervals of arbitrary
magnitude. No attempt is made to illustrate the full 30-dimensional PES, on which it would be
considerably more taxing to search for a minimum-energy structure
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Figure 6.7 Transformation of the minimal water AO basis set to one appropriate for the C2v point
group. The effect on the form of the Fock matrix is also illustrated

In particular, if the totally symmetric representation is not included in the product of the
irreducible representations of basis functions µ, ν, λ, and σ , then (µν|λσ) = 0. The analo-
gous rule holds for the one-electron integrals. In general, of course, the atomic basis functions
do not belong to any irreducible representation, since they themselves do not transform
with all the symmetry elements of the molecule. Thus, as a first step to taking advantage
of symmetry, linear combinations of the various basis functions must be formed that do
belong to irreps of the molecular point group. This process is illustrated in Figure 6.7 for a
HF/STO-3G calculation on water, which belongs to the C2v point group. The seven atomic
basis functions can be linearly transformed to four, two, and one functions belonging to the
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a1, b2, and b1 irreps, respectively (no combination of basis functions belongs to the a2 irrep
with STO-3G; were d functions to be present on oxygen, the dxy function would be a2).

In the C2v point group, the totally symmetric representation (a1) is contained only in
the product of any irrep with itself. Thus, any matrix element Fab where transformed basis
functions a and b belong to different irreps is zero, and the Fock matrix expressed in the
transformed basis is block diagonal (see Figure 6.7). Recall that the process of solving the
secular equation is equivalent to diagonalization of the Fock matrix. Diagonalization of a
block diagonal matrix can be accomplished by separate diagonalization of each block. Noting
that diagonalization scales as N3, where N is the dimensionality of the matrix, the total
time to diagonalize our symmetrized Fock matrix for water compared to the unsymmetrized
alternative is (43 + 23 + 13)/73 = 0.21, i.e., a saving of almost 80 percent.

Strangely enough, with all of the advantages of symmetry, one often finds in the literature
statements by authors that they deliberately did not employ symmetry, as though such a
protocol has some virtue associated with it. What motivates this choice? For some, it reflects a
reluctance to work on a reduced-dimensionality PES because minima on that PES may not be
minima on the full PES. This is best illustrated with an example. Consider the chloride/methyl
chloride system with D3h symmetry imposed upon it (Figure 6.8). The system under these
constraints has only two degrees of freedom, the C–H bond length and the C–Cl bond
length; the overall structure, however, is that associated with the exchange of one chloride
ion for another in a bimolecular nucleophilic substitution (i.e., an SN2 reaction). Minimizing
the energy of the system subject to the D3h constraint will give the best possible energy
for this arrangement, and hence the TS structure for the reaction. The reason that it is a TS
structure and not a true minimum is that the degree(s) of freedom that would change in order
to reach a minimum energy structure, i.e., to generate different C–Cl bond lengths, are not
included in the reduced-dimensionality PES. Had no symmetry been imposed, however, the
system would eventually have moved in this direction (given a competent optimizer) unless
a transition-state search had been specified.

This issue is really of little importance for modern purposes, however. The best way
to evaluate the nature of a stationary point, irrespective of whether it was located using
symmetry or not, is to carry out a calculation of the full-dimensional Hessian matrix (see
Sections 2.4.1 and 9.3.2). Such a calculation is definitive. In the event that a symmetric
stationary point is found not to have the character desired, it is often of interest in any case
(if it is a TS structure) because inspection of the mode(s) having negative force constants
permits an efficient start at optimizing to the desired point using lower symmetry. Since
higher symmetry calculations tend to be quite efficient in any case, there is little to be
lost by imposing symmetry at the start, and deciding along the way whether some or all
symmetry constraints must be relaxed. Note, however, that symmetry constraints must arise
from molecular symmetry, not an erroneous idea of local symmetry. Thus, for instance, the
three C–H bonds of a methyl group should not be constrained to have the same length unless
they are truly symmetrically related by a molecular C3 axis.

Another potential pitfall with symmetry constraints involves the nature of the wave
function. Consider the nitroxyl radical H2NO, which has Cs symmetry (Figure 6.9). The
unpaired electron can either reside in an MO dominated by an oxygen p orbital that is of a′′
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Figure 6.8 Reduced-dimensionality PESs for the chloride/methyl chloride system. On the left is the
two-dimensional surface associated with a D3h symmetry constraint. On this surface, the point marked
‡ is a minimum. The simultaneous shortening or lengthening of the C–Cl bonds (simultaneous to
preserve D3h symmetry) while allowing the C–H bond lengths to relax is indicated by the dashed
line on this surface. The same process is indicated by the dashed line on the surface to the right,
whose coordinates are the individual C–Cl bond lengths, and point ‡ again represents the minimum
on this line. However, movement off the dashed line can lower the energy further. Movement along
the solid line, which involves lengthening one C–Cl bond whilst shortening the other, corresponds
to the reaction path for nucleophilic substitution from one equilibrium structure to another (points
marked ∗), and illustrates that the minimum-energy structure under the D3h constraint is actually a TS
structure on the full PES

symmetry, or in an MO having π∗
NO character that is of a′ symmetry. These two electronic

states are fundamentally different. The symmetry of a doublet electronic state is simply the
symmetry of the half-filled orbital if all other orbitals are doubly occupied, so we would
refer to the two possible electronic states here as 2A′′ and 2A′, respectively. When symmetry
is imposed, we will have a block diagonal Fock matrix and the unpaired electron will appear
in either the a′ block or the a′′ block, depending on the initial guess. Once placed there, most
SCF convergence procedures will not provide any means for the electronic state symmetry to
change, i.e., if the initial guess is a 2A′ wave function, then the calculation will proceed for
that state, and if the initial guess is a 2A′′ wave function, then it will instead be that state that
is optimized. The two states both exist, but one is the ground state and the other an excited
state, and one must take care to ensure that one is not working with the undesired state.

Typically, one can assess the nature of the state (ground vs. excited) after convergence
of the wave function. Continuing with our example, let us say that we have optimized the
2A′ state. We can then take that wave function, alter it so that the occupation number of the
highest occupied a′ orbital is zero instead of one, and the occupation of the lowest formerly
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Figure 6.9 Curve crossing of the two lowest energy doublets for Cs H2NO•. The question of which
one is the ground state depends on the NO bond length. One can thus be misled in looking for the
lowest energy structure if one fails to optimize the geometry for each

unoccupied a′′ orbital is one instead of zero (i.e., construct a 2A′′ wave function using the
MOs of the 2A′ wave function) and carry out an SCF calculation using this construction as
the initial guess. If the energy drops relative to the first wave function, then the first was an
excited state. Many electronic structure programs offer the option to do this in a systematic
fashion, i.e., to consider every possible switch of an electron from one orbital to another
(such a calculation is really a CIS calculation, see Section 14.2.2). Note that there can be
some challenging subtleties in working with systems where many states are close to one
another in energy. For instance, it could occur in the nitroxyl example above that the two
electronic state PESs cross one another in such a fashion that each of the two states is the
ground state at its respective optimized geometry. Such a situation can only be determined
by a fairly careful analysis of the PESs for both states. Note that failing to impose symmetry
on the system does not in any way alleviate this problem. Instead, it obscures it, since no
symmetry labels can be applied to the orbitals and thus, in the absence of visualization of
the half-filled orbital, there is no simple means to differentiate between the two states.

Note that the problem just discussed above is rarely encountered for closed-shell singlets.
That is because any excitation from an orbital of one symmetry type to one of a different
symmetry type must be a double excitation if the closed-shell character of the wave function
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is to be preserved. Typically the difference in energy between these two possible configura-
tions is so large that no reasonable means for guessing the initial wave function generates
the higher energy possibility. This is one of the advantages of closed-shell states compared
to open-shell ones. Certain other aspects of dealing with open-shell systems also merit
attention.

6.3.3 Open-shell Systems

The presentation of the HF equations in Chapter 4 assumed a closed-shell singlet for simpli-
city, but what if there are one or more singly occupied orbitals? Let us proceed with an
example to guide the discussion, in this case, the methyl radical, which is planar in its
equilibrium structure (Figure 6.10). The most intuitive description of the wave function for
this system (ignoring symmetry for ease of discussion) would be

2	 = ∣∣C1s2σ 2
CHa

σ 2
CHb

σ 2
CHc

C2p1
z

〉
(6.6)

Thus, there is a doubly occupied carbon 1s core, three C–H bonding orbitals, and the
unpaired electron in a carbon 2p orbital. Given this configuration, it might seem natural to
envision an extension of HF theory where all of the orbitals continue to be evaluated using
essentially the restricted formalism (RHF) for closed-shell systems, but the density matrix
elements for the singly occupied orbital(s) are not multiplied by the factor of two appearing
in Eq. (4.57). In essence, this describes so-called restricted open-shell HF theory (ROHF).
In its completely general form, certain complications arise for systems whose descriptions
require more than a single determinant (i.e., unlike Eq. (6.6)), so we will not extend this
qualitative description of the nature of the theory to specific equations (such details are
available in Veillard (1975)). It suffices to note that most electronic structure packages offer
ROHF as an option for open-shell calculations.

Besides being intuitively satisfying, ROHF theory produces wave functions that are eigen-
functions of the operator S2 (just as the true wave function must be), having eigenvalues
S(S + 1) where S is the magnitude of the vector sum of the spin magnetic moments for all
of the unpaired electrons. However, ROHF theory fails to account for spin polarization in

C H
H

H

H
H

H
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Figure 6.10 In the absence of spin polarization, which corresponds to the ROHF picture, there is zero
spin density in the plane containing the atoms of the methyl radical. Accounting for spin polarization,
which corresponds to the UHF picture, results in a build-up of negative spin density (represented as a
shaded region) in the same plane
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the doubly occupied orbitals. To appreciate this point, let us return to the methyl radical.
Note that because the unpaired spin in this molecule is in the carbon 2pz orbital, the plane
containing the atoms, which is the nodal plane for the 2pz orbital, must have zero spin
density. This being the case, electron spin resonance experiments should detect zero hyper-
fine coupling between the magnetic moments of the hydrogen atoms (or of a 13C nucleus) and
the unpaired electron. However, even after correcting for the effects of molecular vibrations,
it is clear that there is a coupling between the two.

Spin density is found in the molecular plane because of spin polarization, which is an effect
arising from exchange correlation. The Fermi hole that surrounds the unpaired electron allows
other electrons of the same spin to localize above and below the molecular plane slightly
more than can electrons of opposite spin. Thus, if the unpaired electron is α, we would expect
there to be a slight excess of β density in the molecular plane; as a result, the 1H hyperfine
splitting should be negative (see Section 9.1.3), and this is indeed the situation observed
experimentally. An ROHF wave function, because it requires the spatial distribution of both
spins in the doubly occupied orbitals to be identical, cannot represent this physically realistic
situation.

To permit the α and β spins to occupy different regions of space, it is necessary to treat
them individually in the construction of the molecular orbitals. Following this formalism,
we would rewrite our methyl radical wave function Eq. (6.6) as

2	 =
∣∣∣C1sαC1s′βσα

CHa
σ ′β

CHa
σα

CHb
σ ′β

CHb
σα

CHc
σ ′β

CHc
C2pα

z

〉
(6.7)

where the prime notation on each β orbital emphasizes that while it may be spatially similar
to the analogous α orbital, it need not be identical. The individual orbitals are found by
carrying out separate HF calculations for each spin, with the spin-specific Fock operator
now defined as
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where ξ is either α or β, and the two spin-density matrices are defined as

P
ξ
λσ =

ξ−occupied∑
i

a
ξ
λia

ξ
σ i (6.9)

where the coefficients a are the usual ones expressing the MOs in the AO basis, but there are
separate sets for the α and β orbitals. Notice, then, that in Eq. (6.8), the Coulomb repulsion
(the first set of integrals in the double sum) is calculated with both spins, but exchange (the
second set of integrals) is calculated only with identical spins. Because the SCF is being
carried out separately for each spin, the two density matrices can differ, which is to say the
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MOs can be different, and this permits spin polarization. Equations (6.8) and (6.9) define
unrestricted Hartree-Fock (UHF) theory.

While UHF wave functions have the desirable feature of including spin polarization, they
are not, in general, eigenfunctions of S2. By allowing the spatial parts of the different spin
orbitals to differ, the final UHF wave function incorporates some degree of ‘contamination’
from higher spin states – specifically, states whose high-spin components would derive from
flipping the spin of one or more electrons. Thus, doublets are contaminated by quartets,
sextets, octets, etc., while triplets are contaminated by pentets, heptets, nonets, etc. The
degree of spin contamination can be assessed by inspection of 〈S2〉, which should be 0.0
for a singlet, 0.75 for a doublet, 2.00 for a triplet, 3.75 for a quartet, etc. Values that vary
from these proper eigenvalues by more than 5 percent or so should inspire great caution
in working with the wave function, since other expectation values will also be skewed by
differences between the property for the desired state and those for the contaminating states
(see Section 9.1.4 and Appendix C for details on the calculation of 〈S2〉).

Various techniques have been developed to reduce or eliminate the contribution of contam-
inating states to the UHF wave function or expectation values derived from it. Some of these
are described in Appendix C, which contains a more detailed description of spin algebra in
general. In general, however, it should be noted that none of these approaches are convenient
for geometry optimization, which makes characterization of an open-shell PES quite difficult
when spin contamination effects are large. Thus, open-shell systems nearly always require
more care than closed-shell singlets, because both the ROHF and the UHF formalisms are
subject to intrinsically unphysical behavior. Depending on the nature of the system and the
properties being calculated, such behavior may or may not be manifest.

Finally, note that some open-shell systems cannot be described by a single determinant.
The classical example is an open-shell singlet, i.e., a system having electrons of α and β spin
in different spatial orbitals a and b. The wave function for such a system that is properly
antisymmetric and preserves the indistinguishability of particles is

1	 = 1
2 [a(1)b(2) + a(2)b(1)][α(1)β(2) − α(2)β(1)] (6.10)

which cannot be expressed as a single determinant. Because RHF and UHF are defined to use
single-determinantal wave functions, they are formally unable to address this wave function
(cf. Appendix C). In its most general form, ROHF is defined for multideterminantal systems,
but the more typical approach is to use multiconfiguration self-consistent field theory, as
described in Section 7.2.

6.3.4 Efficiency of Implementation and Use

We have emphasized up to this point the formal N4 scaling of HF theory. However, in
practice, the situation is never so severe, and indeed linear scaling HF implementations have
begun to appear. Of course, one should remember that scaling behavior is different from
speed. Thus, for a system of a given size, a HF calculation using algorithms that scale
linearly may take significantly longer than conventional algorithms – it is simply true that at
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some point the linear scaling algorithm will become more efficient given a system of large
enough size. In any case, because there are several features present in electronic structure
programs that allow some control over the efficiency of the calculation, we discuss here the
most common ones, recapitulating a few that have already been mentioned above.

First, there is the issue of how to go about computing the four-index integrals, which
are responsible for the formal N4 scaling. One might imagine that the most straightforward
approach is to compute every single one and, as it is computed, write it to storage – then, as
the Fock matrix is assembled element by element, call back the computed values whenever
they are required (most of the integrals are required several times). In practice, however, this
approach is only useful when the time required to write to and read from storage is very, very
fast. Otherwise, modern processors can actually recompute the integral from scratch faster
than modern hardware can recover the previously computed value from, say, disk storage.
The process of computing each integral as it is needed rather than trying to store them all
is called ‘direct SCF’. Only when the storage of all of the integrals can be accomplished in
memory itself (i.e., not on an external storage device) is the access time sufficiently fast that
the ‘traditional’ method is to be preferred over direct SCF.

As the size of the system increases, it becomes possible to take advantage of other features
of the electronic structure that further improve the efficiency of direct SCF. For instance, it
is possible to estimate upper bounds for four-index integrals reasonably efficiently, and if
the upper bound is so small that the integral can make no significant contribution, there is
no point evaluating it more accurately than assigning it to be zero. Such small integrals are
legion in large systems, since if each of the four basis functions is distantly separated from
all of the others simple overlap arguments make it clear that the integral cannot be very
large.

With very, very large systems, fast-multipole methods analogous to those described in
Section 2.4.2 can be used to reduce the scaling of Coulomb integral evaluation to linear
(see, for instance, Strain, Scuseria, and Frisch 1996; Challacombe and Schwegler 1997), and
linear methods to evaluate the exchange integrals have also been promulgated (Ochensfeld,
White, and Head-Gordon 1998). At this point, the bottleneck in HF calculations becomes
diagonalization of the Fock matrix (a step having formal N3 scaling), and early efforts to
reduce the scaling of this step have also appeared (Millam and Scuseria 1997).

As already described above, efficiency in converging the SCF for systems with large
basis sets can be enhanced by using as an initial guess the converged wave function from a
different calculation, one using either a smaller basis set or a less negative charge. This same
philosophy can be applied to geometry optimization, which can be quite time-consuming for
very large calculations. It is often very helpful to optimize the geometry first at a more
efficient level of theory. This is true not just because the geometry optimized with the lower
level is probably a good place to start for the higher level, but also because typically one
can compute the force constants at the lower level and use them as an initial guess for the
higher level Hessian matrix that will be much better than the typical guess generated by
the optimizing algorithm. As described in Section 2.4.1, the availability of a good Hessian
matrix can make an enormous amount of difference in how quickly a geometry optimization
can be induced to converge.
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Also as already noted above, taking advantage of molecular symmetry can provide very
large savings in time. However, structures optimized under the constraints of symmetry
should always be checked by computation of force constants to verify their nature as
stationary points on the full PES. Additionally, it is typically worthwhile to verify that open-
shell wave functions obtained for symmetric molecules are stable with respect to orbital
changes that would generate other electronic states.

Finally, the use of ECP basis sets for heavy elements improves efficiency by reducing the
scale of the electronic structure problem. In addition, relativistic effects can be accounted
for by construction of the pseudopotential.

One area that takes advantage of many of the above formalisms is the application of HF
theory to periodic solids. Periodic HF theory has been most extensively developed within
the context of the CRYSTAL code (Dovesi et al. 2000) where it is available in RHF, UHF,
and ROHF forms. Such calculations can be particularly useful for elucidating band structure
in solids, assessing defect effects, etc.

6.4 General Performance Overview of Ab Initio HF Theory

6.4.1 Energetics

Because HF theory ignores correlation, and because in its ab initio (as opposed to semiem-
pirical) formulation, no attempt is made to correct for this deficiency, HF theory cannot
realistically be used to compute heats of formation. Indeed, Feller and Peterson (1998)
examined the atomization energies of 66 small molecules at the HF level using the aug-cc-
pVnZ basis sets with n = D, T, and Q, and obtained mean unsigned errors of 85, 66, and
62 kcal mol−1, respectively. Thus, even as one approaches the HF limit, the intrinsic error in
an absolute molecular energy calculation can be very large. In general, the energy associated
with any process involving a change in the total number of paired electrons is very poorly
predicted at the HF level because of the failure to account for electron correlation (cf. use
of isodesmic reactions as described in Section 10.6).

Even if the number of paired electrons remains constant but the nature of the bonds is
substantially changed, the HF level can show rather large errors. For instance, the atmospheric
reaction converting CO and HOž to Hž and CO2 is known to be exoergic with an energy
change of about −23 kcal mol−1. The HF level of theory using the STO-3G, 3-21G, 6-
31G(d,p), and near-infinite quality basis sets predicts energy changes of 34.1, 3.1, −5.8, and
−7.6 kcal mol−1, respectively, which is quite far from accurate.

Note that isomerization is a process that can change bonding substantially as well. Hehre
et al. have compared experimental data for 35 isomerization reactions to predictions from the
HF/STO-3G, HF/3-21G, and HF/6-31G(d)//HF/3-21G levels (the latter notation, w/x//y/z,
implies level of theory w with basis set x applied using a geometry optimized at level
of theory y using basis set z, i.e., a single point calculation). The isomerizations were
quite diverse, including for example acetone to methyl vinyl ether, acetaldehyde to oxetane,
formamide to nitrosomethane, and ethanethiol to dimethyl sulfide. The energy differences
spanned from 0.2 to 62.6 kcal mol−1, and the dispersion in the data (i.e., the mean absolute
error that would be generated by simply guessing the average energy difference over all
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reactions) was 12.7 kcal mol−1. The mean unsigned errors for the above noted levels were
12.3, 4.8, and 3.2 kcal mol−1, respectively. Thus, the minimal basis set does very badly,
HF/3-21G is perhaps qualitatively useful, and the final method has some utility that might
well be improved had geometry optimization taken place at the same level as the energy
evaluation. Note however that the maximum errors were 51.2, 22.6, and 11.3 kcal mol−1,
respectively, which emphasizes that average performances are no guarantee of good behavior
in any one system. For comparison, on a subset of 30 of the same isomerizations, MNDO,
AM1, and PM3 had mean unsigned errors of 9.1, 7.4, and 5.8 kcal mol−1, and maximal
errors of 42, 24, and 23 kcal mol−1, respectively.

The situation continues to improve when the changes in bonding are reduced to those
associated with conformational changes. St.-Amant, Cornell, and Kollman (1995) examined
35 different conformational energy differences in a variety of primarily organic molecules,
where the average difference in energy between conformers was 1.6 kcal mol−1; at the HF/6-
31+G(d,p)//HF/6-31G(d) level, the RMS error in predicted differences was 0.6 kcal mol−1.
A similar study on a set of eight organic molecules with an average conformational energy
difference of 2.3 kcal mol−1 has been reported by Hehre; in that instance, mean unsigned
errors of 1.0 and 0.7 kcal mol−1 were observed at the HF/3-21G(∗) and HF/6-31G(d) levels,
respectively (Hehre 1995).

Returning to the 11 glucose conformers already discussed in Chapters 2 and 5 in the
context of molecular mechanics and semiempirical models, the performance of several levels
of HF theory for predicting the relative conformer energies are listed in Table 6.2. The
mean unsigned error associated with assuming all conformers to have the average energy
is 1.2 kcal mol−1, so the best HF models do very well by comparison. Note, however, that
the small basis sets STO-3G and 3-21G do rather badly. Analysis suggests that these basis
sets, which lack polarization functions on heteroatoms, significantly overestimate the energy
of hydrogen bonds. Since the glucose conformers are characterized by differing numbers of
intramolecular hydrogen bonds, this effect significantly increases the error for these small
basis sets. Note also the interesting feature that the polarized double-ζ basis sets 6-31G(d)
and cc-pVDZ provide better predictive accuracy than the more complete cc-pVTZ and cc-
pVQZ sets. Such a situation is by no means unusual – it is often the case that basis set
incompleteness and failure to account for electron correlation introduce errors of opposite
sign. If those errors are also of similar magnitude, then fortuitously good results can be

Table 6.2 Mean unsigned errors (kcal mol−1) in 11 pre-
dicted glucose conformational energies for various basis
sets at the HF level in order of basis set size

Basis set Mean unsigned error

STO-3G 1.1
3-21G 2.0

6-31G(d) 0.2
cc-pVDZ 0.1
cc-pVTZ 0.6
cc-pVQZ 0.8



194 6 AB INITIO HARTREE–FOCK MO THEORY

obtained. A great deal of experience suggests that, very broadly speaking, polarized double-
ζ basis sets are the ones most likely to enjoy such a favorable cancellation of errors at the HF
level when it occurs. However, it is very risky to rely on this phenomenon for any particular
calculation in the absence of prior evidence that it is operative in one or more closely related
systems.

Among the simplest of conformational changes is that associated with rotation about
a single bond. Given that this process involves very small changes in bonding, electron
correlation effects on the rotation barrier are expected to be small, and indeed, even
HF theory with very small basis sets for the most part performs adequately in the
prediction of such barriers. For eight rotations about HmX-YHn single bonds, where X,Y =
{B, C, N, O, Si, S, P}, Hehre et al. found mean unsigned errors of 0.6, 0.6, and 0.3 kcal
mol−1 at the HF/STO-3G, HF/3-21G(∗) and HF/6-31G(d) levels, respectively. If H3B–NH3

is removed from the set, the error drops to 0.5, 0.2, and 0.2 kcal mol−1, respectively. The
dispersion in the data set was 0.6 kcal mol−1.

Although HF theory fares poorly in computing most reaction energies, because of the
substantial electron correlation effects associated with making/breaking bonds, it is reason-
ably robust for predicting protonation/deprotonation energies. Since the proton carries with
it no electrons, one may think of these reactions as being considerably less sensitive to
differential electron correlation in reactants and products. Provided basis sets of polarized
valence-double-ζ quality or better are used, absolute proton affinities of neutral molecules
are typically computed to an accuracy of better than 5 percent. Errors increase, however, if
the cations are non-classical (e.g., bridging protons are present) since such structures tend
to be found as minima only after accounting for electron correlation effects. Deprotonation
energies of neutral compounds are computed with similar absolute accuracy (±8 kcal/mol
or so) so long as diffuse functions are included in the basis set to balance the description of
the anion. If smaller basis sets are used, very large errors are observed.

Another fairly conservative ‘reaction’ is the removal or attachment of a single electron
from/to a molecule. As already discussed in Chapter 5, Koopmans’ theorem equates the
energy of the HOMO with the negative of the IP. This approximation ignores the effect of
electronic relaxation in the ionized product, i.e., the degree to which the remaining electrons
redistribute themselves following the detachment of one from the HOMO. If we were to
calculate the IP as the difference in HF energies for the closed-shell neutral and the open-shell
product, we would obtain the so-called �SCF IP

IP�SCF = EHF(A
+ž

) − EHF(A) (6.11)

where orbital relaxation is included. Including relaxation results in a smaller predicted IP,
since relaxation lowers the energy of the cation radical relative to the neutral (the HOMO
energy used in Koopmans’ theorem derives from orbitals already fully relaxed for the
neutral). Note, however, that the neutral species has one more electron than the radical
cation, and thus there will be larger electron correlation effects. By ignoring these effects
through the use of HF theory, we destabilize the neutral more than the radical cation, and too
small an IP is expected in any case. Thus, Koopmans’ theorem benefits from a cancellation
of errors: the orbital relaxation and the electron correlation effects offset one another (see, for
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example, Maksic and Vianello 2002). In practice, the cancellation can be remarkably good;
Koopmans’ theorem IPs are often within 0.3 eV or so of experiment provided basis sets of
polarized valence-double-ζ quality or better are used in the HF calculation. However, this
favorable cancellation begins to break down if IPs are computed for orbitals other then the
HOMO. As more tightly held electrons are ionized, particularly core electrons, the relaxation
effects are much larger than the correlation effects, and Koopmans’ approximation should
not be used.

Koopmans’ theorem can be formally applied to electron affinities (EAs) as well, i.e., the
EA can be taken to be the negative of the orbital energy of the lowest unoccupied (virtual)
orbital. Here, however, relaxation effects and correlation effects both favor the radical anion,
so rather than canceling, the errors are additive, and Koopmans’ theorem estimates will
almost always underestimate the EA. It is thus generally a better idea to compute EAs from
a �SCF approach whenever possible.

A key point meriting discussion is the use of HF theory to model systems where two
or more molecules are in contact, held together by non-bonded interactions. Such interac-
tions in actual physical systems include electrostatic interactions between permanent and
induced charge distributions, dispersion, and hydrogen bonding (the latter includes both of
the prior two in addition to some possible degree of covalent interaction). It is impor-
tant to note that HF theory is formally incapable of modeling dispersion, because this
phenomenon is entirely a consequence of electron correlation, for which HF theory fails to
account. Nevertheless, bimolecular interaction energies are often reasonably well predicted
by HF theory, particularly with basis sets like 6-31G(d) and others of similar size. As
might be expected based on preceding discussion, this again reflects a cancellation of
errors.

Clearly, failure to account for dispersion would be expected to strongly reduce inter-
molecular interactions, so the remaining errors must be in the direction of overbinding. In
this instance, there are two chief contributors to overbinding. The first is that, as noted in
Section 6.4.3, HF charge distributions tend to be overpolarized, which gives rise to electro-
static interactions that are somewhat too large. The second effect is more technical in nature,
and is referred to as ‘basis set superposition error’ (BSSE). If we consider a bimolecular
interaction, the HF interaction energy can be trivially defined as

�Ebind = Ea∪b
HF (AžB) − Ea

HF(A) − Eb
HF(B) (6.12)

where a and b are the basis functions associated with molecules A and B, respectively.
Note that if a and b are not both infinite basis sets, then there are more basis functions
employed in the calculation of the complex than in either of the monomers. The greater
flexibility of the basis set for the complex can provide an artifactual lowering of the energy
when one of the monomers ‘borrows’ basis functions of the other to improve its own wave
function.

One method proposed to correct for this phenomenon is the so-called counterpoise (CP)
correction. Although some variations exist, one popular approach defines the CP corrected
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interaction energy as

�ECP
bind = Ea∪b

HF (AžB)AžB − Ea∪b
HF (A)AžB − Ea∪b

HF (B)AžB

+ [Ea
HF(A)AžB − Ea

HF(A)A] + [Eb
HF(B)AžB − Eb

HF(B)B]
(6.13)

where the subscripts appearing after the molecular species describe the geometry employed.
Thus, in the first line on the r.h.s., the energy of bringing the two monomers together, each
monomer already having the geometry it has in the complex, is computed using a consistent
basis set. Thus, in the monomer calculations, basis functions for the missing partner are
included in the calculation, even though the nuclei on which those functions are centered
are not actually there – such basis functions are sometimes called ghost functions. Since the
ghost functions slightly lower the energies of the monomers, the overall binding energy is
less than would be the case if they were not to be used. The second line on the r.h.s. of
Eq. (6.13) then accounts for the energy required to distort each monomer from its preferred
equilibrium structure to the structure found in the complex. Since it is not obvious where to
put the ghost functions when the monomer adopts its equilibrium geometry, the geometry-
distortion energies are computed using only the nuclei-centered monomer basis sets.

However, it must be noted that the borrowing of basis functions is only partly a mathemat-
ical artifact. To the extent that some charge transfer and charge polarization take place as part
of forming the bimolecular complex, some of the borrowing simply reflects chemical reality.
Thus, CP correction always overestimates the BSSE, and there is no clear way to correct for
this overestimation. Indeed, Masamura (2001) has found from analysis of ion-hydrate clusters
that interaction energies computed with basis sets of augmented-polarized-double-ζ quality
or better were in closer agreement with complete basis-set results before CP correction than
after. As a result, there tend to be two schools of thought on how best to deal with BSSE.
Some researchers prefer to spend the time that would be required for CP correction instead on
the evaluation of Eq. (6.12) with a more saturated basis set. Since, in the limit of an infinite
basis, Eqs. (6.12) and (6.13) are equivalent, a demonstration of convergence of Eq. (6.12)
with respect to basis-set size is a reasonable indication of accuracy, at least at the HF level.

6.4.2 Geometries

Optimization of the molecular geometry at the HF level appears at first sight to be a daunting
task because of the difficulty of obtaining analytic derivatives (see Section 2.4.1). To take
the first derivative of Eq. (4.54) with respect to the motion of an atom, we can exhaustively
apply the chain rule term by term. Thus, we must determine derivatives of basis functions
and operators with respect to a particular coordinate, and this is not so hard, but we also
need to know the derivatives of the density matrix elements with respect to atomic motion,
and these derivatives are not obvious at all. However, Pulay (1969) discovered an elegant
connection between these very complicated derivatives and the much simpler derivatives of
the overlap matrix (which depend only on analytically known basis function derivatives).
This breakthrough led to rapid developments in computing higher-order derivatives and
optimization algorithms, and as a result, HF geometries are now quite efficiently available.
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For minimum-energy structures, HF geometries are usually very good when using basis
sets of relatively modest size. For basis sets of polarized valence-double-ζ quality, errors
in bond lengths between heavy atoms average about 0.03 Å, and between heavy atoms
and H about 0.015 Å. Bond angles are predicted to an average accuracy of about 1.5◦,
and dihedral angles are also generally well predicted, although available experimental data
in the gas phase are scarce. Even with the 3-21G(∗) basis set, this accuracy is not much
degraded.

To the extent that HF theory is in error, it tends to overemphasize occupation of bonding
orbitals (see Chapter 7). Thus, errors tend to be in the direction of predicting bonds to be
too short, and this effect becomes more pronounced as one proceeds to saturated basis sets;
Feller and Peterson (1998) observed predicted geometries at the HF level to degrade in
quality with increasing basis-set size in the series aug-cc-pVnZ using n = D, T, Q. A good
example is the case of the monocyclic singlet diradical 1,3-didehydrobenzene (Figure 6.11).
RHF theory erroneously predicts this molecule to be bicyclic with a formal single bond
between the radical positions.

There are some additional pathological cases that must be borne in mind in evaluating the
quality of predicted HF geometries for minima. As already noted, polarization functions are
absolutely required for geometric accuracy in systems characterized by hypervalent bonding;
failure to include polarization functions on heteroatoms with single lone pairs can also cause
them to be insufficiently pyramidalized. Furthermore, in systems crowding many pairs of
non-bonding electrons into small regions of space (e.g., the four oxygen lone pairs in a
peroxide) electron correlation effects on geometries, ignored by HF theory, can begin to be
large, so some caution is warranted here as well. Finally, dative bonds (i.e., those where both
electrons in the bonding pair formally come from only one of the atoms) are often poorly
described at the HF level. For instance, at the HF/6-31G(d) level, the B–C and B–N distances
in the complexes H3BžCO and H3BNH3 are predicted to be too long by about 0.1 Å.

Geometries of TS structures are not readily available from experiment, but a fairly
substantial body of theoretical work permits comparisons to be made with very high-level
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Figure 6.11 Structures of 1,3-didehydrobenzene (m-benzyne) from experiment and RHF calculations.
Because of its tendency to overemphasize bonding interactions, RHF optimization results in a bicyclic
structure. While the RHF error in bond length is very large, it should be noted that the ‘bond-stretching’
coordinate is known to be very flat (for very detailed analyses on the sensitivity of this system to
different theoretical levels, see Kraka et al. 2001 and Winkler and Sander 2001)
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Figure 6.12 The anti-SN2′ reaction of chloride with allyl chloride. While RHF theory does well
with the reactant/product geometries, it significantly overestimates the C–Cl bond lengths in the C2

symmetric TS structure based on calculations at more reliable levels of theory

calculations. In the case of TS structures, the failure of HF theory to account for elec-
tron correlation can be more problematic, since correlation effects in partial bonds can be
large. For example, the difference in C–Cl bond lengths predicted at the HF/6-31G(d) and
higher levels of theory is more than 0.2 Å for the anti-SN2′ reaction of chloride anion with
allyl chloride (Figure 6.12). Although this single example provides an indication of how
large differences can be, Wiest, Montiel, and Houk (1997) have analyzed TS structures for
many different organic reactions, particularly electrocyclic reactions, and have inferred that
in such instances HF/6-31G(d) TS structures are generally of good quality. Nevertheless,
the variation in possible bonding situations in TS structures is such that comparison of HF
structures with those obtained at better levels of theory is almost always worthwhile in order
to ensure quality.

As for the energies of non-bonded complexes, the failure of HF theory to account for
dispersion tends to make such complexes too loose in structure, i.e., intermolecular distances
are unrealistically large. Hydrogen bonded structures, on the other hand, are often quite
good because errors in overestimating electrostatic interactions cancel the failure to account
for dispersion. The HF structures show the expected preference for linear bond angles at
hydrogen, when such are possible, and further exhibit reasonable distances between donor
and acceptor heavy atoms in most instances.

6.4.3 Charge Distributions

HF dipole moments tend to be fairly insensitive to increases in basis-set size beyond
valence-double-ζ . With such basis sets, there is a systematic error in dipole moment
estimation – typically the magnitude of the dipole is overestimated by 10–25 percent, i.e.,
molecules are predicted to be too polar. Individual exceptions to this rule exist, of course.
In an absolute sense, Scheiner, Baher, and Andzelm (1997) explored the performance of
HF/6-31G(d,p) for 108 molecules and obtained a mean unsigned error of 0.23 D.

Results are erratic with smaller basis sets, in part due to lower quality wave func-
tions and in part due to poorer geometries, which affect the dipole moment. An exception
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is the economical MIDI! basis set for which, as noted above, heteroatom d exponents
were specifically optimized so that high-quality geometries and charge distributions (instead
of minimal energies) are obtained from the HF wave function. Electrostatic potentials
computed with MIDI! also give good agreement with correlated levels of electronic structure
theory.

A more complete discussion of charge distributions is deferred until Chapter 9. The perfor-
mance of HF theory for other molecular properties is also presented in more detail there.

6.5 Case Study: Polymerization of 4-Substituted
Aromatic Enynes

Synopsis of Ochiai, Tomita, and Endo (2001) ‘Investigation on Radical Polymerization Be-
havior of 4-Substituted Aromatic Enynes. Experimental, ESR, and Computational Studies’.

One strategy for making highly functionalized polymers is first to carry out poly-
merization of a system bearing functionalizable appendages, and then after polymeriza-
tion to react those appendages to introduce new functionality into the polymer. Such an
approach can be advantageous in instances where the monomer that would in principle
lead directly to the functionalized polymer fails itself to be useful as a polymerization
substrate.

Ochiai and co-workers developed an experimental protocol for the radical polymerization
of one such reactive monomer, 4-phenylbut-1-en-3-yne. As illustrated in Figure 6.13, this
polymerization creates a polyethylene chain functionalized with phenylethynyl substituents.

A factor that affects the kinetics of the polymerization, and, more critically, the utility
of the monomer in copolymerizations with other monomers, e.g., methyl methacrylate,
is the stability of the radical formed from addition of the growing polymer chain to
the vinyl terminus. In order to gauge the stabilizing effect of the phenylethynyl group,
and the sensitivity of the stabilization to substitution at the para position of the aromatic
ring, Ochiai and co-workers carried out calculations at the UHF/3-21G level to evaluate
(i) the spin density in the 1-phenylprop-1-yn-3-yl radical and (ii) the reaction energy for the
process

RCH3 + CH3
ž → RCH2

ž + CH4 (6.14)

where R was varied over a number of different functional groups. This so-called isodesmic
reaction (see Section 10.4.3) essentially computes the C–H bond energy for the substituted
system relative to the C–H bond energy in methane, thereby reducing absolute errors that
would be associated with a small HF calculation for an absolute bond energy.

The spin density calculation, which analyzes the difference between each atom’s Mulliken
population (see Section 9.1.3.2) of α and β electrons, indicated the unpaired electron to
be highly delocalized, with populations on the ortho and para carbons of the phenyl
ring nearly equal to that found on the formal radical position (these large positive spin
densities were balanced by large negative spin densities on the intervening carbon atoms,
which is a typically observed situation). HF theory tends to overpolarize spin, so the
magnitude of the spin polarization is probably not trustworthy, but the large degree of
delocalization is probably qualitatively reasonable. The prediction that the ring para posi-
tion carries substantial spin was found to be consistent with copolymerization reactivity
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Figure 6.13 Radical polymerization of a growing polymer chain in the presence of two distinct
monomers (i.e., copolymerization conditions) can at every step incorporate one monomer or
the other. How might one quantitatively go about estimating the intrinsic preference for one
monomer over the other? What other molecular properties expected to correlate with this discrim-
ination might be subject to computation?

studies that showed substantial sensitivity to the presence of the para substituents MeO,
Me, Cl, and CF3.

One measure of the resonance component of radical stability in polymerizations is the so-
called Q value of the monomer, which quantifies the resonance stabilization of the radical
(Stevens 1990). However, the experimentally determined value of Q can be influenced
by other factors unrelated to resonance. To evaluate the extent to which their measured
Q values were consistent with resonance stabilization of the monomer radical, the authors
compared isodesmic energies from Eq. (6.14) to measured Q values for R = Me, tBu, PhO,
CN, Ph, vinyl, and phenylethynyl. The largest stabilization energy was computed for the
R = phenylethynyl case, about 101 kJ mol−1, although at the HF/3-21G level the expected
linear correlation between logQ and stabilization energy was only fair (R2 = 0.86; a better
correlation for the non-phenylethynyl substituents had been obtained previously at a higher
level of theory).

The authors also considered the relative influence of para substitution in the
phenylethynyl compared to simply phenyl (i.e., compared to the analogous styrenes). They
found that over the four substituents noted above, the stabilization energy from Eq. (6.14)
varied by 5.2 kJ mol−1 for phenylethynyl and 7.0 kJ mol−1 for phenyl. Thus, insertion of
the acetylene unit between the radical center and the aromatic ring is predicted to decrease
the influence of the aryl substituent by only about 25 percent.

This study employs HF theory to answer only very qualitative questions, which is
appropriate given the typically rather poor accuracy of the model in the absence of
accounting for electron correlation. Future use of HF/3-21G to predict Q values for
monomers not yet experimentally characterized might be worthwhile, but quantitative
differences between monomers should not be taken particularly seriously except to the
extent they may be categorized as large, medium, or small.
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7
Including Electron Correlation in
Molecular Orbital Theory

7.1 Dynamical vs. Non-dynamical Electron Correlation

Hartree–Fock theory makes the fundamental approximation that each electron moves in the
static electric field created by all of the other electrons, and then proceeds to optimize orbitals
for all of the electrons in a self-consistent fashion subject to a variational constraint. The
resulting wave function, when operated upon by the Hamiltonian, delivers as its expectation
value the lowest possible energy for a single-determinantal wave function formed from the
chosen basis set.

It is important to note that there is a key distinction between the Hamiltonian operator and
the Fock operator. The former operator returns the electronic energy for the many-electron
system; the latter is really not a single operator, but the set of all of the interdependent
one-electron operators that are used to find the one-electron MOs from which the HF wave
function is constructed as a Slater determinant.

So, the question arises of how we might modify the HF wave function to obtain a lower
electronic energy when we operate on that modified wave function with the Hamiltonian.
By the variational principle, such a construction would be a more accurate wave function.
We cannot do better than the HF wave function with a single determinant, so one obvious
choice is to construct a wave function as a linear combination of multiple determinants, i.e.,

� = c0�HF + c1�1 + c2�2 + · · · (7.1)

where the coefficients c reflect the weight of each determinant in the expansion and also
ensure normalization. For the moment, we will ignore the nature of the determinants, other
than the first one, which is the HF determinant. A general expansion does not have to include
the HF determinant, but since the HF wave function seems to be a reasonable one for many
purposes, it is useful to think of it as a leading term in any more complete wave function.

For the majority of the chemical species we have discussed thus far, the chief error in the
HF approximation derives from ignoring the correlated motion of each electron with every
other. This kind of electron correlation is called ‘dynamical correlation’ because it refers
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to the dynamical character of the electron–electron interactions. Empirically, it is observed
that for most systems the HF wave function dominates in the linear combination expressed
by Eq. (7.1) (i.e., c0 is much larger than any other coefficient); even though the correlation
energy may be large, it tends to be made up from a sum of individually small contributions
from other determinants.

However, in some instances, one or more of these other determinants may have coefficients
of similar magnitude to that for the HF wave function. It is easiest to illustrate this by
consideration of a specific example. Consider the closed-shell singlet wave function for
trimethylenemethane (TMM, Figure 7.1). TMM is a so-called non-Kekulé molecule – in
D3h symmetry, it has two degenerate frontier orbitals for which only two electrons are
available. Following a molecular analog of Hund’s rule, the molecule has a triplet ground
state (i.e., the lowest energy state has one spin-aligned electron in each degenerate orbital),
but here we are concerned with the closed-shell singlet.

If we carry out a restricted HF calculation, one or other of the degenerate frontier pair
will be chosen to be occupied, the calculation will optimize the shapes of all of the occupied
orbitals, and we will end up with a best possible single-Slater-determinantal wave function
formed from those MOs. But it should be fairly obvious that an equally good wave function

p1

p4

p2

E

H

H H

H

HH

trimethylenemethane (TMM)

p3

Four p electrons
to be placed in
four p orbitals

Figure 7.1 The π orbital system of TMM. Orbitals π2 and π3 are degenerate when TMM adopts
D3h symmetry
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might have been formed if the original guess had chosen to populate the other of the
two degenerate frontier orbitals. Thus, we might expect each of these two different RHF
determinants to contribute with roughly equal weight to an expansion of the kind represented
by Eq. (7.1). This kind of electron correlation, where different determinants have similar
weights because of near (or exact) degeneracy in frontier orbitals, is called ‘non-dynamical
correlation’ to distinguish it from dynamical correlation. This emphasizes that the error here
is not so much that the HF approximation ignores the correlated motion of the electrons, but
rather that the HF process is constructed in a fashion that is intrinsically single-determinantal,
which is insufficiently flexible for some systems.

This chapter begins with a discussion of how to include non-dynamical and dynamical
electron correlation into the wave function using a variety of methods. Because the mathe-
matics associated with correlation techniques can be extraordinarily opaque, the discussion
is deliberately restricted for the most part to a qualitative level; an exception is Section 7.4.1,
where many details of perturbation theory are laid out – those wishing to dispense with those
details can skip this subsection without missing too much. Practical issues associated with the
employ of particular techniques are discussed subsequently. At the end of the chapter, some
of the most modern recipes for accurately and efficiently estimating the exact correlation
energy are described, and a particular case study is provided.

7.2 Multiconfiguration Self-Consistent Field Theory

7.2.1 Conceptual Basis

Continuing with our TMM example, let us say that we have carried out an RHF calculation
where the frontier orbital that was chosen to be occupied was π2. The determinant resulting
after optimization will be

�RHF = | · · · π2
1 π2

2 π0
3 〉 (7.2)

and orbital π3 will be empty (i.e., a virtual orbital). We emphasize this by including it
in the Slater determinant with an occupation number of zero, although this notation is not
standard. We might generate the alternative determinant by keeping the same MOs but simply
switching the occupation numbers, i.e.,

�π2→π3 = | · · · π2
1 π0

2 π2
3 〉 (7.3)

An alternative, however, would be to require the RHF calculation to populate π3 in the initial
guess, in which case we would determine

� ′
RHF = | · · ·π ′2

1π
′0
2π

′2
3〉 (7.4)

where the prime on the wave function and orbitals emphasizes that, since different orbitals
were occupied during the SCF process, the shapes of all orbitals will be different comparing
one RHF wave function to the other.



206 7 INCLUDING ELECTRON CORRELATION IN MO THEORY

If we were to compare the energies of the wave functions from Eqs. (7.2), (7.3), and
(7.4), we would find the energies of the first and third to be considerably lower than that
of the second. Since the real system has degenerate frontier orbitals (neglecting Jahn–Teller
distortion), it seems reasonable that the energies of wave functions Eq. (7.2) and Eq. (7.4)
are similar, but why is the energy of Eq. (7.3) higher? The problem lies in the nature of the
SCF process. Only occupied orbitals contribute to the electronic energy – virtual orbitals do
not. As such, there is no driving force to optimize the shapes of virtual orbitals; all that is
required is that they be orthogonal to the occupied MOs. Thus, the quality of the shape of
orbital π3 depends on whether it is determined as an occupied or a virtual orbital.

From the nature of the system, however, we would really like π2 and π3 to be treated
equivalently during the orbital optimization process. That is, we would like to find the best
orbital shapes for these MOs so as to minimize the energy of the two-configuration wave
function

�MCSCF = a1| · · · π2
1 π2

2 〉 + a2| · · · π2
1 π2

3 〉 (7.5)

where a1 and a2 account for normalization and relative weighting (and we expect them
to be equal for D3h TMM). Such a wave function is a so-called ‘multiconfiguration self-
consistent-field’ (MCSCF) one, because the orbitals are optimized for a combination of
configurations (the particular case where the expansion includes only two configurations is
sometimes abbreviated TCSCF).

As a technical point, a ‘configuration’ or ‘configuration state function’ (CSF) refers to the
molecular spin state and the occupation numbers of the orbitals. For closed-shell singlets,
CSFs can always be represented as single determinants, so the terms can be used somewhat
loosely. In many open-shell systems, however, proper CSFs can only be represented by
a combination of two or more determinants (see Eq. (6.10), for example). MCSCF theory
is designed to handle both multiple configurations and the possible multi-determinantal
character of individual configurations. In that sense, MCSCF is a generalization of ROHF
theory, which can handle multiple determinants but is not capable of handling multiple CSFs.

In general, then, an MCSCF calculation involves a specification of what MOs may be
occupied in the CSFs appearing in the expansion of Eq. (7.1). Given that specification, the
formalism finds a variational optimum for the shape of each MO (as a linear combination
of basis functions) and for the weight of each CSF in the MCSCF wave function.

Because a particular ‘active’ orbital may be occupied by zero, one, or two electrons in
any given determinant, these MCSCF orbitals do not have unique eigenvalues associated
with them, i.e., one cannot discuss the energy of the orbital. Instead, one can describe the
‘occupation number’ of each such orbital i as

(occ. no.)i,MCSCF =
CSFs∑

n

(occ. no.)i,na
2
n (7.6)

where the sum runs over all CSFs and the occupation number of the orbital in each CSF is
multiplied by the percentage contribution of that CSF to the total wave function. Because
of the orthogonality of the CSFs, for a normalized MCSCF wave function the sum of the
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squares of all CSF coefficients is unity and the percent contribution of any CSF to the wave
function is simply its expansion coefficient squared.

MCSCF calculations in practice require much more technical expertise than do single-
configuration HF analogs. One particularly difficult problem is that spurious minima in
coefficient space can often be found, instead of the variational minimum. Thus, convergence
criteria are met for the self-consistent field, but the wave function is not really optimized. It
usually requires a careful inspection of the orbital shapes and, where available, some data
on relative energetics between related species or along a reaction coordinate to ascertain if
this has happened.

A different issue requiring careful attention is how to go about selecting the orbitals that
should be allowed to be partially occupied, and how to specify the ‘flexibility’ of the CSF
expansion. We turn to this issue next.

7.2.2 Active Space Specification

Selection of orbitals to include in an MCSCF requires first and foremost a consideration of
the chemistry being examined. For instance, in the TMM example above, a two-configuration
wave function is probably not a very good choice in this system. When the orbitals being
considered belong to a π system, it is typically a good idea to include all of them, because
as a rule they are all fairly close to one another in energy. Thus, a more complete active
space for TMM would consider all four π orbitals and the possible ways to distribute the
four π electrons within them. MCSCF active space choices are often abbreviated as ‘(m,n)’
where m is the number of electrons and n is the number of orbitals, so this would be a (4,4)
calculation.

Sometimes reaction coordinates are studied that involve substantial changes in bonding.
In such an instance, it is critical that a consistent choice of orbitals be made. For instance,
consider the electrocyclization of 1,3-butadiene to cyclobutene (Figure 7.2). The frontier
orbitals of butadiene are those associated with the π system, so, as just discussed, a (4,4)
approach seems logical. However, the electrocyclization reaction transforms the two π bonds
into one different π bond and one new σ bond. Thus, a consistent (4,4) choice in cyclobutene
would involve the π and π* orbitals and the σ and σ* orbitals of the new single bond.

frontier orbitals

p1, p2, p3, p4

active orbitals
p, p*, s, s*diabatic correlation

Figure 7.2 The frontier orbitals of s-cis-1,3-butadiene are the four π orbitals (π2 is the specific
example shown). If these orbitals are followed in a diabatic sense along the electrocyclization reaction
coordinate, they correlate with the indicated orbitals of cyclobutadiene
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While these orbitals would be easy to identify in butadiene and cyclobutene, it might be
considerably more difficult to choose the corresponding orbitals in a TS structure, where
symmetry is lower and mixing of σ and π character might complicate identification.

The next question to consider is how generally to allow the distribution of the electrons
in the active space. Returning to TMM, it is clear that we want the CSFs already listed
in Eq. (7.5), but in a (4,4) calculation, we might also want to be still more flexible, e.g.,
considering as the most important four perhaps

�MCSCF = a1| · · · π2
1 π2

2 π0
3 π0

4 〉 + a2| · · · π2
1 π0

2 π2
3 π0

4 〉
+ a3| · · ·π2

1 π0
2 π0

3 π2
4 〉 + a4| · · ·π0

1 π2
2 π2

3 π0
4 〉

(7.7)

where we have again included orbitals with occupation numbers of zero in the notation
for clarity. If we ignore symmetry for the moment, we could also take account of possibly
important CSFs having partially occupied orbitals, e.g.,

�MCSCF = a1| · · · π2
1 π2

2 π0
3 π0

4 〉 + a2| · · ·π2
1 π0

2 π2
3 π0

4 〉 + a3| · · ·π2
1 π0

2 π0
3 π2

4 〉
+ a4| · · ·π0

1 π2
2 π2

3 π0
4 〉 + a5

(| · · · π2
1 π1

2 π1
3π

0
4 〉 + | · · ·π2

1 π1
2π

1
3 π0

4 〉) (7.8)

where the electron in a singly occupied orbital has α spin unless the orbital has a bar over it,
in which case it has β spin. Note again that the open-shell singlet appearing after coefficient
a5 requires two determinants to specify.

If we were to try to decide, based on any more or less rational approach, which CSFs
to include in some particular expansion along the lines of Eq. (7.8), this would constitute a
general MCSCF calculation. However, an alternative to picking and choosing amongst CSFs
is simply to include all possible configurations in the expansion. In general, the number
N of singlet CSFs that can be formed from the distribution of m electrons in n orbitals is
determined as

N = n! (n + 1)!(m

2

)
!
(m

2
+ 1

)
!
(
n − m

2

)
!
(
n − m

2
+ 1

)
!

(7.9)

In the case of m = n = 4, N = 20 (it is a mildly diverting exercise to try to generate all 20 by
hand). Permitting all possible arrangements of electrons to enter into the MCSCF expansion
is typically referred to as having chosen a ‘complete active space’, and such calculations are
said to be of the CASSCF, or just CAS, variety.

Notice that the factorial functions appearing in Eq. (7.9) quickly have daunting conse-
quences. What if we were interested in carrying out a CASSCF calculation on methanol
(CH3OH) including all of the valence electrons in the active space? Such a calculation
would be a (14,12) CAS (14 valence electrons, 5 pairs of σ and σ ∗ orbitals corresponding
to the single bonds, and 2 oxygen lone pair orbitals). Neglecting symmetry, the total number
of CSFs, from Eq. (7.9), would be 169 884. Recalling that the nature of the MCSCF process
is to simultaneously optimize the MO coefficients and all of the CSF coefficients, one might
imagine that such a calculation would be rather taxing. Indeed, CASSCF calculations on
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systems having more than 1 000 000 CSFs are extraordinarily demanding of resources and
are rarely undertaken.

Various schemes exist to try to reduce the number of CSFs in the expansion in a rational
way. Symmetry can reduce the scope of the problem enormously. In the TMM problem,
many of the CSFs having partially occupied orbitals correspond to an electronic state
symmetry other than that of the totally symmetric irreducible representation, and thus make
no contribution to the closed-shell singlet wave function (if symmetry is not used before
the fact, the calculation itself will determine the coefficients of non-contributing CSFs to
be zero, but no advantage in efficiency will have been gained). Since this application of
group theory involves no approximations, it is one of the best ways to speed up a CAS
calculation.

An alternative approach is taken with a formalism known as generalized valence bond
(GVB). In a typical CASSCF calculation, one first carries out an HF calculation, and then
expresses the CSFs in those orbitals for use in the MCSCF process. To improve convergence,
one often undertakes a localization of the canonical HF virtual orbitals (which are otherwise
rather diffuse, particularly with large basis sets), so that they are more chemically realistic (see
Appendix D for more information on orbital localization schemes). Such a transformation of
the orbitals is rigorously permitted and has no effect on wave function expectation values.
In the case of GVB, in contrast to CASSCF, not only are the virtual orbitals localized but so
too are the occupied orbitals. Thus, to the maximum extent possible, the transformed orbitals
look like the canonical bonds, lone pairs, and anti-bonds of valence bond theory, i.e., like
Lewis structures. In GVB, only excitations from certain occupied to certain unoccupied
orbitals are allowed. For instance, in the so-called perfect-pairing (PP) scheme, the pair
of electrons in any bonding orbital is allowed to excite only as a pair, and only into the
corresponding antibonding orbital (assuming it is empty). The motivation, then, is to try
to capture in an efficient and chemically localized way the most important contributions to
non-dynamical correlation. Some mathematical difficulties arise in the GVB scheme because
the localized orbitals are not necessarily orthogonal, but the method can be quite fast because
of the reduced number of configurations, and one hopes that the retained configurations are
the most chemically important ones.

Another means to reduce the scale of the problem is to shrink the size of the CAS
calculation, but to allow a limited number of excitations from/to orbitals outside of the CAS
space. This secondary space is called a ‘restricted active space’ (RAS), and usually the
excitation level is limited to one or two electrons. Thus, while all possible configurations
of electrons in the CAS space are permitted, only a limited number of RAS configurations
is possible. Remaining occupied and virtual orbitals, if any, are restricted to occupation
numbers of exactly two and zero, respectively.

There is one other step sometimes taken to make the CAS/RAS calculation more efficient,
and that is to freeze the shapes of the core orbitals to those determined at the HF level.
Thus, there may be four different types of orbitals in a particular MCSCF calculation: frozen
orbitals, inactive orbitals, RAS orbitals, and CAS orbitals. Figure 7.3 illustrates the situation
in detail. Again, symmetry is the theoretician’s friend in keeping the size of the system
manageable in favorable cases.
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E

frozen HF
virtual orbitals

enforced empty

no more than
n excitations
in permitted

Complete active space
all possible
occupation

schemes allowed

no more than
n excitations
out permitted

enforced doubly
occupied

frozen HF
occupied orbitals

restricted
active
space

Figure 7.3 Possible assignment of different orbitals in a completely general MCSCF formalism.
Frozen orbitals are not permitted to relax from their HF shapes, in addition to having their occupation
numbers of zero (virtual) or two (occupied) enforced

While all of the above details are useful for making calculations more efficient, they still
are not necessarily very helpful in evaluating just which orbitals should be included in any
given space. Typically, a certain amount of trial and error is required in the selection of an
active space. After selection of a given active space and convergence of the MCSCF wave
function, one should inspect the occupation numbers of the active orbitals. A reasonable
rule of thumb is that any orbital having an occupation number greater than 1.98 or less
than 0.02 is not important enough to include in the CAS space, and should be removed to
avoid instability. In addition, of course, it may be wise to add some orbitals not previously
considered to see if their occupation numbers justify inclusion in the active space. And,
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clearly, if one is considering a reaction coordinate or a series of isomers, the active space
must be balanced, so any orbital contributing significantly in one calculation should probably
be used in all calculations. While methods to include dynamical correlation after an MCSCF
calculation can help to make up for a less than optimal choice of active space, it is best not
to rely on this phenomenon.

7.2.3 Full Configuration Interaction

Having discussed ways to reduce the scope of the MCSCF problem, it is appropriate to
consider the other limiting case. What if we carry out a CASSCF calculation for all elec-
trons including all orbitals in the complete active space? Such a calculation is called ‘full
configuration interaction’ or ‘full CI’. Within the choice of basis set, it is the best possible
calculation that can be done, because it considers the contribution of every possible CSF.
Thus, a full CI with an infinite basis set is an ‘exact’ solution of the (non-relativistic,
Born–Oppenheimer, time-independent) Schrödinger equation.

Note that no reoptimization of HF orbitals is required, since the set of all possible CSFs
is ‘complete’. However, that is not much help in a computational efficiency sense, since the
number of CSFs in a full CI can be staggeringly large. The trouble is not the number of
electrons, which is a constant, but the number of basis functions. Returning to our methanol
example above, if we were to use the 6-31G(d) basis set, the total number of basis functions
would be 38. Using Eq. (7.9) to determine the number of CSFs in our (14,38) full CI we
find that we must optimize 2.4 × 1013 expansion coefficients (!), and this is really a rather
small basis set for chemical purposes.

Thus, full CI calculations with large basis sets are usually carried out for only the smallest
of molecules (it is partly as a result of such calculations that the relative contributions to
basis-set quality of polarization functions vs. decontraction of valence functions, as discussed
in Chapter 6, were discovered). In larger systems, the practical restriction to smaller basis
sets makes full CI calculations less chemically interesting, but such calculations remain
useful to the extent that, as an optimal limit, they permit an evaluation of the quality of
other methodologies for including electron correlation using the same basis set. We turn
now to a consideration of such other methods.

7.3 Configuration Interaction
7.3.1 Single-determinant Reference

If we consider all possible excited configurations that can be generated from the HF deter-
minant, we have a full CI, but such a calculation is typically too demanding to accomplish.
However, just as we reduced the scope of CAS calculations by using RAS spaces, what if
we were to reduce the CI problem by allowing only a limited number of excitations? How
many should we include? To proceed in evaluating this question, it is helpful to rewrite
Eq. (7.1) using a more descriptive notation, i.e.,

� = a0�HF +
occ.∑
i

vir.∑
r

ar
i �

r
i +

occ.∑
i<j

vir.∑
r<s

ars
ij �rs

ij + · · · (7.10)
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where i and j are occupied MOs in the HF ‘reference’ wave function, r and s are virtual
MOs in �HF, and the additional CSFs appearing in the summations are generated by exciting
an electron from the occupied orbital(s) indicated by subscripts into the virtual orbital(s)
indicated by superscripts. Thus, the first summation on the r.h.s. of Eq. (7.10) includes all
possible single electronic excitations, the second includes all possible double excitations, etc.

If we assume that we do not have any problem with non-dynamical correlation, we may
assume that there is little need to reoptimize the MOs even if we do not plan to carry
out the expansion in Eq. (7.10) to its full CI limit. In that case, the problem is reduced to
determining the expansion coefficients for each excited CSF that is included. The energies
E of N different CI wave functions (i.e., corresponding to different variationally determined
sets of coefficients) can be determined from the N roots of the CI secular equation∣∣∣∣∣∣∣∣∣

H11 − E H12 . . . H1N

H21 H22 − E . . . H2N

...
...

. . .
...

HN1 NN2 . . . HNN − E

∣∣∣∣∣∣∣∣∣
= 0 (7.11)

where
Hmn = 〈�m|H |�n〉 (7.12)

H is the Hamiltonian operator and the numbering of the CSFs is arbitrary, but for conve-
nience we will take �1 = �HF and then all singly excited determinants, all doubly excited,
etc. Solving the secular equation is equivalent to diagonalizing H, and permits determination
of the CI coefficients associated with each energy. While this is presented without derivation,
the formalism is entirely analogous to that used to develop Eq. (4.21).

To solve Eq. (7.11), we need to know how to evaluate matrix elements of the type defined
by Eq. (7.12). To simplify matters, we may note that the Hamiltonian operator is composed
only of one- and two-electron operators. Thus, if two CSFs differ in their occupied orbitals
by 3 or more orbitals, every possible integral over electronic coordinates hiding in the r.h.s.
of Eq. (7.12) will include a simple overlap between at least one pair of different, and hence
orthogonal, HF orbitals, and the matrix element will necessarily be zero. For the remaining
cases of CSFs differing by two, one, and zero orbitals, the so-called Condon–Slater rules,
which can be found in most quantum chemistry textbooks, detail how to evaluate Eq. (7.12)
in terms of integrals over the one- and two-electron operators in the Hamiltonian and the
HF MOs.

A somewhat special case is the matrix element between the HF determinant and a singly
excited CSF. The Condon–Slater rules applied to this situation dictate that

H1n = 〈�HF|H |�r
i 〉

= 〈φr |F |φi〉
(7.13)

where F is the Fock operator and i and r are the occupied and virtual HF orbitals in the
single excitation. Since these orbitals are eigenfunctions of the Fock operator, we have

〈φr |F |φi〉 = εi〈φr |φi〉
= εiδir

(7.14)
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where εi is the MO eigenvalue. Thus, all matrix elements between the HF determinants and
singly excited determinants are zero, since to be singly excited, r must not be equal to i.
This result is known as Brillouin’s theorem (Brillouin 1934).

It is not the case that arbitrary matrix elements between other determinants differing
by only one occupied orbital are equal to zero. Nevertheless, the Condon–Slater rules and
Brillouin’s theorem ensure that the CI matrix in a broad sense is reasonably sparse, as
illustrated in Figure 7.4. With that in mind, let us return to the question of which excitations
to include in a ‘non-full’ CI. What if we only keep single excitations? In that case, we
see from Figure 7.4 that the CI matrix will be block diagonal. One ‘block’ will be the HF
energy, H11, and the other will be the singles/singles region. Since a block diagonal matrix
can be fully diagonalized block by block, and since the HF result is already a block by itself,
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Figure 7.4 Structure of the CI matrix as blocked by classes of determinants. The HF block is the (1,1)
position, the matrix elements between the HF and singly excited determinants are zero by Brillouin’s
theorem, and between the HF and triply excited determinants are zero by the Condon–Slater rules.
In a system of reasonable size, remaining regions of the matrix become increasingly sparse, but the
number of determinants in each block grows to be extremely large. Thus, the (1,1) eigenvalue is most
affected by the doubles, then by the singles, then by the triples, etc
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it is apparent that the lowest energy root, i.e., the ground-state HF root, is unaffected by
inclusion of single excitations. Indeed, one way to think about the HF process is that it is
an optimization of orbitals subject to the constraint that single excitations do not contribute
to the wave function. Thus, the so-called CI singles (CIS) method finds no use for ground
states, although it can be useful for excited states, as described in Section 14.2.2.

So, we might next consider including only double excitations (CID). It is worthwhile to
do a very simple example, such as molecular hydrogen in a minimal basis set. In that case,
there are only 2 HF orbitals, the σ and the σ ∗ orbitals associated with the H–H bond, in
which case there is only one doubly excited state, corresponding to |σ ∗2 >. The CID state
energies are found from solving ∣∣∣∣ H11 − E H12

H21 H22 − E

∣∣∣∣ = 0 (7.15)

This quadratic equation is simple to solve, and gives root energies

E = 1

2

[
H11 + H22 ±

√
(H22 − H11)2 + 4H12

]
(7.16)

The Condon–Slater rules dictate that H12 is an electron-repulsion integral, and it thus has a
positive sign (it is actually the exchange integral K12). So, examining Eq. (7.16), we see that
to the average of the two pure-state energies (ground and doubly excited) we should either
add or subtract a value slightly larger than half the difference between the two state energies.
Thus, when we subtract, our energy will be below the HF energy, and the difference will be
the correlation energy. In the case of H2 with the STO-3G basis set at a bond distance of
1.4 a.u., Ecorr = −0.02056 a.u., or about 13 kcal/mol.

In bigger systems, this process can be carried out analogously. However, the size of the
CI matrix can quickly become very, very large, in which case diagonalization is computa-
tionally taxing. More efficient methods than diagonalization exist for finding only one or a
few eigenvalues of large matrices. These methods are typically iterative, and most modern
electronic structure programs use them in preference to full matrix diagonalization.

What about triple excitations? While there are no non-zero matrix elements between the
ground state and triply excited states, the triples do mix with the doubles, and can through
them influence the lowest energy eigenvalue. So, there is some motivation for including
them. On the other hand, there are a lot of triples, making their inclusion difficult in a
practical sense. As a result, triples, and higher-level excitations, are usually not accounted
for in truncated CI treatments.

Let us return, however, to singly excited determinants. While, like triples, they fail to
interact with the ground state (although in this case because of Brillouin’s theorem), they
too mix with doubles and thus can have some influence on the lowest eigenvalue. In this
instance, there are sufficiently few singles compared to doubles that it does not make the
problem significantly more difficult to include them, and this level of theory is known
as CISD.

The scaling for CISD with respect to system size is, in the large basis limit, on the order
of N6. Such scaling behavior is considerably worse than HF, and thus poses a more stringent
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limit on the sizes of systems that can be practically addressed. Just as with MCSCF, symmetry
can be used to significantly reduce the computational effort by facilitating the evaluation of
matrix elements. Similarly, some orbitals can be frozen in the generation of excited states.
A popular choice is to leave the core orbitals frozen in CISD.

One of the most appealing features of CISD is that it is variational. Thus, the CISD energy
represents an upper bound on the exact energy. However, it has a particularly unattractive
feature as well, and that is that it is not ‘size consistent’. This property is best explained by
example: consider the H2 molecule case addressed above. We may construct the CID wave
function as

�CID = (1 − c)2�HF + c2�22
11

(7.17)

where the coefficient c is determined from the diagonalization process. Now, consider the
CID wave function for two molecules of H2 separated by, say, 50 Å. For all practical
purposes, there is no chemical interaction between them, so we could take the overall
wave function simply to be a properly antisymmetrized product of Eq. (7.17) with itself.
This expression would include a term, preceded by the coefficient c4, corresponding to
simultaneous double excitation within each molecule. However, that is a quadruply excited
configuration. As such, if we carried out a CID calculation on the two molecules as a single
system, it would not be permitted. Thus, twice the CID energy of one molecule of H2 will be
lower than the CID energy for two molecules of H2 at large separations, which is a vexing
result.

Various approaches to overcoming the size extensivity problem have been proposed. Owing
to its simplicity, one of the more popular methods is that of Langhoff and Davidson (1974),
which estimates the energy associated with the missing quadruple excitations as

EQ = (1 − a0)
2(ECISD − EHF) (7.18)

where a0 is the coefficient of the HF determinant in the normalized truncated CISD wave
function (which itself is Eq. (7.10) without the ellipsis). This is typically abbreviated as
CISD(Q). In modern work, there has been a tendency to avoid single-reference CI calcu-
lations in favor of other, size-extensive methods for including electron correlation (vide
infra).

A recent variation of CISD that is both variational and size-consistent has been proposed
by Krylov (2001). In spin-flip CISD (SF-CISD), the reference configuration is always taken
to be a high-spin HF configuration, but spin flips are allowed when ‘excited’ configurations
are generated. Thus, for instance, a triplet reference can generate singlet states by spin flip of
one electron. The resulting CI matrix is much larger for SF-CISD, but it also has additional
sparsity since matrix elements between states of different spin are zero for the standard spin-
free Hamiltonian. Diagonalization of the CI matrix provides energies for the various target
states. A key virtue of SF-CISD is that the high-spin reference is usually well described as
a single determinant, and the CI formalism permits lower-spin states generated by spin flips
to be well described irrespective of how much multideterminantal character is present.

The SF-CISD model exhibits timing and scaling behavior equivalent to standard CISD.
Significant time savings may be realized in selected instances by estimating the effect of
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double excitations using perturbation theory (Head-Gordon et al. 1994; Section 7.4 presents
the basics of perturbation theory); this model is referred to as SF-CIS(D). Preliminary studies
on various challenging problems like homolytic bond dissociation energies and singlet–triplet
energy separations in biradicals have shown SF-CISD and SF-CIS(D) to be considerably
more robust than the corresponding non-spin-flip approaches (Krylov 2001; Krylov and
Sherrill 2002; Slipchenko and Krylov 2002).

7.3.2 Multireference

The formalism for multireference configuration interaction (MRCI) is quite similar to that
for single-reference CI, except that instead of the HF wave function serving as reference,
an MCSCF wave function is used. While it is computationally considerably more difficult
to construct the initial MCSCF wave function than a HF wave function, the significant
improvement of the virtual orbitals in the former case can make the CI itself more rapidly
convergent. Nevertheless, the number of matrix elements requiring evaluation in MRCI
calculations is enormous, and they are usually undertaken only for small systems. Typically,
MRCI is a useful method to study a large section of a PES, where significant changes in
bonding (and thus correlation energy) are taking place so a sophisticated method is needed
to accurately predict dynamical and non-dynamical correlation energies.

As with single-reference CI, most MRCI calculations truncate the CI expansion to include
only singles and doubles (MRCISD). An analog of Eq. (7.18) has been proposed to make
up for the non-size-extensivity this engenders (Bruna, Peyerimhoff, and Buenker, 1980).
MRCISD calculations with large basis sets can be better than similarly expensive full CI
calculations with smaller basis sets, illustrating that most of the correlation energy can be
captured by including only limited excitations, at least in those systems small enough to
permit thorough evaluation. Additional efficiencies can be gained by restricting the size of
the MCSCF reference to something smaller than a CAS reference and considering only the
reduced number of single and double excitations therefrom (Pitarch-Ruiz, Sanchez-Marin,
and Maynau 2002).

7.4 Perturbation Theory

7.4.1 General Principles

Often in pseudoeigenvalue equations, the nature of a particular operator makes it difficult
to work with. However, it is sometimes worthwhile to create a more tractable operator by
removing some particularly unpleasant portion of the original one. Using exact eigenfunctions
and eigenvalues of the simplified operator, it is possible to estimate the eigenfunctions
and eigenvalues of the more complete operator. Rayleigh–Schrödinger perturbation theory
provides a prescription for accomplishing this.

In the general case, we have some operator A that we can write as

A = A(0) + λV (7.19)
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where A(0) is an operator for which we can find eigenfunctions, V is a perturbing operator,
and λ is a dimensionless parameter that, as it varies from 0 to 1, maps A(0) into A. If we
expand our ground-state eigenfunctions and eigenvalues as Taylor series in λ, we have

�0 = �
(0)
0 + λ

∂�
(0)
0

∂λ

∣∣∣∣∣
λ=0

+ 1

2!
λ2 ∂2�

(0)
0

∂λ2

∣∣∣∣∣
λ=0

+ 1

3!
λ3 ∂3�

(0)
0

∂λ3

∣∣∣∣∣
λ=0

+ · · · (7.20)

and

a0 = a
(0)
0 + λ

∂a
(0)
0

∂λ
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λ=0

+ 1
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λ2 ∂2a

(0)
0
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+ · · · (7.21)

where a
(0)
0 is the eigenvalue for �

(0)
0 , which is the appropriate normalized ground-state

eigenfunction for A(0). For ease of notation, Eqs. (7.20) and (7.21) are usually written as

�0 = �
(0)
0 + λ�

(1)
0 + λ2�

(2)
0 + λ3�

(3)
0 + · · · (7.22)

and
a0 = a

(0)
0 + λa

(1)
0 + λ2a

(2)
0 + λ3a

(3)
0 + · · · (7.23)

where the terms having superscripts (n) are referred to as ‘nth-order corrections’ to the zeroth
order term and are defined by comparison to Eqs. (7.20) and (7.21).

Thus, we may write
(A(0) + λV)|�0〉 = a|�0〉 (7.24)

as
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(7.25)

Since Eq. (7.25) is valid for any choice of λ between 0 and 1, we can expand the left and
right sides and consider only equalities involving like powers of λ. Powers 0 through 3
require

A(0)|�(0)
0 〉 = a

(0)
0 |�(0)

0 〉 (7.26)

A(0)|�(1)
0 〉 + V|�(0)

0 〉 = a
(0)
0 |�(1)
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0 |�(0)

0 〉 (7.27)
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0 |�(0)

0 〉 (7.28)

A(0)|�(3)
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(2)
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0 〉 + a
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0 |�(0)

0 〉 (7.29)

where further generalization should be obvious. Our goal, of course, is to determine the
various nth-order corrections. Equation (7.26) is the zeroth-order solution from which we
are hoping to build, while Eq. (7.27) involves the two unknown first-order corrections to the
wave function and eigenvalue.



218 7 INCLUDING ELECTRON CORRELATION IN MO THEORY

To proceed, we first impose intermediate normalization of �; that is

〈�0|�(0)
0 〉 = 1 (7.30)

By use of Eq. (7.22) and normalization of �
(0)
0 , it must then be true that

〈�(n)
0 |�(0)

0 〉 = δn0 (7.31)

Now, we multiply on the left by �
(0)
0 and integrate to solve Eqs. (7.27)–(7.29). In the case

of Eq. (7.27), we have
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Using
〈�(0)

0 |A(0)|�(1)
0 〉 = 〈�(1)

0 |A(0)|�(0)
0 〉∗ (7.33)

and Eqs. (7.26), (7.30), and (7.31), we can simplify Eq. (7.32) to

〈�(0)
0 |V|�(0)

0 〉 = a
(1)
0 (7.34)

which is the well-known result that the first-order correction to the eigenvalue is the expec-
tation value of the perturbation operator over the unperturbed wave function.

As for �
(1)
0 like any function of the electronic coordinates, it can be expressed as a linear

combination of the complete set of eigenfunctions of A(0), i.e.,
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To determine the coefficients ci in Eq. (7.35), we can multiple Eq. (7.27) on the left by �
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and integrate to obtain
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Using Eq. (7.35), we expand this to〈
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which, from the orthonormality of the eigenfunctions, simplifies to

cja
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j + 〈�(0)
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0 〉 = cja
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0 (7.38)
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or

cj = 〈�(0)
j |V|�(0)

0 〉
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0 − a

(0)
j

(7.39)

With the first-order eigenvalue and wave function corrections in hand, we can carry out
analogous operations to determine the second-order corrections, then the third-order, etc.
The algebra is tedious, and we simply note the results for the eigenvalue corrections, namely
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and
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Let us now examine the application of perturbation theory to the particular case of the
Hamiltonian operator and the energy.

7.4.2 Single-reference

We now consider the use of perturbation theory for the case where the complete operator
A is the Hamiltonian, H. Møller and Plesset (1934) proposed choices for A(0) and V with
this goal in mind, and the application of their prescription is now typically referred to by
the acronym MPn where n is the order at which the perturbation theory is truncated, e.g.,
MP2, MP3, etc. Some workers in the field prefer the acronym MBPTn, to emphasize the
more general nature of many-body perturbation theory (Bartlett 1981).

The MP approach takes H(0) to be the sum of the one-electron Fock operators, i.e., the
non-interacting Hamiltonian (see Section 4.5.2)

H(0) =
n∑

i=1

fi (7.42)

where n is the number of basis functions and fi is defined in the usual way according to
Eq. (4.52). In addition, �(0) is taken to be the HF wave function, which is a Slater determinant
formed from the occupied orbitals. By analogy to Eq. (4.36), it is straightforward to show
that the eigenvalue of H(0) when applied to the HF wave function is the sum of the occupied
orbital energies, i.e.,

H(0)�(0) =
occ.∑
i

εi�
(0) (7.43)

where the orbital energies are the usual eigenvalues of the specific one-electron Fock oper-
ators. The sum on the r.h.s. thus defines the eigenvalue a(0).
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Recall that this is not the way the electronic energy is usually calculated in an HF calcu-
lation – it is the expectation value for the correct Hamiltonian and the HF wave function
that determines that energy. The ‘error’ in Eq. (7.43) is that each orbital energy includes
the repulsion of the occupying electron(s) with all of the other electrons. Thus, each elec-
tron–electron repulsion is counted twice (once in each orbital corresponding to each pair of
electrons). So, the correction term V that will return us to the correct Hamiltonian and allow
us to use perturbation theory to improve the HF wave function and eigenvalues must be the
difference between counting electron repulsion once and counting it twice. Thus,

V =
occ.∑
i

occ.∑
j>i

1

rij

−
occ.∑
i

occ.∑
j

(
Jij − 1

2
Kij

)
(7.44)

where the first term on the r.h.s. is the proper way to compute electron repulsion (and
is exactly as it appears in the Hamiltonian of Eq. (4.3) and the second term is how it is
computed from summing over the Fock operators for the occupied orbitals where J and K

are the Coulomb and exchange operators defined in Section 4.5.5. Note that, since we are
summing over occupied orbitals, we must be working in the MO basis set, not the AO one.

So, let us now consider the first-order correction a(1) to the zeroth-order eigenvalue defined
by Eq. (7.43). In principle, from Eq. (7.34), we operate on the HF wave function �(0)

with V defined in Eq. (7.44), multiply on the left by �(0), and integrate. By inspection,
cognoscenti should not have much trouble seeing that the result will be the negative of the
electron–electron repulsion energy. However, if that is not obvious, there is no need to carry
through the integrations in any case. That is because we can write

a(0) + a(1) = 〈�(0)|H(0)|�(0)〉 + 〈�(0)|V|�(0)〉
= 〈�(0)|H(0) + V|�(0)〉
= 〈�(0)|H|�(0)〉
= EHF (7.45)

i.e., the Hartree-Fock energy is the energy correct through first-order in Møller-Plesset pertur-
bation theory. Thus, the second term on the r.h.s. of the first line of Eq. (7.45) must indeed
be the negative of the overcounted electron–electron repulsion already noted to be implicit
in a(0).

As MP1 does not advance us beyond the HF level in determining the energy, we must
consider the second-order correction to obtain an estimate of correlation energy. Thus, we
must evaluate Eq. (7.40) using the set of all possible excited-state eigenfunctions and eigen-
values of the operator H(0) defined in Eq. (7.42). Happily enough, that is a straightforward
process, since within a finite basis approximation, the set of all possible excited eigenfunc-
tions is simply all possible ways to distribute the electrons in the HF orbitals, i.e., all possible
excited CSFs appearing in Eq. (7.10).
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Let us consider the numerator of Eq. (7.40). Noting that V is H − H(0), we may write

∑
j>0

〈�(0)
j |V|�(0)

0 〉 =
∑
j>0

〈�(0)
j |H − H(0)|�(0)

0 〉

=
∑
j>0

[〈�(0)
j |H|�(0)

0 〉 − 〈�(0)
j |H(0)|�(0)

0 〉]

=
∑
j>0

[
〈�(0)

j |H|�(0)
0 〉 −

occ.∑
i

εi〈�(0)
j |�(0)

0 〉
]

=
∑
j>0

〈�(0)
j |H|�(0)

0 〉 (7.46)

where the simplification of the r.h.s. on proceeding from line 3 to line 4 derives from the
orthogonality of the ground- and excited-state Slater determinants. As for the remaining
integrals, from the Condon–Slater rules, we know that we need only consider integrals
involving doubly and singly excited determinants. However, from Brillouin’s theorem, we
also know that the integrals involving the singly excited determinants will all be zero. The
Condon–Slater rules applied to the remaining integrals involving doubly excited determinants
dictate that ∑

j>0

〈�(0)
j |V|�(0)

0 〉 =
occ.∑
i

occ.∑
j>i

vir.∑
a

vir.∑
b>a

[(ij |ab) − (ia|jb)] (7.47)

where the two-electron integrals are those defined by Eq. (4.56).
As for the denominator of Eq. (7.40), from inspection of Eq. (7.43), a(0) for each doubly

excited determinant will differ from that for the ground state only by including in the sum the
energies of the virtual orbitals into which excitation has occurred and excluding the energies
of the two orbitals from which excitation has taken place. Thus, the full expression for the
second-order energy correction is

a(2) =
occ.∑
i

occ.∑
j>i

vir.∑
a

vir.∑
b>a

[(ij |ab) − (ia|jb)]2

εi + εj − εa − εb

(7.48)

The sum of a(0), a(1), and a(2) defines the MP2 energy.
MP2 calculations can be done reasonably rapidly because Eq. (7.48) can be efficiently

evaluated. The scaling behavior of the MP2 method is roughly N5, where N is the number
of basis functions. Analytic gradients and second derivatives are available for this level of
theory, so it can conveniently be used to explore PESs. MP2, and indeed all orders of MPn

theory, are size-consistent, which is a particularly desirable feature. Finally, Saebø and Pulay
have described a scheme whereby the occupied orbitals are localized and excitations out of
these orbitals are not permitted if the accepting (virtual) orbitals are too far away (the distance
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being a user-defined variable; Pulay 1983; Saebø and Pulay 1987). This localized MP2
(LMP2) technique significantly decreases the total number of integrals requiring evaluation
in large systems, and can also be implemented in a fashion that leads to linear scaling
with system size. These features have the potential to increase computational efficiency
substantially.

However, it should be noted that the Møller–Plesset formalism is potentially rather
dangerous in design. Perturbation theory works best when the perturbation is small (because
the Taylor expansions in Eqs. (7.20) and (7.21) are then expected to be quickly convergent).
But, in the case of MP theory, the perturbation is the full electron–electron repulsion energy,
which is a rather large contributor to the total energy. So, there is no reason to expect that
an MP2 calculation will give a value for the correlation energy that is particularly good. In
addition, the MPn methodology is not variational. Thus, it is possible that the MP2 esti-
mate for the correlation energy will be too large instead of too small (however, this rarely
happens in practice because basis set limitations always introduce error in the direction of
underestimating the correlation energy).

Naturally, if one wants to improve convergence, one can proceed to higher orders in
perturbation theory (note, however, that even at infinite order, there is no guarantee of
convergence when a finite basis set has been used). At third order, it is still true that only
matrix elements involving doubly excited determinants need be evaluated, so MP3 is not
too much more expensive than MP2. A fair body of empirical evidence, however, suggests
that MP3 calculations tend to offer rather little improvement over MP2. Analytic gradients
are not available for third and higher orders of perturbation theory.

At the MP4 level, integrals involving triply and quadruply excited determinants appear.
The evaluation of the terms involving triples is the most costly, and scales as N7. If one
simply chooses to ignore the triples, the method scales more favorably and this choice is typi-
cally abbreviated MP4SDQ. In a small to moderately sized molecule, the cost of accounting
for the triples is roughly equal to that for the rest of the calculation, i.e., triples double the
time. In closed-shell singlets with large frontier orbital separations, the contributions from
the triples tend to be rather small, so ignoring them may be worthwhile in terms of effi-
ciency. However, when the frontier orbital separation drops, the contribution of the triples
can become very large, and major errors in interpretation can derive from ignoring their
effects. In such a situation, the triples in essence help to correct for the error involved in
using a single-reference wave function.

Empirically, MP4 calculations can be quite good, typically accounting for more than 95%
of the correlation energy with a good basis set. However, although ideally the MPn results
for any given property would show convergent behavior as a function of n, the more typical
observation is oscillatory, and it can be difficult to extrapolate accurately from only four
points (MP1 = HF, MP2, MP3, MP4). As a rough rule of thumb, to the extent that the
results of an MP2 calculation differ from HF, say for the energy difference between two
isomers, the difference tends to be overestimated. MP3 usually pushes the result back in the
HF direction, by a variable amount. MP4 increases the difference again, but in favorable
cases by only a small margin, so that some degree of convergence may be relied upon (He
and Cremer 2000a). Additional performance details are discussed in Section 7.6.
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7.4.3 Multireference

The generalization of MPn theory to the multireference case involves the obvious choice
of using an MCSCF wave function for �(0) instead of a single-determinant RHF or UHF
one. However, it is much less obvious what should be chosen for H(0), as the MCSCF MOs
do not diagonalize any particular set of one-electron operators. Several different choices
have been made by different authors, and each defines a unique ‘flavor’ of multireference
perturbation theory (see, for instance, Andersson 1995; Davidson 1995; Finley and Freed
1995). One of the more popular choices is the so-called CASPT2N method of Roos and
co-workers (Andersson, Malmqvist, and Roos 1992). Often this method is simply called
CASPT2 – while this ignores the fact that different methods having other acronym endings
besides N have been defined by these same authors (e.g., CASTP2D and CASPT2g1), the
other methods are sufficiently inferior to CASPT2N that they are typically used only by
specialists and confusion is minimized.

Most multireference methods described to date have been limited to second order in pertur-
bation theory. As analytic gradients are not yet available, geometry optimization requires
recourse to more tedious numerical approaches (see, for instance, Page and Olivucci 2003).
While some third order results have begun to appear, much like the single-reference case,
they do not seem to offer much improvement over second order.

An appealing feature of multireference perturbation theory is that it can correct for some
deficiencies associated with an incomplete active space. For instance, the relative energies
for various electronic states of TMM (Figure 7.1) were found to vary widely depending
on whether a (2,2), (4,4), or (10,10) active space was used; however, the relative energies
from corresponding CASPT2 calculations agreed well with one another. Thus, while the
motivation for multireference perturbation theory is to address dynamical correlation after
a separate treatment of non-dynamical correlation, it seems capable of handling a certain
amount of the latter as well.

7.4.4 First-order Perturbation Theory for Some Relativistic Effects

In Møller–Plesset theory, first-order perturbation theory does not improve on the HF energy
because the zeroth-order Hamiltonian is not itself the HF Hamiltonian. However, first-order
perturbation theory can be useful for estimating energetic effects associated with operators
that extend the HF Hamiltonian. Typical examples of such terms include the mass-velocity
and one-electron Darwin corrections that arise in relativistic quantum mechanics. It is fairly
difficult to self-consistently optimize wavefunctions for systems where these terms are explic-
itly included in the Hamiltonian, but an estimate of their energetic contributions may be
had from simple first-order perturbation theory, since that energy is computed simply by
taking the expectation values of the operators over the much more easily obtained HF
wave functions.

The mass-velocity correction is evaluated as

Emv =
〈
�HF

∣∣∣∣∣− 1

8c2

∑
i

∇4
i

∣∣∣∣∣ �HF

〉
(7.49)
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where c is the speed of light (137.036 a.u.) and i runs over electrons. The one-electron
Darwin correction is evaluated as

E1D =
〈
�HF

∣∣∣∣∣ π

2c2

∑
ik

Zkδ(rik)

∣∣∣∣∣ �HF

〉
(7.50)

where i runs over electrons, k runs over nuclei, and δ is the Dirac delta, which is the
integral equivalent of the Kronecker delta in that it integrates to zero everywhere except
at the position of its argument, at which point it integrates to one. Thus, the Dirac delta
requires only that one know the molecular orbital amplitudes at the nuclear positions, and
nowhere else.

The presence of 1/c2 in the prefactors for these terms makes them negligible unless
the velocities are very, very high (as measured by the del-to-the-fourth-power operator in
the mass-velocity term) or one or more orbitals have very large amplitudes at the atomic
positions for nuclei whose atomic numbers are also very large (as measured by the one-
electron Darwin term). These situations tend to occur only for core orbitals centered on very
heavy atoms. Thus, efforts to estimate their energies from first-order perturbation theory are
best undertaken with basis sets having core basis functions of good quality. It is the effects of
these terms on the core orbitals (which could be estimated from the first-order correction to
the wavefunction, as opposed to the energy) that motivate the creation of relativistic effective
core potential basis sets like those described in Section 6.2.7.

7.5 Coupled-cluster Theory

One of the more mathematically elegant techniques for estimating the electron correlation
energy is coupled-cluster (CC) theory (Cizek 1966). We will avoid most of the formal details
here, and instead focus on intuitive connections to CI and MPn theory (readers interested in
a more mathematical development may examine Crawford and Schaefer 1996).

The central tenet of CC theory is that the full-CI wave function (i.e., the ‘exact’ one within
the basis set approximation) can be described as

� = eT�HF (7.51)

The cluster operator T is defined as

T = T1 + T2 + T3 + · · · + Tn (7.52)

where n is the total number of electrons and the various Ti operators generate all possible
determinants having i excitations from the reference. For example,

T2 =
occ.∑
i<j

vir.∑
a<b

tab
ij �ab

ij (7.53)
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where the amplitudes t are determined by the constraint that Eq. (7.51) be satisfied. The
expansion of T ends at n because no more than n excitations are possible.

Of course, operating on the HF wave function with T is, in essence, full CI (more accu-
rately, in full CI one applies 1 + T), so one may legitimately ask what advantage is afforded
by the use of the exponential of T in Eq. (7.51). The answer lies in the consequences asso-
ciated with truncation of T. For instance, let us say that we only want to consider the double
excitation operator, i.e., we make the approximation T = T2. In that case, Taylor expansion
of the exponential function in Eq. (7.51) gives

�CCD = eT�HF

=
(

1 + T2 + T2
2

2!
+ T3

2

3!
+ · · ·

)
�HF

(7.54)

where CCD implies coupled cluster with only the double-excitation operator. Note that the
first two terms in parentheses, 1 + T2, define the CID method described in Section 7.3.1.
The remaining terms, however, involve products of excitation operators. Each application
of T2 generates double excitations, so the product of two applications (the square of T2)
generates quadruple excitations. Similarly, the cube of T2 generates hextuple substitutions,
etc. It is exactly the failure to include these excitations that makes CI non-size-consistent!
So, using the exponential of T in Eq. (7.51) ensures size consistency. Moreover, through
careful analysis of perturbation theory, one can show that CCD is equivalent to including
all of the terms involving products of double substitutions out to infinite order, i.e., MP∞D
using the notation developed earlier in the context of MP4.

The computational problem, then, is determination of the cluster amplitudes t for all of
the operators included in the particular approximation. In the standard implementation, this
task follows the usual procedure of left-multiplying the Schrödinger equation by trial wave
functions expressed as determinants of the HF orbitals. This generates a set of coupled, non-
linear equations in the amplitudes which must be solved, usually by some iterative technique.
With the amplitudes in hand, the coupled-cluster energy is computed as

〈�HF|H|eT�HF〉 = ECC (7.55)

In practice, the cost of including single excitations (i.e., T1) in addition to doubles is worth
the increase in accuracy, and this defines the CCSD model. The scaling behavior of CCSD
is on the order of N6. Inclusion of connected triple excitations (i.e., those arising with their
own unique amplitudes from T3, not the ‘disconnected’ triples arising as products of T1

and T2) defines CCSDT, but this is very computationally costly (scaling as N8), making it
intractable for all but the smallest of molecules. Various approaches to estimating the effects
of the connected triples using perturbation theory have been proposed (each with its own
acronym. . .) Of these, the most robust, and thus most commonly used, is that in the so-called
CCSD(T) method, which also includes a singles/triples coupling term (Raghavachari et al.
1989). The (T) approach in general slightly overestimates the triples correction, and does so
by an amount about equal to the ignored quadruples, i.e., there is a favorable cancellation
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of errors (Helgaker et al. 2001). This makes the CCSD(T) model extremely effective in
most instances, and indeed this level has come to be the effective gold standard for single-
reference calculations. Analytic gradients (Hald et al. 2003) and second derivatives (Kallay
and Gauss 2004) are available for CCSD and CCSD(T), which further increases the utility
of these methods. Note, however, that truncated coupled-cluster theory is not variational.

The CCSD(T) level is reasonably forgiving even in instances where the single-determinant
assumption is questionable. Some discussion of this point with examples is provided in the
next section. Here, however, we note that one measure of the multireference character that
is often reported is the so-called T1 diagnostic of Lee and Taylor (1989), defined as

T1 =

√√√√√√
occ.∑
i

vir.∑
a

(tai )2

n
(7.56)

where n is the number of electrons and the singles amplitudes are defined analogously to
those for the doubles appearing in Eq. (7.53). A value above 0.02 has been suggested as
warranting some caution in the interpretation of single-reference CCSD results.

The presence of large singles amplitudes can also be problematic for the CCSD(T) method,
because the perturbation theory estimate for the triples can become unstable. One possibility
to eliminate that instability involves changing the orbitals used to express the reference
wave function from the canonical HF orbitals to so-called Brueckner orbitals. The Brueckner
orbitals are found as linear combinations of the HF orbitals subject to the constraint that
all of the singles amplitudes in the CCSD cluster operator be zero (a process that requires
iteration). This approach is sometimes called Brueckner doubles (BD). The energetic effect
of connected triples can again be estimated using a perturbative approach, which defines the
BD(T) method.

A method that is closely related to coupled cluster theory is quadratic configuration
interaction including singles and doubles (QCISD). Originally developed by Pople and co-
workers as a way to correct for size-consistency errors in CISD (Pople, Head-Gordon, and
Raghavachari 1987), it was later shown to be almost equivalent to CCSD in its construction
(He and Cremer 1991). The QCISD(T) method includes the same perturbative correction for
contributions from unlinked triples as that used in CCSD(T). Typically, CCSD and QCISD
give results closely agreeing with one another and the same holds true for their (T) analogs
(although in certain challenging systems the more complete coupled-cluster methods have
been found to be more robust). Given their usually close correspondence in quality, any
motivation to use one over the other tends to derive from the better features that may be
associated with it in any given electronic structure code (e.g., inclusion of analytic gradi-
ents, a particularly efficient implementation, etc.) Note, however, that while coupled-cluster
methods are in principle well defined for the inclusion of excitations up to any level–and in
certain benchmark, small-molecule cases, full inclusion of triples, quadruples, etc., can be
undertaken–the development of QCISD and QCISD(T) did not proceed from truncation of
a general operator, but rather from augmentation of CISD to correct for size inconsistency.
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Thus, there do not exist any ‘higher’ levels of QCISD, although such levels could be defined
to include additional excitations by analogy to CCSD.

Finally, Levchenko and Krylov (2004) have defined spin-flip versions of coupled cluster
theories along lines similar to those previously described for SF-CISD. Applications to date
have primarily been concerned with the accurate computation of electronically excited states,
but the models are equally applicable to computing correlation energies for ground states.

7.6 Practical Issues in Application

The goal of most calculations is to obtain as high a level of accuracy as possible within the
constraints of the available computational resources. As including electron correlation in a
calculation can be critical to enhancing accuracy, but can also be excruciatingly expensive
in large systems, it is important to appreciate the strengths and weaknesses of different
correlation techniques with respect to various system characteristics. This section provides
some discussion of factors affecting all correlation treatments, and compares and contrasts
certain specific issues associated with individual treatments.

7.6.1 Basis Set Convergence

As noted in Chapter 6, basis-set flexibility is key to accurately describing the molecular
wave function. When methods for including electron correlation are included, this only
becomes more true (see, for instance, He and Cremer 2000b). One can appreciate this in an
intuitive fashion from thinking of the correlated wave function as a linear combination of
determinants, as expressed in Eq. (7.1). Since the excited determinants necessarily include
occupation of orbitals that are virtual in the HF determinant, and since the HF determinant in
some sense ‘uses up’ the best combinations of basis functions for the occupied orbitals (from
the requirement that the excited states be orthogonal to the ground state), the excited states
are more dependent on basis-set completeness (this generalizes to the MCSCF case as well,
although the discussion in this section is primarily focused on single-reference theories).

This differential sensitivity is illustrated in Table 7.1, which compares the convergence of
the HF energy for CO with the convergence of the full-CI energy for just the O atom. In this
case, the convergence is with respect to adding higher angular momentum basis functions
into a set that is saturated with functions of lower angular momentum. Note that even though

Table 7.1 Basis set convergence for HF and full CI energies of
CO and O, respectively

Saturated basis functions EHF(CO) (a.u.) ECI(O) (a.u.)

s, p −112.717 −74.935
s, p, d −112.785 −75.032
s, p, d, f −112.790 −75.053
s, p, d, f, g −75.061
Infinite limit −112.791 −75.069
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the O atom has only half as many basis functions as CO (accepting that the practical ‘infinite’
basis-set limit is still actually finite), the energetic gain derived from adding functions of
higher angular momentum in the d to g range is typically 2 to 4 times larger in the former
system than the latter. Note also that, although the HF energy of CO is effectively converged
by the time a saturated basis including f functions is used, the CI energy is still more than
10 kcal mol−1 from being converged. Of course, it is possible for some molecular properties
computed at correlated levels to be less sensitive to basis-set-size effects than is the energy.
For example, Abrams and Sherrill (2003) found full CI calculations with polarized valence
double-ζ basis sets to provide reasonably accurate predictions of spectroscopic constants for
six diatomics, e.g., harmonic vibrational frequencies within 1.6 percent of experiment.

The greater dependence on basis-set quality of correlated calculations compared to those
of the HF variety has prompted many developers of basis sets to optimize contractions via
some scheme that includes evaluating results from the former. For instance, the ‘correlation
consistent’ prefix of the cc-pVnZ basis sets discussed in Chapter 6 highlights this feature.

It has already been mentioned that one way to improve efficiency is to freeze core electrons
in correlation treatments. One might think that it represents a more rigorous calculation if
one does not freeze them, but unless the basis set includes extra core functions, there is
some imbalance in the treatment of core–core vs. core–valence correlation. Put differently,
correlating the core electrons requires that basis functions be provided that can be used for
this purpose; split-valence basis sets with minimal cores are ill suited in this regard. Instead,
basis sets of true multiple-ζ quality should be used. Recent examples of such basis sets
include the correlation-consistent polarized core and valence multiple-ζ (cc-pCVnZ) basis
sets of Woon and Dunning (1995), where extra core functions are added in increments, and
including higher angular momenta, proportional to those employed for the valence space.

The correlation energy is sometimes separated into so-called radial and angular compo-
nents. Again, an intuitive view of the correlated calculation is that, by considering the
contribution of excited determinants having occupation of HF virtual orbitals, one is helping
the electrons to get out of one another’s way more effectively than they can within the SCF
approximation. The radial component derives from decreasing the contraction for functions
of a particular angular momentum, i.e., providing tighter and looser functions around each
atom. Alternatively, the space around each atom within a given distance range can be made
more accessible by adding functions of increasingly higher angular momentum, i.e., polar-
ization functions, and this is the second contributor. In general, the importance of angular
correlation increases at the expense of radial correlation as the atomic number increases,
but this is mostly an effect associated with the core electrons. As a rule of thumb, the
same balance noted for HF theory is true for correlated calculations: each level of decreased
contraction in a given shell is worth about as much as adding a set of polarization functions
of the next higher angular momentum.

For the very small systems in Table 7.1, it is possible to approach the exact solution of the
Schrödinger equation, but, as a rule, convergence of the correlation energy is depressingly
slow. Mathematically, this derives from the poor ability of products of one-electron basis
functions, which is what Slater determinants are, to describe the cusps in two-electron
densities that characterize electronic structure. For the MP2 level of theory, Schwartz (1962)



7.6 PRACTICAL ISSUES IN APPLICATION 229

showed that, in the limit of large l, the error in the correlation energy between electrons of
opposite spin goes as (l + 1/2)−3 where l is the highest angular momentum that is saturated
in the basis set. Thus, if we apply this formula to going from an (s,p) saturated basis set to
an (s,p,d) basis set, our error drops by only 64%, i.e., we recover a little less than two-thirds
of the missing correlation energy. Going from (s,p,d) to (s,p,d,f), the improvement drops to
53%, or, compared to the (s,p) starting point, about five-sixths of the original error. Since
the correlation energy can be enormous, and since actually saturating the basis set in these
functions of higher angular momentum can be expensive, such convergence behavior is not
especially good.

The so-called R12 methods of Klopper and Kutzelnigg (1987) provide an interesting alter-
native to Slater-determinant-based methods with respect to analysis of convergence behavior.
In this methodology, the wave function is not simply a product of one-electron orbitals but
includes additionally all interelectronic distances rij (such wave functions were first pioneered
by Hylleraas (1929) in the early days of quantum mechanics in an effort to treat the 2-electron
helium atom as accurately as the one-electron hydrogen atom). With the interelectronic cusp
explicitly included, the convergence behavior of the MP2 correlation energy improves to
(l + 1/2)−7. Now the error recovery on going from an (s,p) to an (s,p,d,f) basis set is in prin-
ciple 98%. In practice, the R12 methods require very large basis sets for technical reasons, and
so such calculations continue to be limited to relatively small systems, but they are still quite
useful for benchmarking purposes and may see an expanded role with future developments.

Note that the scaling behavior of methods more highly correlated than MP2 is expected
in general to be less favorable than MP2. This derives from the greater sensitivity to basis
set exhibited by determinants involving excitations beyond double, since still more virtual
orbitals must be occupied. Helgaker et al. (2001) have shown, however, that extrapola-
tion schemes based on a cubic scaling principle can be highly effective. In particular, they
examined the CCSD valence correlation energies for seven small molecules from CCSD
calculations using the Dunning cc-pVnZ (n = D, T, Q, 5, 6) basis sets, comparing calcula-
tions with individual basis sets to R12-CCSD calculations, and also to calculations assuming
that the infinite-basis CCSD valence correlation energy could be computed as

Ecorr,∞ = x3Ecorr,x − y3Ecorr,y

x3 − y3
(7.57)

where x and y are the highest angular momentum quantum numbers included in sequential
Dunning basis sets (e.g., 2 and 3 for cc-pVDZ and cc-pVTZ) and Ecorr,z is the valence
correlation energy computed using the basis with corresponding quantum number z = x or
z = y (note that we say valence correlation energy here because the cc-pVnZ basis sets do
not have correlating core basis functions like the cc-pCVnZ basis sets). The results of their
calculations are in Table 7.2.

Note that compared to the R12 benchmark energies, the CCSD energies with individual
basis sets are quite slowly convergent. Even with the staggeringly large cc-pV6Z basis set,
the mean unsigned error over the seven molecules remains 4.2 mEh. The extrapolated values
for Ecorr,∞, on the other hand, are accurate to within about 1 mEh by the time a cc-pVQZ
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Table 7.2 Valence correlation energies (−Ecorr, mEh) from standard and R12 CCSD calculations and
from extrapolation using Eq. (7.57) for seven closed-shell singlet molecules

CH2 H2O HF Ne CO N2 F2 MUEa

Standard calculationsb

D 138.0 211.2 206.8 189.0 294.5 309.4 402.7 107.9
T 164.2 267.4 273.9 266.3 358.3 372.0 526.0 39.8
Q 171.4 286.0 297.6 294.7 380.6 393.2 569.7 16.2
5 173.6 292.4 306.3 305.5 388.5 400.7 586.1 7.7
6 174.5 294.9 309.7 309.9 391.7 403.7 592.8 4.2
Extrapolation protocolc

DT 175.2 291.1 302.2 298.9 385.1 398.3 577.9 11.2
TQ 176.7 299.5 314.9 315.4 396.9 408.7 601.6 1.0
Q5 176.0 299.2 315.3 316.8 396.8 408.6 603.4 1.3
56 175.7 298.3 314.4 316.0 396.1 407.9 601.9 0.5
R12 benchmarks

175.5 297.9 313.9 315.5 395.7 407.4 601.0

aMean unsigned error over all molecules compared to R12 energies.
bFirst column gives n for cc-pVnZ basis set.
cFirst column gives x and y equivalents for Eq. (7.57).

calculation has been completed. Indeed, even the simplest DT extrapolation is on average
30 percent more accurate than the single, much more expensive CCSD/cc-pVQZ level.

Having discussed extrapolation in the context of correlation energy, it is appropriate to
recognize that if one is going to estimate the infinite basis correlation energy, one wants to
add this to the infinite basis HF energy. Parthiban and Martin (2001) have found the analog
of Eq. (7.57) involving the fifth power of the angular momentum quantum numbers to be
highly accurate, i.e.,

EHF,∞ = x5EHF,x − y5EHF,y

x5 − y5
(7.58)

7.6.2 Sensitivity to Reference Wave Function

For single-reference correlated methods, there are several issues associated with the HF
reference that can significantly affect the interpretation of the correlated calculation. First,
there is the degree to which the wave function can indeed be reasonably well described by a
single configuration, i.e., the extent to which the HF determinant dominates in the expansion
of Eq. (7.1). When a non-trivial degree of multireference character exists, perturbation theory
is particularly sensitive to this feature, and can give untrustworthy results. To appreciate this,
recall the TMM example with which this chapter began (Figure 7.1). Let us take the single-
configuration HF wave function represented by Eq. (7.2), and consider the MP2 energy
contribution from the double excitation taking both electrons from occupied orbital π2 to
virtual orbital π3. From Eq. 7.48, we see that the denominator associated with this term is
the difference in orbital energies. However, since these orbitals are formally degenerate, the
denominator is zero and the perturbation theory expression for the energy associated with
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this term is infinite! Note that this is not a case of the actual electronic state being degenerate,
but is entirely an artifact of using a single-reference wave function.

As a general rule, whenever the frontier orbital separation becomes small, the magnitude
of the MPn energy terms will become large because of their inverse dependence on orbital
energy separation, and perturbation theory will be very slowly convergent in such instances.
Such decreased separations also increase the degree of multireference character in the wave
function, so the tight coupling between these two phenomena is rationalized. Figure 7.5
provides an example of this phenomenon for the case of the energy of carbonyl oxide,
which has a moderate degree of multireference character, relative to its isomer dioxirane.
The comparatively small size of these systems permits the extension of perturbation theory
through fifth order with the 6-31G(d) basis set, but even the difference between the MP4
and MP5 results remains a fairly large 1.3 kcal mol−1.

CCSD is similarly sensitive to multireference character, although it is less obvious that this
should be so based on the formalism presented above. However, inclusion of triples in the
CCSD wave function is usually very effective in correcting for a single-reference treatment
of a weakly to moderately multireference problem. Of course, the most common way to
include the triples is by perturbation theory, i.e., CCSD(T), and as noted above, this level
too can be unstable if singles amplitudes are large. In such an instance, BD(T) calculations,
which eliminate the singles amplitudes, can be efficacious.

To illustrate some of these points in greater detail, consider the aryne diradicals p-benzyne
and its isoelectronic but charged congener, N -protonated 2,5-pyridyne (Figure 7.6). In these
systems, the frontier orbitals of interest are the bonding and antibonding combinations of the
‘singly occupied’ σ orbitals left after abstraction of two hydrogen atoms from the aromatic
ring. Because the orbitals are para-related to one another, the interaction between them
is weak, and thus the frontier orbital energy separation is small. As such, the closed-shell
singlet and triplet states lie relatively near one another; in the case of p-benzyne, negative ion
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Figure 7.5 Slowly oscillatory behavior of MPn/6-31G(d)//HF/6-31G(d) theory for the energy sepa-
ration between carbonyl oxide and dioxirane. Accurate extrapolation from this perturbation series is
an unlikely prospect
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Figure 7.6 Frontier orbitals of a para aryne diradical. In the isoelectronic cases of X = C and
X = NH+, the energy of orbital φa is very slightly below that of φb, leading to a high degree of
multiconfigurational character in the singlets. When X = C, the two orbitals belong to the b1u and ag

irreps of the D2h point group, respectively, and thus a single excitation from the former to the latter
cannot contribute to the singlet ground state that has overall Ag symmetry; only a double excitation
contributes. When X = NH+, however, both orbitals are of a′ type symmetry within the Cs point group,
so that a single excitation can (and does) make a large contribution to the singlet ground state that
has overall A′ symmetry. The latter situation can contribute to instability in estimating the energetic
effects of triples substitutions in ‘(T)’ methods based on a single-determinantal reference

photoelectron spectroscopy has established the singlet–triplet (S-T) splitting to be −3.8 ±
0.5 kcal mol−1 (Wenthold et al. 1998). This corresponds to an energy splitting of −4.2 ±
0.5 kcal mol−1 (i.e., differences in zero-point vibrational energy have been removed). High-
level calculations suggest, not surprisingly, that the S-T splitting in the N -protonated pyridyne
system should be very nearly the same (Debbert and Cramer 2000). Table 7.3 illustrates the
results from a variety of different levels of electronic structure theory applied to computing
the S-T splitting using the cc-pVDZ basis set.

Notice, first, how spectacularly wrong the HF results are, this being indicative of significant
multireference character for the singlets, which should really be described as about 60:40
mixtures of the two determinants corresponding to double occupation of the antibonding and
bonding combinations of the σ orbitals. In the p-benzyne case, the MP2 calculation correctly
predicts the singlet to be the preferred state, but drastically overshoots in doing so. As is
typical, MP3 oscillates back to the HF prediction (triplet ground state) but with a smaller
margin of error, and then MP4 corrects back again in the proper direction, with a somewhat
smaller overestimation than was observed for MP2. Clearly, however, one could not with
confidence extrapolate to an infinite-order perturbation theory result from these four points.
The situation is much the same for the 2,5-pyridynium ion, except that the MP2 result is
very close to experiment. Such fortuitous agreement is obviously entirely coincidental, as
the perturbation series is wildly oscillating.

Note also the importance of triple excitations in correcting for the multideterminantal
character. The change in the S-T splitting from inclusion of the triples at the MP4 level
is as large as or larger than the change in going from MP3 to MP4SDQ. A similar effect
is seen with the QCISD and CCSD formalisms – both incorrectly predict triplet ground
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Table 7.3 Singlet–triplet splittings (kcal mol−1) for p-benzyne and N-protonated 2,5-pyridynea

Level of Theory p-Benzyne N-Protonated 2,5-Pyridyne

HF 87.8 87.4
MP2 −25.3 −4.1
MP2 (cc-pVTZ) −27.8 11.4
MP3 22.8 42.0
MP4SDQ 14.3 10.1
MP4 −20.9 −21.0
CCSD 16.8 17.3
CCSD (cc-pVTZ) 18.4 18.9
CCSD(T) −4.5 −29.4
QCISD 16.2 4.7
QCISD(T) −4.1 −5.9
BD 17.0 17.0
BD(T) −4.1 −5.1
CAS(8,8) −2.7 −2.4
CASPT2(8,8) −5.1 −5.1
Experiment or best estimate −4.2 −5.0

aBasis set cc-pVDZ unless otherwise indicated; geometries from BPW91/cc-pVDZ density functional calculations
(see Chapter 8).

states, but inclusion of triples via the (T) formalism gives for the most part rather good
results. A significant exception is the CCSD(T) result for the 2,5-pyridynium ion, where
the triples correction drastically overcorrects. This is an example of instability arising from
large singles amplitudes in the CCSD expansion. In p-benzyne, the symmetry of the bonding
and antibonding combinations of the σ orbitals is different, so a single excitation from one
orbital to the other cannot contribute to the closed-shell wave function. In the less symmetric
2,5-pyridynium ion, however, these orbitals are the same symmetry, so such excitations are
allowed and are major contributors to the wave function (Figure 7.6). In such instances,
BD(T) calculations are to be preferred over CCSD(T), and indeed, the BD(T) level of theory
performs very nicely for this problem (in this particular case the QCISD(T) level also seems
to be more robust than CCSD(T) with respect to sensitivity to singles, but this is the reverse
of the situation that normally obtains).

As for basis-set convergence, triple-ζ calculations at the MP2 and CCSD levels are
provided for comparison to the double-ζ results. For this particular property, the results
for p-benzyne are not terribly sensitive to improvements in the flexibility of the basis set. In
the pyridynium ion case, the CCSD results are also not very sensitive, but a large effect is
seen at the MP2 level. This has more to do with the instability of the perturbation expansion
than any intrinsic difference between the isoelectronic arynes.

Note that when multiconfigurational character is explicitly accounted for, by an MCSCF
calculation using a complete active space including the relevant σ orbitals and electrons as
well as the six π orbitals and electrons, the results even without accounting for dynamical
electron correlation are fairly good. Including dynamical correlation at the CASPT2 level
improves them to the point where they are quite good.
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Insofar as CASPT2 uses a multiconfigurational reference, one might expect it to be less
prone than MP2 to instability. This is entirely true, so long as the MCSCF reference is
adequate. If the MCSCF has converged to a spurious solution, perturbation theory is often
successful in identifying this because a very large contribution from one or more excitations
will be observed. Alternatively, if the MCSCF failed to include one or more critical orbitals,
again, large contributions will be obtained for corresponding excitations. From a formal
standpoint, it is better to include those orbitals in the active space than it is to rely on
CASPT2 to correct for both dynamical and non-dynamical behavior, even though in some
instances it seems the latter approach can give good results.

An alternative way to account for multiconfigurational character in the singlet is to
generate it using SF-CIS(D) from the triplet reference. Slipchenko and Krylov (2002) have
done this for p-benzyne using the 6-31G(d) basis set and computed a S−T splitting of
−2.2 kcal mol−1. The SF-CIS(D) model is thus nearly as accurate as those including esti-
mates for triple excitations even though it is substantially less computationally expensive.

A separate issue that can contribute to instability in correlated calculations is spin contami-
nation. As noted in Chapter 6, spin contamination refers to the inclusion in the wave function
of contributions from states of higher spin that mix in when unrestricted methods permit
α and β spin orbitals to localize in different regions of space. As a rough rule, the sensi-
tivity of different methods to spin contamination is about what it is to multiconfigurational
character: MPn methods are to be avoided and inclusion of triples in CCSD or QCISD (or
BD) is important. So-called projected MPn methods attempt to correct for spin contamina-
tion after the fact by projecting out states of higher spin from the correlated wave function
(see Appendix B), and these methods tend to be helpful in cases where spin contamina-
tion is relatively small, say no more than 10% (Chen and Schlegel 1994). Unfortunately,
analytic gradients are not available for spin-projected methods, so they must be applied to
geometries the optimization of which may have taken place at a considerably less reliable
level.

An issue related to spin contamination is so-called Hartree–Fock instability. Various wave
functions can exhibit different kinds of instabilities, often, but not always, associated with
trying to describe a multiconfigurational system with a single-determinant approach. Thus, for
instance, RHF solutions may be unstable with respect to breaking the identical character of
the α and β orbitals – a so-called RHF → UHF instability (the UHF singlet wave function is
usually highly contaminated with triplet character after reoptimization). UHF wave functions
for symmetric systems can also be unstable, in this case with respect to spatial symmetry
breaking of the individual orbitals. The MOs, if allowed to relax, fail to fall into the irreps
of the molecular point group, adopting instead lower symmetry shapes even if the molecular
framework is held fixed so as to continue to belong to the higher symmetry point group.
Such instability tends to be associated with systems having delocalized spin – the allyl
radical is a classical example. All of these cases prove very problematic for perturbation
theory, but are handled with somewhat greater success by other correlated methods. In
certain very highly symmetric systems, the wave function can also be unstable to using
complex instead of real MOs, but this situation is rare. Most modern electronic-structure
programs allow one to check the stability of the HF wave function with respect to these
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various phenomena, and such steps are warranted in cases having narrow frontier orbital
separations and/or delocalized spin. Resort to MCSCF wave functions can be required in
particularly problematic systems.

7.6.3 Price/Performance Summary

For a typical equilibrium structure, the HF level of theory predicts bond lengths that are
usually a little too short. It is simple to rationalize this using Eq. (7.1). To the extent that
correlated methods include excited configurations in the wave function expansion, and to
the extent that the orbitals into which excitations occur typically have some antibonding
character, this tends to increase bond lengths in order to lower the energy. As a rule, the MP2
level is an excellent choice for geometry optimizations of minima that include correlation
energy, and significant improvements can be obtained at fairly reasonable cost. Scheiner et al.
(1997) examined a large number of bond lengths in 108 molecules containing from two to
eight atoms and found that, with the 6-31G(d,p) basis set, the average error in bond length at
the MP2 level was 0.015 Å, which may be compared to an error at the HF level of 0.021 Å.
An improvement of roughly the same order was obtained by Feller and Peterson (1998) in a
separate investigation of 184 small molecules using the aug-cc-pVnZ basis sets. Bond angles
are already sufficiently accurate at the HF level that little improvement is observed at the
MP2 level.

While analytic derivatives are available for several more highly correlated levels of theory,
geometric improvements beyond the MP2 level tend to be so small for equilibrium structures
that they are not worth the cost. This is not necessarily the case for TS structures, where
the accurate description of a partial bond may well require correlation beyond the MP2
level. As a rough rule, if one observes a large change in some geometric property on going
from the HF to the MP2 level, it is probably worthwhile to investigate the predictions from
still higher levels of theory, since clearly the perturbations are large, and there is good
reason to believe MP2 does not provide convergence in the property of interest. In some
instances, convergence can be hard to achieve using perturbation theory (especially for cases
of multiple bonds involving heteroatoms) and coupled-cluster methods are to be preferred,
but this typically applies only to calculations seeking the most demanding accuracy (He and
Cremer 2000c).

With respect to energetics, MP2 must again be considered a very efficient level of theory
for energy differences between minima. In many instances, one finds that the error in such
differences is reduced by 25–50% on going from the HF level to the MP2 level. For
instance, Hehre reports a sample of 45 isomerizations where errors in isomer energies were
reduced from 2.9 to 1.9 kcal mol−1 on going from HF/6-31G(d) to MP2/6-31G(d). For the
11 glucose conformers discussed in Chapters 5 and 6, the average error in conformational
energy is reduced from 0.6 to 0.4 kcal mol−1 on going from HF/cc-pVTZ//MP2/cc-pVDZ
to MP2/cc-pVTZ//MP2/cc-pVDZ (Barrows et al. 1998). Note, though, that for the same
glucose conformers, the error increases from 0.1 to 1.0 kcal mol−1 on going from HF/cc-
pVDZ to MP2/cc-pVDZ, illustrating the degree to which errors in basis set and correlation
approximations can sometimes offset one another.
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However, the generally robust nature of MP2 in the above examples simply reflects the
degree to which most minima are already fairly well described by HF wave functions. When
this is not the case, e.g., in TS structures, there are no hard and fast rules that can be cited
with respect to the expected quality of any level of theory. Instead, one is thrown back on
the twin responsibilities of demonstrating either (a) agreement with known experimental data
of one kind or another in the same or related systems or (b) convergence with respect to
treatment of electron correlation. A rough quality ordering that is often observed is

HF < MP2 ∼ MP3 ∼ CCD < CISD

< MP4SDQ ∼ QCISD ∼ CCSD < MP4

< QCISD(T) ∼ CCSD(T) ∼ BD(T) (7.59)

Table 7.4 provides a more quantitative feel for the performance summary embodied in
Eq. (7.59) using data provided by Bartlett (1995) for the absolute errors in various levels of
theory compared to full CI for HB, H2O, and HF using a polarized double-ζ basis set. In this
case, calculations were carried out both at the equilibrium geometries, and also at geome-
tries where the X–H bonds were stretched by 50% and 100%; correlation should become
more important in describing these higher energy species (see also Dutta and Sherrill 2003).
The ordering of the levels in the table is approximately that listed in Eq. (7.59), although
CCD seems to do fortuitously well. As expected, the lower levels of correlation treatment
degrade markedly compared to the higher levels when the bonds are stretched. A few levels
not generally available in most electronic structure packages are included in the table for
completeness, including MP5, MP6, and levels having full inclusion of triples, represented
by ‘T’ instead of ‘(T)’. The heroically expensive CCSDTQ, which takes full account of all

Table 7.4 Average errors in correlation energies (kcal mol−1) compared to full CI for various methods
applied to HB, H2O, and HF at both equilibrium and bond-stretched geometries

Level of theory Equilibrium geometry Equilibrium and stretched geometries

MP2 10.4 17.4
MP3 5.0 14.4
CISD 5.8 13.8
CCD 2.4 8.0
MP4SDQ 2.7 7.1
CCSD 1.9 4.5
QCISD 1.7 4.0
MP4 1.3 3.7
MP5 0.8 3.2
MP6 0.3 0.9
CCSD(T) 0.3 0.6
QCISD(T) 0.3 0.5
CCSDT 0.2 0.5
CCSDTQ 0.01 0.02
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Table 7.5 Formal scaling behavior, as a function of basis
functions N , of various electronic structure methods

Scaling behavior Method(s)

N4 HF
N5 MP2
N6 MP3, CISD, MP4SDQ, CCSD, QCISD
N7 MP4, CCSD(T), QCISD(T)
N8 MP5, CISDT, CCSDT
N9 MP6
N10 MP7, CISDTQ, CCSDTQ

triple and quadruple excitations, is also included, and shows the extraordinarily high accu-
racy one might expect for so complete a treatment, albeit one that can only be applied to
the smallest of molecules.

To further judge what level may be appropriate for a given problem, it is critical that cost be
taken into account. The scaling behavior of the various levels in Eq. (7.59) varies widely, as
indicated in Table 7.5. Given the price/performance ratios implied by comparing Eq. (7.59)
with Table 7.5, there is, for instance, usually little point in doing an MP3 or CISD calculation
when superior MP4SDQ or CCSD calculations may typically be accomplished at roughly
similar cost (note that scaling similarity is not the same as overall time similarity, since
the times for the benchmark ‘one-basis-function’ calculations may differ, but for small to
moderately sized molecules, the overall times do not tend to be terribly dissimilar). It should
also be recalled that in the large molecule limit, all scaling behaviors tend to reduce because
prescreening techniques can avoid the calculation of many negligible integrals. In addition,
progress continues to be made on linear scaling formalisms, for example, local coupled
cluster theory (Li, Ma, and Jiang 2002; Schütz 2002), so that increasingly sophisticated
treatments of larger and larger molecules are becoming more and more accessible.

7.7 Parameterized Methods

Having ascended to the heights of theoretical rigor, it is perhaps time for a brief respite
and a timely recapitulation of, of all things, the philosophy underlying the development
of semiempirical methods: wouldn’t it be nice to get the right answer for any problem
in general? Although methods like full CI and CCSDTQ, when used in conjunction with
large and flexible basis sets, are breathtakingly accurate as solutions of the Schrödinger
equation, the bottom line is that they simply cannot be applied to more than the smallest
fraction of chemically interesting systems because of their computational expense. And, with
scaling behaviors on the order of N10, this situation is unlikely to change anytime soon.
As a result, particularly within the last decade, practitioners of ab initio MO theory have
returned to the idea of introducing parameters to improve predictive accuracy, albeit with a
considerably lighter touch than that associated with a full-blown semiempirical method. This
section describes a variety of different approaches to improving the results from calculations
including electron correlation.
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7.7.1 Scaling Correlation Energies

The premise behind correlation scaling is particularly simple. Because of basis-set limitations
and approximations in the correlation treatment, one is very rarely able to compute the full
correlation energy. However, with a given choice of basis set and level of theory, the fraction
that is calculated is often quite consistent over a fairly large range of structure. Thus, we
might define an improved electronic energy as

ESAC−e.c.m. = EHF + Ee.c.m. − EHF

A
(7.60)

where ‘e.c.m.’ is a particular electron correlation method, A is an empirical scale factor
typically less than one, and thus all of the correlation energy, computed as the difference
between Eecm and EHF, is scaled by the constant factor of A−1. SAC emphasizes this
‘scaling all correlation’ energy assumption. Note that the difference between SAC and the
extrapolation schemes of section 7.6.1 is that the latter extrapolate the correlation energy
associated with a given electronic structure model to an infinite basis set, but SAC attempts
to estimate all of the correlation energy.

As first proposed by Gordon and Truhlar (1986), typically one would go about selecting A

by comparison to known experimental data in a system of interest and/or systems related to
it. For example, if the subject of interest is the PES for the reaction of the hydroxyl radical
with ethyl chloride, and if the overall energies of reaction are known for the abstraction of the
α and β hydrogen atoms (to make water and the corresponding alkyl radicals), then A would
be selected for a given electron correlation method (say, MP2) in order to make ESAC−MP2

agree with experiment as closely as possible for those particular data points. This same value
of A would then be used for any point on the PES. Of course, the more experimental details
that can be included in the choice of A, the better the parameterization (and the better able
one is to judge the utility of Eq. (7.60) by examination of the errors in a one-parameter fit).

Note that one particularly attractive feature of Eq. (7.60) is that if the particular electron
correlation method has available analytic derivatives, so too must ESAC−e.c.m., since deriva-
tives for the latter will be simply determined as appropriately scaled sums of the e.c.m. and
HF derivatives. Geometry optimization, and indeed the entire calculation, can essentially be
carried out for exactly the cost of the e.c.m.

While one might imagine that values of A might best be determined individually within
any given system, Siegbahn and co-workers have examined a large number of primarily
small inorganic systems and suggested that, for the modified coupled-pair functional (MCPF)
treatment of correlation (which is analogous in spirit to coupled cluster) with a polarized
double-ζ basis set, a value of 0.80 has broad applicability, and they name this choice PCI-
80 (Siegbahn, Blomberg, and Svensson 1994; Blomberg and Siegbahn 1998). A summary
of the utility of this level of theory for inorganic systems including comparison to density
functional theory (DFT) can be found in Table 8.2.

Gordon and Truhlar (1986) have emphasized that variations on the theme of Eq. (7.60) can
be useful in different circumstances. For instance, one might imagine carrying out multirefer-
ence calculations and assuming two different scale factors, one applying to the non-dynamical
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correlation energy associated with some increase in active space size, and the other with the
dynamical correlation energy associated with a CASPT2 calculation. Alternatively, one could
have different scaling factors for the terms associated with different levels of electronic exci-
tation, e.g., scaling the doubles differently than the triples. Choices along these lines should
be guided by Occam’s parameter-razor: in the absence of significant improvements, fewer is
better. Recent developments along these lines are the spin-component-scaled MP2 and MP3
(SCS-MP2 and SCS-MP3) methods of Grimme (2003a; 2003b) where the contributions to
the perturbation theory correction from parallel-spin and anti-parallel-spin electron pairs are
scaled differently from one another. After this empirical scaling, these methods have been
demonstrated to often provide results competitive with models more formally including triple
excitations, e.g., QCISD(T).

7.7.2 Extrapolation

The most attractive feature of the SAC methods is their simplicity. A potential contributor
to their possible failure, however, is that the factor A, by being based on experiment, hides
within it corrections for both basis-set incompleteness and truncation in the correlation oper-
ator. It is not obvious over any particular range of chemical space that either one will be
constant, in which case it seems particularly unlikely that either both will be constant simul-
taneously, or that their changes will exactly offset one another. There is thus some virtue
in attempting to correct for the two approximations separately. As has already been noted
in Chapter 6, estimates of the HF limit can be derived by carrying out calculations with
increasingly larger basis sets and then assuming some asymptotic behavior as a function
of basis-set size (see Figure 6.4 and Section 7.6.1). The same can be done with correlated
methods, and many modern basis sets were developed specifically with this goal in mind.

Such a procedure may not seem to be properly classified as a ‘parameterized’ method,
since no individual calculation incorporates a parameter, optimized or otherwise. However,
in this instance it is the selection of the functional form for asymptotic behavior that may
be considered to be parametric. As noted in Section 7.6.1, for certain levels of theory, like
MP2, rigorous convergence behaviors have been derived, but it must be stressed that those
behaviors are valid in the limit of a complete basis set, and the ability to fit points obtained
with a smaller basis set to the limiting curve is by no means assured (see, for instance,
Petersson and Frisch 2000).

In principle, then, in systems where computational costs are not prohibitively expensive,
one might try to employ extrapolation so that the energies appearing in Eq. (7.60) represented
complete-basis-set (CBS) energies, in which case A corrects only for approximations in the
correlation treatment.

7.7.3 Multilevel Methods

In Section 6.2.6, we considered approaches to the HF limit derived under the assumption
that various aspects of basis-set incompleteness (radial, angular, etc.) could be accounted for
in some additive fashion (see Eq. (6.5)). In essence, multilevel methods carry this approach
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one step further, and assume a similar behavior for the correlation energy. For instance, the
QM energies for glucose conformers that have served as a benchmark for comparison with
lower levels of theory in preceding chapters were computed at a composite (C) level as

E(C) =E(MP2/cc-pVTZ//MP2/cc-pVDZ)

+ {E(CCSD/6-31G(d)//MP2/6-31G(d))

− E(MP2/6-31G(d))}
+ {E(HF/cc-pTVQZ//MP2/cc-pVDZ)

− E(HF/cc-pVTZ//MP2/cc-pVDZ)} (7.61)

Thus, triple-ζ MP2 energies at double-ζ MP2 geometries are augmented with a correction
for doubles contributions beyond second order (line 2 on the r.h.s. of Eq. (7.61)) and a
correction for basis set size increase beyond triple-ζ (line 3 on the r.h.s. of Eq. (7.61) where
the ‘T’ superscript in the first basis set implies that polarization functions from cc-pVTZ
were used in conjunction with valence functions from cc-pVQZ).

While such ad hoc multilevel methods have been employed for rather a long time, only in
the late 1980s were efforts undertaken to systematize the approach so as to define a model
chemistry having broad applicability. The first such effort was the so-called G1 theory of
Pople and co-workers, which was followed very rapidly by an improved modification called
G2 theory, so that the former may be considered to be obsolete (Curtiss et al. 1991). The
steps involved in a G2 calculation are detailed in Table 7.6. In this instance, the goal of
the calculation is accurate thermochemistry, so some of the steps are devoted to computing
thermal contributions to the enthalpy, as opposed to the electronic energy, as described in
more detail in Chapter 10. Although the philosophy of the remaining steps is essentially the
same as that predicating Eq. (7.61), there is considerably more attention to detail in specific
aspects of the basis-set problem and the accounting for electron correlation. There is also
a completely empirical correction procedure (step 8) to, inter alia, account for core-valence
correlation and to improve the performance of the model over systems having different
numbers of unpaired spins. Note that ‘full’ following a correlation acronym implies that
core electrons were included in the correlation treatment, as opposed to the more typical
choice of freezing them to excitation. Over a test set of 148 enthalpies of formation, the
average error of G2 theory is 1.6 kcal mol−1.

Over time, many different groups have suggested minor modifications of G2 theory (each
spawning a new acronym). Some trade accuracy for computational efficiency in order to
permit application to larger systems; the most popular of these has been G2(MP2), which
avoids the costly MP4 calculations in G2 at the expense of increasing the error over the test
set to 1.8 kcal mol−1 (Curtiss, Raghavachari, and Pople 1993). Others emphasize alternative
methods for obtaining molecular geometries, or attempt to correct for other deficiencies in
G2 applied to specific classes of molecules (G2 does poorly on perfluorinated species, for
instance).



7.7 PARAMETERIZED METHODS 241

Table 7.6 Steps in G2 and G3 theory for moleculesa,b

Step G2 G3

(1) HF/6-31G(d) geometry optimization HF/6-31G(d) geometry optimization
(2) ZPVE from HF/6-31G(d) frequencies ZPVE from HF/6-31G(d) frequencies
(3) MP2(full)/6-31G(d) geometry

optimization (all subsequent
calculations use this geometry)

MP2(full)/6-31G(d) geometry
optimization (all subsequent
calculations use this geometry)

(4) E[MP4/6-311+G(d,p)]
−E[MP4/6-311G(d,p)]

E[MP4/6-31+G(d)] −E[MP4/6-31G(d)]

(5) E[MP4/6-311G(2df,p)]
−E[MP4/6-311G(d,p)]

E[MP4/6-31G(2df,p)]
−E[MP4/6-31G(d)]

(6) E[QCISD(T)/6-311G(d)]
−E[MP4/6-311G(d)]

E[QCISD(T)/6-31G(d)]
−E[MP4/6-31G(d)]

(7) E[MP2/6-311+G(3df,2p)]
−E[MP2/6-311G(2df,p)]
−E[MP2/6-311+G(d,p)]
+E[MP2/6-311G(d,p)]

E[MP2(full)/G3largec]
−E[MP2/6-31G(2df,p)]
−E[MP2/6-31+G(d)]
+E[MP2/6-31G(d)]

(8) −0.00481 × (number of valence electron
pairs) −0.00019 × (number of
unpaired valence electrons)

−0.006386 × (number of valence
electron pairs) −0.002977 × (number
of unpaired valence electrons)

E0 = 0.8929 × (2) + E[MP4/6-311G(d,p)] +
(4) + (5) + (6) + (7) + (8)

0.8929 × (2) + E[MP4/6-31G(d)] +
(4) + (5) + (6) + (7) + (8)

aFor atoms, G3 energies are defined to include a spin-orbit correction taken either from experiment or other high-
level calculations. In addition, different coefficients are used in step (8).
bIn the G2 method, the 6-311G basis set and its derivatives are not defined for second-row atoms; instead, a basis
set optimized by McLean and Chandler (1980) is used.
cAvailable at http://chemistry.anl.gov/compmat/g3theory.htm. Defined to use canonical 5 d and 7 f functions.

A modification of G2 by Pople and co-workers was deemed sufficiently comprehensive
that it is known simply as G3, and its steps are also outlined in Table 7.6. G3 is more accurate
than G2, with an error for the 148-molecule heat-of-formation test set of 0.9 kcal mol−1. It is
also more efficient, typically being about twice as fast. A particular improvement of G3 over
G2 is associated with improved basis sets for the third-row nontransition elements (Curtiss
et al. 2001). As with G2, a number of minor to major variations of G3 have been proposed to
either improve its efficiency or increase its accuracy over a smaller subset of chemical space,
e.g., the G3-RAD method of Henry, Sullivan, and Radom (2003) for particular application
to radical thermochemistry, the G3(MP2) model of Curtiss et al. (1999), which reduces
computational cost by computing basis-set-extension corrections at the MP2 level instead
of the MP4 level, and the G3B3 model of Baboul et al. (1999), which employs B3LYP
structures and frequencies.

It should be noted that G2 and G3 potentially fail to be size extensive because of the
correction term in step 8. If one is studying a homolytic dissociation into two components,
at what point along the reaction coordinate are the formerly paired electrons considered
to be unpaired? There will be a discontinuity in the energy at that point. In addition, G3
theory uses a different correction for atoms than for molecules, and this too fails to be size
extensive.
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Alternative multilevel methods that have some similarities to G2, G3, and their variants,
are the CBS methods of Petersson and co-workers (see Bibliography at end of chapter). A key
difference between the Gn models and the CBS models is that, rather than assuming basis-
set incompleteness effects to be completely accounted for by additive corrections, results
for different levels of theory are extrapolated to the complete-basis-set limit in defining a
composite energy. Four well-defined CBS models exist, CBS-4, CBS-q, CBS-Q, and CBS-
APNO, these being in order of increasing accuracy and, naturally, cost. Over the same
148-molecule test set as used above to evaluate G2 and G3, the average absolute errors
of CBS-4, CBS-q, and CBS-Q are 2.7, 2.3, and 1.2 kcal mol−1, respectively. CBS-APNO
reduces the error in CBS-Q by a factor of 2 (to only 0.5 kcal mol−1 on a somewhat smaller
125-molecule test set), but requires a very expensive QCISD(T)/6-311+G(2df,p) calculation.
A particular feature of most of the CBS methods is that they include an (empirical) correction
for spin contamination in open-shell species, for which unrestricted treatments potentially
sensitive to such contamination are used. In terms of speed, CBS-Q is roughly the speed
of G3.

The Weizmann-1 (W1) and Weizmann-2 (W2) models of Martin and de Oliveira (1999)
are similar to the CBS models in that extrapolation schemes are used to estimate the infi-
nite basis set limits for SCF and correlation energies. A key difference between the two,
however, is that the W1 and W2 models set as a benchmark goal an accuracy of 1 kJ mol−1

(0.24 kcal mol−1) on thermochemical quantities. To achieve that kind of accuracy basis
sets of size up to cc-pVQZ + 2d1f and cc-pV5Z + 2d1f are used for W1 and W2 theo-
ries, respectively, for both SCF and CCSD calculations. Other components of the W1 and
W2 calculations include accounting for triple excitations, core electron correlation energy,
relativistic effects including spin–orbit coupling, and zero-point vibrational energies. W1
and W2 theories predict heats of formation over a 55-molecule subset of the 148-molecule
G2/G3 test set mentioned above (this subset is now usually called the G2-1 test set) with
mean unsigned errors of 0.6 and 0.5 kcal mol−1, respectively. By comparison, the G2, G3,
and CBS-Q results for this subset are 1.2, 1.1, and 1.0 kcal mol−1, respectively. The relative
performances of W1 and W2 theories are still more improved for prediction of electron affini-
ties and ionization potentials (Parthiban and Martin 2001). Further development aimed at
achieving ‘spectroscopic accuracy’ (usually defined as energetic accuracy to within 1 cm−1)
has resulted in W3 and preliminary W4 theories (Boese et al. 2004), but as these protocols
include CCSDTQ calculational steps with basis sets of size cc-pVDZ or larger, they are
likely to find application only to very small molecules for the foreseeable future.

A somewhat more obviously empirical variation on the multilevel approach is the multi-
coefficient method of Truhlar and co-workers. Although many different variations of this
approach have now been described, it is simplest to illustrate the concept for the so-called
multi-coefficient G3 (MCG3) model (Fast, Sánchez, and Truhlar 1999). In essence, the model
assumes a G3-like energy expression, but each term has associated with it a coefficient that
is not restricted to be unity, as is the case for G3. Specifically

EMCG3 =
9∑

i=1

ci(i) + ESO + ECC (7.62)
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where (i) represents a component of the G3 energy (actually, there are some rather slight
variations involved with basis sets and frozen-core approximations that increase efficiency),
ESO and ECC are empirically estimated spin-orbit and core-correlation energies, and the
coefficients ci are optimized over the usual G3 thermochemistry test set. One additional
important difference in the use of G3 energy components is that the G3 empirical correction,
which leads to non-size-extensivity, is not included. Thus, MCG3 is size extensive. The
performance of MCG3 is very slightly better than G3 itself, but this accuracy is achieved at
roughly half the cost in terms of computational resources for molecules having many heavy
atoms. Scaling of the G3 components was also reported by Curtiss et al. (2000) and defines
the G3S model. MCG3 and G3S have essentially equivalent accuracy.

The real power in the multi-coefficient models, however, derives from the potential for
the coefficients to make up for more severe approximations in the quantities used for (i) in
Eq. (7.62). At present, Truhlar and co-workers have codified some 20 different multicoeffi-
cient models, some of which they term ‘minimal’, meaning that relatively few terms enter
into analogs of Eq. (7.62), and in particular the optimized coefficients absorb the spin-orbit
and core-correlation terms, so they are not separately estimated. Different models can thus
be chosen for an individual problem based on error tolerance, resource constraints, need
to optimize TS geometries at levels beyond MP2, etc. Moreover, for some of the minimal
models, analytic derivatives are available on a term-by-term basis, meaning that analytic
derivatives for the composite energy can be computed simply as the sum over terms.

A somewhat more chemically based empirical correction scheme is the bond-additivity
correction (BAC) methodology. In the BAC-MP4 approach, for instance, the energy of a
molecule is computed as

E(BAC-MP4) =E[MP4/6-31G(d,p)//HF/6-31G(d,p)]

+
∑
A,B

�EA−B + ESC + EMR
(7.63)

where ESC and EMR correct for spin contamination (if any) and multireference character (if
any) and the summation runs over all atom pairs and each ‘bond’ correction is a function of
bond length (the correction goes to zero at infinite bond length) and a set of parameters, one
parameter for each atom and two parameters for each possible pair of atoms. The parameters
themselves are determined by fitting to experimental bond dissociation energies, heats of
formation (corrected for zero-point vibrational energies and thermal contributions), or other
useful thermochemical data. The central assumption of this model, then, is that the error can
be decomposed in an additive fashion over the bonds.

In a study of 110 C1 and C2 molecules composed of C, H, O, and F, the average BAC-
MP4 unsigned error in predicted heat of formation was 2.1 kcal mol−1 (Zachariah et al.
1996). As the MP4 calculation uses a relatively modest basis set size, the BAC procedure is
quite fast by comparison to some of the multilevel methods described above. On the other
hand, as with any method relying on pairwise parameterization, extension to a large number
of atoms requires a great deal of parameterization data, and this is a potential limitation of
the BAC method when applied to systems containing atoms not already parameterized.
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Because they include empirically derived parameters, multilevel models nearly always
outperform single-level calculations at an equivalently expensive level of theory. That being
said, one should avoid a slavish devotion to any particular multilevel model simply because
it has been graced with an acronym defining it. For any given chemical problem, it is
quite possible that an individual investigator can construct a specific multilevel model with
relatively little effort that will outperform any of the already defined ones. The issue is
simply whether sufficient data exist for the particular system of interest in order to make
such a focused model possible. When the data do not, then that is the best time to rely on
those previously defined models that have been demonstrated to be reasonably robust over
relevant swaths of chemical space.

As for the utility of single-level models, it should be recalled that the goal of most
multilevel models is absolute energy prediction, while many chemical studies are undertaken
in order to better understand relative energy differences. Cancellation of errors makes the
latter studies more tractable at less complete levels of theory, and single-level models can still
be useful in both qualitative and quantitative senses. In addition, there is no wave function
defined for the typical parametric model; there is only an energy functional that potentially
depends on several different wave functions. Should one wish to know the expectation
value for some property other than the energy, one will either have to devise a separate
multilevel expression, or adopt a single-level formalism for which a wave function is indeed
defined.

Note that most of the energetic performance data summarized above may also be found
in tabular form, compared to density functional models, in Table 8.1

7.8 Case Study: Ethylenedione Radical Anion

Synopsis of Thomas, J. R. et al. (1995) ‘The Ethylenedione Anion: Elucidation of the
Intricate Potential Energy Hypersurface’.

The ground state of ethylenedione, the dimer of carbon monoxide, has been reliably
predicted to be a triplet that is bound with respect to dissociation by virtue of its high spin
state (two singlet carbon monoxide molecules are lower in energy, but the triplet cannot
dissociate into two closed-shell singlets). As such, it has proven an interesting target for
synthesis, albeit without success. One possible avenue for its synthesis is to detach electrons
from negative ion precursors. This prompted Thomas and co-workers to characterize the
radical anion of ethylenedione at a variety of correlated levels of electronic structure theory.

At the UHF level the linear form, which formally has a 2u electronic state (see Appendix
B for details on group theoretical notation), is predicted to be the minimum energy structure.
However, at almost all correlated levels the molecule bends to lift the degeneracy of a pair
of au and bu orbitals, leading to a so-called Renner–Teller potential energy surface, as
illustrated in Figure 7.7. The lower energy state is 2Au and geometric details are provided
in the figure for four different correlated levels, all using a large TZP+ basis set.

The details of the molecular structure are difficult to nail down because of the shallow
nature of the PES in the vicinity of the linear form. Thus, even with a fairly complete basis
set, there are large disagreements between CISD, CCSD, and CCSD(T), although there is
a remarkably good (coincidental) agreement between MP2 and CCSD(T). The situation is
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Figure 7.7 Renner–Teller PES for ethylenedione radical anion. Geometrical data for the 2Au

equilibrium structure are provided for various levels of theory using an augmented polarized
triple-ζ basis set (TZP+). Barriers to linearity (�E, kcal mol−1) are from CCSD(T) calculations
using, from top to bottom, DZP, DZP+, TZP, and TZP+ basis sets. If the initial guess is for
the 2Bu state instead of the 2Au state, what will happen?

still more dissatisfying insofar as further increases in basis-set size, in this case adding
additional sets of polarization functions, result in bond length changes of up to 0.03 Å and
bond angle changes of up to 14◦ at the MP2, CISD, and CCSD levels. The cost of the
CCSD(T) computations is such that use of these larger basis sets is not practical, and thus
it is not clear what the effect will be at this formally most complete level of theory.

To further clarify the situation, the authors examined two other quantities dependent on
the shape of the PES in the vicinity of the linear form. First, they computed the barrier
to double-inversion through the linear form. The data are listed in Figure 7.7., and show
some basis set dependence. Note that the CCSD(T)/TZP+ result is approximated to within
0.1 kcal mol−1 by summing the CCSD(T)/TZP barrier with the difference between the
CCSD(T)/DZP+ and CCSD(T)/DZP barriers. That is, the effect of diffuse functions eval-
uated with a double-ζ basis set can be treated as additive to the non-augmented triple-ζ
results, along the lines described in Section 7.7.3.

The authors made a more exacting comparison for vibrational frequencies, where exper-
imental data were available for the matrix isolated radical anion. Focusing on one funda-
mental and one combination band, the CCSD(T)/TZP+ predictions of 1527 and 1955 cm−1

compared reasonably well to the experimental values of 1518 and 2042. Again, the flat
nature of the PES in the vicinity of the linear form makes things difficult for theory,
since this introduces potentially large anharmonicity that is not accounted for in the usual
harmonic approximation employed to compute vibrational frequencies (see Section 9.3.2).
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Isotope shifts in the frequencies, however, showed very close agreement between theory
and experiment, all data agreeing to within 5% for seven different isotopomers.

The authors did examine whether significant non-dynamical correlation effects compli-
cated the system, but MCSCF calculations with large active spaces failed to identify any
configurations other than the dominant one that entered with coefficients in excess of 0.09,
suggesting that the use of single-reference methods was well justified. Part of the challenge
for this particular system simply derives from its negative charge, which imposes a greater
demand on basis-set saturation. In any case, this example illustrates how deceptively diffi-
cult it can be to converge solution of the Schrödinger equation even for seemingly simple
chemical systems – a mere four heavy atoms.
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8
Density Functional Theory

8.1 Theoretical Motivation

8.1.1 Philosophy

What a strange and complicated beast a wave function is. This function, depending on one
spin and three spatial coordinates for every electron (assuming fixed nuclear positions), is not,
in and of itself, particularly intuitive for systems of more than one electron. Indeed, one might
approach the HF approximation as not so much a mathematical tool but more a philosophical
one. By allowing the wave function to be expressed as a Slater determinant of one-electron
orbitals, one preserves for the chemist some semblance of clarity by permitting each electron
still to be thought of as being loosely independent. It was noted in Section 7.6.1 that wave
functions can be dramatically improved in quality by removing this rough independence
and including in the wave functional form a dependence on interelectronic distances (R12
methods). The key disadvantage? The wave function itself is essentially uninterpretable – it
is an inscrutable oracle that returns valuably accurate answers when questioned by quantum
mechanical operators, but it offers little by way of sparking intuition.

One may be forgiven for stepping back from the towering edifice of molecular orbital
theory and asking, shouldn’t things be simpler? For instance, rather than having to work with
a wave function, which has rather odd units of probability density to the one-half power,
why can’t we work with some physical observable in determining the energy (and possibly
other properties) of a molecule? That such a thing should be possible would probably not
have surprised physicists before the discovery of quantum mechanics, insofar as such simple
formalisms are widely available in classical systems.

However, we may take advantage of our knowledge of quantum mechanics in asking about
what particular physical observable might be useful. Having gone through the exercise of
constructing the Hamiltonian operator and showing the utility of its eigenfunctions, it would
be sufficient to our task simply to find a physical observable that permitted the a priori
construction of the Hamiltonian operator. What then is needed? The Hamiltonian depends
only on the positions and atomic numbers of the nuclei and the total number of electrons.
The dependence on total number of electrons immediately suggests that a useful physical
observable would be the electron density ρ, since, integrated over all space, it gives the total
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number of electrons N , i.e.,

N =
∫

ρ(r)dr (8.1)

Moreover, because the nuclei are effectively point charges, it should be obvious that their
positions correspond to local maxima in the electron density (and these maxima are also
cusps), so the only issue left to completely specify the Hamiltonian is the assignment of
nuclear atomic numbers. It can be shown that this information too is available from the
density, since for each nucleus A located at an electron density maximum rA

∂ρ(rA)

∂rA

∣∣∣∣
rA=0

= −2ZAρ(rA) (8.2)

where Z is the atomic number of A, rA is the radial distance from A, and ρ is the spherically
averaged density.

Of course, the arguments above do not provide any simpler formalism for finding the
energy. They simply indicate that given a known density, one could form the Hamiltonian
operator, solve the Schrödinger equation, and determine the wave functions and energy
eigenvalues. Nevertheless, they suggest that some simplifications might be possible.

8.1.2 Early Approximations

Energy is separable into kinetic and potential components. If one decides a priori to try to
evaluate the molecular energy using only the electron density as a variable, the simplest
approach is to consider the system to be classical, in which case the potential energy
components are straightforwardly determined. The attraction between the density and the
nuclei is

Vne[ρ(r)] =
nuclei∑

k

∫
Zk

|r − rk|ρ(r)dr (8.3)

and the self-repulsion of a classical charge distribution is

Vee[ρ(r)] = 1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2| dr1dr2 (8.4)

where r1 and r2 are dummy integration variables running over all space.
The kinetic energy of a continuous charge distribution is less obvious. To proceed, we

first introduce the fictitious substance ‘jellium’. Jellium is a system composed of an infi-
nite number of electrons moving in an infinite volume of a space that is characterized
by a uniformly distributed positive charge (i.e., the positive charge is not particulate in
nature, as it is when represented by nuclei). This electronic distribution, also called the
uniform electron gas, has a constant non-zero density. Thomas and Fermi, in 1927, used
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fermion statistical mechanics to derive the kinetic energy for this system as (Thomas 1927;
Fermi 1927)

Tueg[ρ(r)] = 3

10
(3π2)2/3

∫
ρ5/3(r)dr (8.5)

Note that the various T and V terms defined in Eqs. (8.3)–(8.5) are functions of the density,
while the density itself is a function of three-dimensional spatial coordinates. A function
whose argument is also a function is called a ‘functional’, and thus the T and V terms are
‘density functionals’. The Thomas–Fermi equations, together with an assumed variational
principle, represented the first effort to define a density functional theory (DFT); the energy
is computed with no reference to a wave function. However, while these equations are of
significant historical interest, the underlying assumptions are sufficiently inaccurate that they
find no use in modern chemistry (in Thomas–Fermi DFT, all molecules are unstable relative
to dissociation into their constituent atoms. . .)

One large approximation is the use of Eq. (8.4) for the interelectronic repulsion, since it
ignores the energetic effects associated with correlation and exchange. It is useful to introduce
the concept of a ‘hole function’, which is defined so that it corrects for the energetic errors
introduced by assuming classical behavior. In particular, we write

〈
�

∣∣∣∣∣∣
electrons∑

i<j

1

rij

∣∣∣∣∣∣ �
〉

= 1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2| dr1dr2 + 1

2

∫ ∫
ρ(r1)h(r1; r2)

|r1 − r2| dr1dr2 (8.6)

The l.h.s. of Eq. (8.6) is the exact QM interelectronic repulsion. The second term on the r.h.s.
corrects for the errors in the first term (the classical expression) using the hole function h

associated with ρ (the notation h(r1; r2) emphasizes that the hole is centered on the position
of electron 1, and is evaluated from there as a function of the remaining spatial coordinates
defining r2; note, then, that not only does the value of h vary as a function of r2 for a given
value of r1, but the precise form of h itself can vary as a function of r1).

The simplest way to gain a better appreciation for the hole function is to consider the
case of a one-electron system. Obviously, the l.h.s. of Eq. (8.6) must be zero in that case.
However, just as obviously, the first term on the r.h.s. of Eq. (8.6) is not zero, since ρ must
be greater than or equal to zero throughout space. In the one-electron case, it should be clear
that h is simply the negative of the density, but in the many-electron case, the exact form of
the hole function can rarely be established. Besides the self-interaction error, hole functions
in many-electron systems account for exchange and correlation energy as well.

By construction, HF theory avoids any self-interaction error and exactly evaluates the
exchange energy (it is only the correlation energy that it approximates); however, it is
time-consuming to evaluate the four-index integrals from which these various energies are
calculated. While Slater (1951) was examining how to speed up HF calculations he was
aware that one consequence of the Pauli principle is that the Fermi exchange hole is larger
than the correlation hole, i.e., exchange corrections to the classical interelectronic repulsion
are significantly larger than correlation corrections (typically between one and two orders
of magnitude). So, Slater proposed to ignore the latter, and adopted a simple approximation
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for the former. In particular, he suggested that the exchange hole about any position could
be approximated as a sphere of constant potential with a radius depending on the magni-
tude of the density at that position. Within this approximation, the exchange energy Ex is
determined as

Ex[ρ(r)] = −9α

8

(
3

π

)1/3 ∫
ρ4/3(r)dr (8.7)

Within Slater’s derivation, the value for the constant α is 1, and Eq. (8.7) defines so-called
‘Slater exchange’.

Starting from the uniform electron gas, Bloch and Dirac had derived a similar expression
several years previously, except that in that case α = 2

3 (Bloch, F. 1929 and Dirac,
P. A. M. 1930). The combination of this expression with Eqs. (8.3)–(8.5) defines the
Thomas–Fermi–Dirac model, although it too remains sufficiently inaccurate that it fails
to see any modern use.

Given the differing values of α in Eq. (8.7) as a function of different derivations, many
early workers saw fit to treat it as an empirical value, and computations employing Eq. (8.7)
along these lines are termed Xα calculations (or sometimes Hartree–Fock–Slater calculations
in the older literature). Empirical analysis in a variety of different systems suggests that α = 3

4
provides more accurate results than either α = 1 or α = 2

3 . This particular DFT methodology
has largely fallen out of favor in the face of more modern functionals, but still sees occasional
use, particularly within the inorganic community.

8.2 Rigorous Foundation

The work described in the previous section was provocative in its simplicity compared to
wave-function-based approaches. As a result, early DFT models found widespread use in
the solid-state physics community (where the enormous system size required to mimic the
properties of a solid puts a premium on simplicity). However, fairly large errors in molecular
calculations, and the failure of the theories to be rigorously founded (no variational principle
had been established), led to their having little impact on chemistry. This state of affairs was
set to change when Hohenberg and Kohn (1964) proved two theorems critical to establishing
DFT as a legitimate quantum chemical methodology. Each of the two theorems will be
presented here in somewhat abbreviated form.

8.2.1 The Hohenberg–Kohn Existence Theorem

In the language of DFT, electrons interact with one another and with an ‘external potential’.
Thus, in the uniform electron gas, the external potential is the uniformly distributed positive
charge, and in a molecule, the external potential is the attraction to the nuclei given by
the usual expression. As noted previously, to establish a dependence of the energy on the
density, and in the Hohenberg–Kohn theorem it is the ground-state density that is employed,
it is sufficient to show that this density determines the Hamiltonian operator. Also as noted
previously, integration of the density gives the number of electrons, so all that remains to
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define the operator is determination of the external potential (i.e., the charges and positions of
the nuclei). The proof that the ground-state density determines the external potential proceeds
via reductio ad absurdum, that is, we show that an assumption to the contrary generates an
impossible result.

Thus, let us assume that two different external potentials can each be consistent with the
same nondegenerate ground-state density ρ0. We will call these two potentials va and vb and
the different Hamiltonian operators in which they appear Ha and Hb. With each Hamiltonian
will be associated a ground-state wave function �0 and its associated eigenvalue E0. The
variational theorem of molecular orbital theory dictates that the expectation value of the
Hamiltonian a over the wave function b must be higher than the ground-state energy of a, i.e.,

E0,a < 〈�0,b|Ha|�0,b〉 (8.8)

We may rewrite this expression as

E0,a <
〈
�0,b|Ha − Hb + Hb|�0,b

〉
<

〈
�0,b|Ha − Hb|�0,b

〉 + 〈
�0,b|Hb|�0,b

〉
<

〈
�0,b|va − vb|�0,b

〉 + E0,b (8.9)

Since the potentials v are one-electron operators, the integral in the last line of Eq. (8.9) can
be written in terms of the ground-state density

E0,a <

∫
[va(r) − vb(r)]ρ0(r)dr + E0,b (8.10)

As we have made no distinction between a and b, we can interchange the indices in Eq. (8.10)
to arrive at the equally valid

E0,b <

∫
[vb(r) − va(r)]ρ0(r)dr + E0,a (8.11)

Now, if we add inequalities (8.10) and (8.11), we have

E0,a + E0,b <

∫
[vb(r) − va(r)]ρ0(r)dr +

∫
[va(r) − vb(r)]ρ0(r)dr + E0,b + E0,a

<

∫
[vb(r) − va(r) + va(r) − vb(r)]ρ0(r)dr + E0,b + E0,a

< E0,b + E0,a (8.12)

where the assumption that the ground-state densities associated with wave functions a and b

were the same permits us to eliminate the integrals as they must sum to zero. However, we
are left with an impossible result (that the sum of the two energies is less than itself), which
must indicate that our initial assumption was incorrect. So, the non-degenerate ground-state
density must determine the external potential, and thus the Hamiltonian, and thus the wave
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function. Note moreover that the Hamiltonian determines not just the ground-state wave
function, but all excited-state wave functions as well, so there is a tremendous amount of
information coded in the density.

The non-degenerate ground-state character of the density was used to ensure the validity
of the variational inequalities. A question that naturally arises is: of what utility, if any, are
the densities of excited states? Using group theory, Gunnarsson and Lundqvist (1976a,b)
proved that the Hohenberg–Kohn existence theorem can be extended to the lowest energy
(non-degenerate) state within each irreducible representation of the molecular point group.
Thus, for instance, the densities of the lowest energy Ag and B1u states of p-benzyne each
uniquely determine their respective wave functions, energies, etc. (these states are singlet
and triplet, respectively, see Figure 7.5), but nothing can be said about the density of the
triplet A′ state of N -protonated 2,5-didehydropyridine, since there is a lower energy singlet
state belonging to the same A′ irrep (to which the Hohenberg–Kohn existence theorem does
apply, see again Figure 7.5). The development of DFT formalisms to handle arbitrary excited
states remains a subject of active research, as discussed in more detail in Chapter 14.

8.2.2 The Hohenberg–Kohn Variational Theorem

The first theorem of Hohenberg and Kohn is an existence theorem. As such, it is provocative
with potential, but altogether unhelpful in providing any indication of how to predict the
density of a system. Just as with MO theory, we need a means to optimize our fundamental
quantity. Hohenberg and Kohn showed in a second theorem that, also just as with MO
theory, the density obeys a variational principle.

To proceed, first, assume we have some well-behaved candidate density that integrates to
the proper number of electrons, N . In that case, the first theorem indicates that this density
determines a candidate wave function and Hamiltonian. That being the case, we can evaluate
the energy expectation value

〈�cand|Hcand|�cand〉 = Ecand ≥ E0 (8.13)

which, by the variational principle of MO theory, must be greater than or equal to the true
ground-state energy.

So, in principle, we can keep choosing different densities and those that provide lower
energies, as calculated by Eq. (8.13), are closer to correct. Such a procedure is, of course,
rather unsatisfying on at least two levels. First, we have no prescription for how to go about
choosing improved candidate densities rationally, and second, insofar as the motivation for
DFT was to avoid solving the Schrödinger equation, computing the energy as the expectation
value of the Hamiltonian is no advance – we know how to do that already.

The difficulty lies in the nature of the functional itself. Up to this point, we have indicated
that there are mappings from the density onto the Hamiltonian and the wave function, and
hence the energy, but we have not suggested any mechanical means by which the density can
be used as an argument in some general, characteristic variational equation, e.g., with terms
along the lines of Eqs. (8.5) and (8.7), to determine the energy directly without recourse to
the wave function. Such an approach first appeared in 1965.
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8.3 Kohn–Sham Self-consistent Field Methodology

The discussion above has emphasized that the density determines the external potential,
which determines the Hamiltonian, which determines the wave function. And, of course,
with the Hamiltonian and wave function in hand, the energy can be computed. However, if
one attempts to proceed in this direction, there is no simplification over MO theory, since the
final step is still solution of the Schrödinger equation, and this is prohibitively difficult in most
instances. The difficulty derives from the electron–electron interaction term in the correct
Hamiltonian. In a key breakthrough, Kohn and Sham (1965) realized that things would
be considerably simpler if only the Hamiltonian operator were one for a non-interacting
system of electrons (Kohn and Sham 1965). Such a Hamiltonian can be expressed as a sum
of one-electron operators, has eigenfunctions that are Slater determinants of the individual
one-electron eigenfunctions, and has eigenvalues that are simply the sum of the one-electron
eigenvalues (see Eq. (7.43) and surrounding discussion).

The crucial bit of cleverness, then, is to take as a starting point a fictitious system of
non-interacting electrons that have for their overall ground-state density the same density
as some real system of interest where the electrons do interact (note that since the density
determines the position and atomic numbers of the nuclei (see Eq. (8.2)), these quantities
are necessarily identical in the non-interacting and in the real systems). Next, we divide the
energy functional into specific components to facilitate further analysis, in particular

E[ρ(r)] = Tni[ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + �T [ρ(r)] + �Vee[ρ(r)] (8.14)

where the terms on the r.h.s. refer, respectively, to the kinetic energy of the non-interacting
electrons, the nuclear–electron interaction (Eq. (8.3)), the classical electron–electron repul-
sion (Eq. (8.4)), the correction to the kinetic energy deriving from the interacting nature of
the electrons, and all non-classical corrections to the electron–electron repulsion energy.

Note that, for a non-interacting system of electrons, the kinetic energy is just the sum
of the individual electronic kinetic energies. Within an orbital expression for the density,
Eq. (8.14) may then be rewritten as

E[ρ(r)] =
N∑
i

(〈
χi | − 1

2
∇2

i |χi

〉
−

〈
χi |

nuclei∑
k

Zk

|ri − rk| |χi

〉)

+
N∑
i

〈
χi |1

2

∫
ρ(r′)

|ri − r′|dr′|χi

〉
+ Exc[ρ(r)]

(8.15)

where N is the number of electrons and we have used that the density for a Slater-
determinantal wave function (which is an exact eigenfunction for the non-interacting system)
is simply

ρ =
N∑

i=1

〈χi |χi〉 (8.16)
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Note that the ‘difficult’ terms �T and �Vee have been lumped together in a term Exc,
typically referred to as the exchange-correlation energy. This is something of a misnomer,
insofar as it is less than comprehensive – the term includes not only the effects of quantum
mechanical exchange and correlation, but also the correction for the classical self-interaction
energy (discussed in Section 8.1.2) and for the difference in kinetic energy between the
fictitious non-interacting system and the real one.

If we undertake in the usual fashion to find the orbitals χ that minimize E in Eq. (8.15),
we find that they satisfy the pseudoeigenvalue equations

hKS
i χi = εiχi (8.17)

where the Kohn–Sham (KS) one-electron operator is defined as

hKS
i = −1

2
∇2

i −
nuclei∑

k

Zk

|ri − rk| +
∫

ρ(r′)
|ri − r′|dr′ + Vxc (8.18)

and

Vxc = δExc

δρ
(8.19)

Vxc is a so-called functional derivative. A functional derivative is analogous in spirit to more
typical derivatives, and Vxc is perhaps best described as the one-electron operator for which
the expectation value of the KS Slater determinant is Exc.

Note that because the E of Eq. (8.14) that we are minimizing is exact, the orbitals χ must
provide the exact density (i.e., the minimum must correspond to reality). Further note that
it is these orbitals that form the Slater-determinantal eigenfunction for the separable non-
interacting Hamiltonian defined as the sum of the Kohn–Sham operators in Eq. (8.18), i.e.,

N∑
i=1

hKS
i |χ1χ2 · · · χN 〉 =

N∑
i=1

εi |χ1χ2 · · ·χN 〉 (8.20)

so there is internal consistency in the Kohn–Sham approach of positing a non-interacting
system with a density identical to that for the real system. It is therefore justified to use
the first term on the r.h.s. of Eq. (8.15) to compute the kinetic energy of the non-interacting
electrons, which turns out to be a large fraction of the kinetic energy of the actual system.

As for determination of the KS orbitals, we may take a productive approach along the
lines of that developed within the context of MO theory in Chapter 4. Namely, we express
them within a basis set of functions {φ}, and we determine the individual orbital coefficients
by solution of a secular equation entirely analogous to that employed for HF theory, except
that the elements Fµν are replaced by elements Kµν defined by

Kµν =
〈
φµ| − 1

2
∇2 −

nuclei∑
k

Zk

|r − rk| +
∫

ρ(r′)
|r − r′|dr′ + Vxc|φν

〉
(8.21)
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Indeed, the similarities with HF theory extend well beyond the mathematical technology
offered by a common variational principle. For instance, the kinetic energy and nuclear
attraction components of matrix elements of K are identical to those for F. Furthermore,
if the density appearing in the classical interelectronic repulsion operator is expressed in
the same basis functions used for the Kohn–Sham orbitals, then the result is that the same
four-index electron-repulsion integrals appear in K as are found in F (historically, this made
it fairly simple to modify existing codes for carrying out HF calculations to also perform
DFT computations). Finally, insofar as the density is required for computation of the secular
matrix elements, but the density is determined using the orbitals derived from solution of
the secular equation (according to Eq. (8.16)), the Kohn–Sham process must be carried out
as an iterative SCF procedure.

Of course, there is a key difference between HF theory and DFT – as we have derived it
so far, DFT contains no approximations: it is exact. All we need to know is Exc as a function
of ρ . . . Alas, while Hohenberg and Kohn proved that a functional of the density must exist,
their proofs provide no guidance whatsoever as to its form. As a result, considerable research
effort has gone into finding functions of the density that may be expected to reasonably
approximate Exc, and a discussion of these is the subject of the next section. We close
here by emphasizing that the key contrast between HF and DFT (in the limit of an infinite
basis set) is that HF is a deliberately approximate theory, whose development was in part
motivated by an ability to solve the relevant equations exactly, while DFT is an exact
theory, but the relevant equations must be solved approximately because a key operator has
unknown form.

It should also be pointed out that although exact DFT is variational, this is not true once
approximations for Exc are adopted. Thus, for instance, the BPW91 functional described
in Section 8.4.2 predicts an energy for the H atom of −0.5042 Eh, but the exact result is
−0.5. Note that the H atom is a one-electron system for which the Schrödinger solution can
be solved exactly – there is no correlation energy. However, because the BPW91 Exc for
this system slightly exceeds the classical self-interaction energy (third term on the r.h.s. of
Eq. (8.15)), which is 100 percent in error for this one-electron system, the energy is predicted
to be slightly below the exact result. Both exact and approximate DFT are size-consistent.

The Kohn–Sham methodology has many similarities, and a few important differences, to
the HF approach. We will, however, delay briefly a full discussion of how exactly to carry
out a KS calculation, as it is instructive first to consider how to go about determining Exc.

8.4 Exchange-correlation Functionals

As already emphasized above, in principle Exc not only accounts for the difference between
the classical and quantum mechanical electron–electron repulsion, but it also includes the
difference in kinetic energy between the fictitious non-interacting system and the real system.
In practice, however, most modern functionals do not attempt to compute this portion explic-
itly. Instead, they either ignore the term, or they attempt to construct a hole function that
is analogous to that of Eq. (8.6) except that it also incorporates the kinetic energy differ-
ence between the interacting and non-interacting systems. Furthermore, in many functionals
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empirical parameters appear, which necessarily introduce some kinetic energy correction if
they are based on experiment.

In discussing the nature of various functionals, it is convenient to adopt some of the
notation commonly used in the field. For instance, the functional dependence of Exc on the
electron density is expressed as an interaction between the electron density and an ‘energy
density’ εxc that is dependent on the electron density, viz.

Exc[ρ(r)] =
∫

ρ(r)εxc[ρ(r)]dr (8.22)

The energy density εxc is always treated as a sum of individual exchange and correlation
contributions. Note that there is some potential for nomenclature confusion here because two
different kinds of densities are involved: the electron density is a per unit volume density,
while the energy density is a per particle density. In any case, within this formalism, it is
clear from inspection of Eq. (8.7) that the Slater exchange energy density, for example, is

εx[ρ(r)] = −9α

8

(
3

π

)1/3

ρ1/3(r) (8.23)

Another convention expresses the electron density in terms of an effective radius such that
exactly one electron would be contained within the sphere defined by that radius were it to
have the same density throughout as its center, i.e.,

rS(r) =
(

3

4πρ(r)

)1/3

(8.24)

Lastly, we have ignored the issue of spin up to this point. Spin can be dealt with easily
enough in DFT – one simply needs to use individual functionals of the α and β densi-
ties – but there is again a notational convention that sees widespread use. The spin densities
at any position are typically expressed in terms of ζ , the normalized spin polarization

ζ(r) = ρα(r) − ρβ(r)
ρ(r)

(8.25)

so that the α spin density is simply one-half the product of the total ρ and (ζ + 1), and the
β spin density is the difference between that value and the total ρ.

8.4.1 Local Density Approximation

The term local density approximation (LDA) was originally used to indicate any density
functional theory where the value of εxc at some position r could be computed exclusively
from the value of ρ at that position, i.e., the ‘local’ value of ρ. In principle, then, the only
requirement on ρ is that it be single-valued at every position, and it can otherwise be wildly
ill-behaved (recall that there are cusps in the density at the nucleus, so some ill-behavior
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in ρ has already been noted). In practice, the only functionals conforming to this definition
that have seen much application are those that derive from analysis of the uniform electron
gas (where the density has the same value at every position), and as a result LDA is often
used more narrowly to imply that it is these exchange and correlation functionals that are
being employed.

The distinction is probably best indicated by example. Following from Eq. (8.7) and
the discussion in Section 8.1.2, the exchange energy for the uniform electron gas can be
computed exactly, and is given by Eq. (8.23) with the constant α equal to 2

3 . However, the
Slater approach takes a value for α of 1, and the Xα model most typically uses 3

4 . All of
these models have the same ‘local’ dependence on the density, but only the first is typically
referred to as LDA, while the other two are referred to by name as Slater (S) and Xα .

The LDA, Slater, and Xα methods can all be extended to the spin-polarized regime using

εx[ρ(r), ζ ] = ε0
x[ρ(r)] + {

ε1
x[ρ(r)] − ε0

x[ρ(r)]
} [

(1 + ζ )4/3 + (1 − ζ )4/3 − 2

2(21/3 − 1)

]
(8.26)

where the superscript-zero exchange energy density is given by Eq. (8.23) with the appro-
priate value of α (referring here to the empirical constant, not the electron spin), and the
superscript-one energy is the analogous expression derived from consideration of a uniform
electron gas composed only of electrons of like spin. Noting that ζ = 0 everywhere for an
unpolarized system, it is immediately apparent that the second term in Eq. (8.26) is zero
for that special case. Systems including spin polarization (e.g., open-shell systems) must use
the spin-polarized formalism, and its greater generality is sometimes distinguished by the
sobriquet ‘local spin density approximation’ (LSDA).

As for the correlation energy density, even for the ‘simple’ uniform electron gas no
analytical derivation of this functional has proven possible (although some analytical details
about the zero- and infinite-density limits can be established). However, using quantum
Monte Carlo techniques, Ceperley and Alder (1980) computed the total energy for uniform
electron gases of several different densities to very high numerical accuracy. By subtracting
the analytical exchange energy for each case, they were able to determine the correlation
energy in these systems. Vosko, Wilk, and Nusair (1980) later designed local functionals
of the density fitting to these results (and the analytical low and high density limits). In
particular, they proposed one spin-polarized functional completely analogous to Eq. (8.26)
in terms of its dependence on ζ , but with the unpolarized and fully polarized energy densities
expressed (now in terms of rS instead of ρ, see Eq. (8.24)) as

εi
c(rS) = A

2

{
ln

rS

rS + b
√

rS + c
+ 2b√

4c − b2
tan−1

(√
4c − b2

2
√

rS + b

)

− bx0

x2
0 + bx0 + c

{
ln

[
(
√

rS − x0)
2

rS + b
√

rS + c

]
+ 2(b + 2x0)√

4c − b2
tan−1

(√
4c − b2

2
√

rS + b

)}}

(8.27)
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where different sets of empirical constants A, x0, b, and c are used for i = 0 and i = 1.
Vosko, Wilk, and Nusair actually proposed several different fitting schemes, varying the
functional forms of both Eq. (8.26) and (8.27). The two forms that have come to be most
widely used tend to be referred to as VWN and VWN5, and in most cases give reasonably
similar results. LSDA calculations that employ a combination of Slater exchange and the
VWN correlation energy expression are sometimes referred to as using the SVWN method.

It is fairly obvious that Eq. (8.27) represents an utter violation of the promise with respect
to intuitive equations found in the preface to this book; not only can every term not be
assigned an intuitive meaning, it is rather difficult to assign any term such a meaning.
However, the virtue of this momentary failure of authorial fidelity is that it allows the
highlighting of several important details associated with DFT in general. First, it is apparent
just how complex the correlation energy functional in a completely general system may
be expected to be, and how difficult a task a first principles analysis may be. Secondly, it
indicates the extent to which most modern DFT approaches can legitimately be described as
semiempirical methods, in that they include empirically optimized constants and functional
forms (albeit there are considerably fewer of these constants and they tend to be more
globally used than in, say, semiempirical MO theory – in this respect they are rather like
the parameterized electron correlation methods discussed in Section 7.7). Lastly, it should
be fairly apparent that solution of the integral in Eq. (8.22) employing the VWN correlation
functional is highly unlikely to be accomplished analytically.

In regard to this latter point, the evaluation of the integrals involving the exchange and
correlation energy densities in DFT poses something of a mathematical challenge. Most
modern electronic structure codes carry out this integration numerically on a grid (much
along the lines already discussed in Section 3.4 in the context of Monte Carlo methods,
except that the grid points are not sampled randomly, but exhaustively). Through the use
of efficient quadratures, grid sizes can be kept manageable from the standpoint of compu-
tational resources. Usually, some default grid density is employed unless a user specifies
otherwise – it must be noted that in certain situations the numerical noise associated with
the default grid density can lead to problems, particularly when first and second deriva-
tives are computed in order to optimize geometries (see Section 2.4), compute vibrational
spectra (see Section 9.3.2), etc. For most calculations, however, the numerical noise falls
very comfortably below the level of chemical interpretation, and no special care need be
taken. So-called ‘grid-free’ integration schemes have been proposed, where in essence the
exchange-correlation energy density is expressed in a basis set and advantage is taken of
linear algebraic techniques to replace the numerical problem with a ‘smooth’ error associ-
ated with basis-set truncation. However, developmental work has not necessarily indicated
this approach to be any more robust because very large basis sets are required to maintain
reasonable accuracy (Zheng and Almlöf 1993).

Returning from this mathematical digression, let us make clear the steps involved in a
LSDA calculation. These are summarized in Figure 8.1, and they are for the most part quite
similar to those associated with a HF calculation. There are some important differences,
however. For instance, step 1 is to choose a basis set. In DFT, there are sometimes several
different basis sets involved in a calculation. First, there is the basis set from which the KS
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Figure 8.1 Flow chart of the KS SCF procedure

orbitals are formed. In addition, the density itself may be expanded in an ‘auxiliary’ basis
set. Such a concept may at first seem strange, since we know the density can be represented
as the product of AO basis functions and density matrix elements, as it is in the Coulomb
integrals of HF theory. However, in HF theory this is a natural choice because one needs to
evaluate both Coulomb and exchange integrals, and in the latter the interchange of electronic
coordinates requires that orbitals be used, not densities (which are the product of orbitals).
In Eq. (8.21), however, there are no exchange integrals, so it is computationally convenient
to represent ρ(r) with an auxiliary basis set, i.e.,

ρ(r) =
M∑
i=1

ci�i(r) (8.28)
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where the M basis functions � have units of probability density (not the square root of
probability density, as orbitals do) and the coefficients ci are determined by a least-square
fitting to the density that is determined from the KS orbitals using Eq. (8.16). Note that
the number of Coulomb integrals requiring evaluation in order to compute all the KS
matrix elements in Eq. (8.21) is then formally N2M , where N is the number of KS AO
basis functions, instead of N4, as is true for HF theory. As a result, the formal bottleneck
in solving the KS SCF equations is matrix diagonalization, which scales as N3, and one
frequently sees in the literature reference to this reduced scaling behavior associated with
DFT: compared to HF theory, DFT includes electron correlation and does so in a fashion
that scales more favorably with respect to system size. However, many electronic struc-
ture programs do not employ auxiliary basis sets to represent the density, choosing instead
to compute it in the HF-like way as a product of KS-orbital basis functions (the motiva-
tion for this choice was primarily historical: existing HF codes could be easily modified
to carry out DFT calculations with this choice), in which case formal N4 scaling is not
reduced.

Continuing with our analysis of steps in the KS SCF procedure, after choice of molecular
geometry, the overlap integrals and the kinetic-energy and nuclear-attraction integrals are
computed. The latter two kinds of integrals are called ‘one-electron’ integrals in HF theory
to distinguish them from the ‘two-electron’ Coulomb and exchange integrals. In KS theory,
such an appellation is less clearly informative: all integrals can in some sense be regarded
as one-electron integrals since every one reflects the interactions of each one electron with
external potentials, but we will not dwell on the semantics. In any case, to evaluate the
remaining integrals, we must guess an initial density, and this density can be constructed
as a matrix entirely equivalent to the density matrix used in HF theory (Eq. (4.57)). With
our guess density in hand, we can construct Vxc (and determine fitting coefficients for our
auxiliary basis set if we are using the approach of Eq. (8.28)) and evaluate the remaining
integrals in each KS matrix element. After this point, the KS and HF SCF schemes are
essentially identical. New orbitals are determined from solution of the secular equation,
the density is determined from those orbitals, and it is compared to the density from the
preceding iteration. Once convergence of the SCF is achieved, the energy is computed
by plugging the final density into Eq. (8.14) – this is in contrast to HF theory, where the
energy is evaluated as the expectation value of the Hamiltonian operator acting on the HF
Slater determinant. At this point either the calculation is finished, or, if geometry optimiza-
tion is the goal, a determination of whether the structure corresponds to a stationary point
is made.

Having reviewed the mechanics of the KS calculation, we now return to a discussion of
how best to represent the exchange-correlation functional. We should be entirely clear on
the nature of the LSDA approximation applied to a molecule. Invoking the uniform electron
gas as the source of the energy expressions is not equivalent to assuming that the electron
density of the molecule is a constant throughout space. Instead, it is an assumption that the
exchange-correlation energy density at every position in space for the molecule is the same
as it would be for the uniform electron gas having the same density as is found at that
position.
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8.4.2 Density Gradient and Kinetic Energy Density Corrections

In a molecular system, the electron density is typically rather far from spatially uniform, so
there is good reason to believe that the LDA approach will have limitations. One obvious
way to improve the correlation functional is to make it depend not only on the local value
of the density, but on the extent to which the density is locally changing, i.e., the gradient
of the density. Such an approach was initially referred to as ‘non-local’ DFT because the
Taylor-expansion-like formalism implies reliance on values of the density at more than a
single position. Mathematically speaking, however, the first derivative of a function at a
single position is a local property, so the more common term in modern nomenclature for
functionals that depend on both the density and the gradient of the density is ‘gradient-
corrected’. Including a gradient correction defines the ‘generalized gradient approximation’
(GGA).

Most gradient corrected functionals are constructed with the correction being a term added
to the LDA functional, i.e.,

εGGA
x/c [ρ(r)] = εLSD

x/c [ρ(r)] + �εx/c

[ |∇ρ(r)|
ρ4/3(r)

]
(8.29)

Note that the dependence of the correction term is on the dimensionless reduced gradient,
not the absolute gradient.

The first widely popular GGA exchange functional was developed by Becke. Usually
abbreviated simply ‘B’, this functional adopts a mathematical form that has correct asymp-
totic behavior at long range for the energy density, and it further incorporates a single
empirical parameter the value of which was optimized by fitting to the exactly known
exchange energies of the six noble gas atoms He through Rn (Table 8.7 at the end of
this chapter provides references and additional details for B as well as for a reasonably
complete menagerie of other functionals developed to date, including all of those discussed
below). Other exchange functionals similar to the Becke example in one way or another have
appeared, including CAM, FT97, O, PW, mPW, and X, where X is a particular combination
of B and PW found to give improved performance over either.

Alternative GGA exchange functionals have been developed based on rational function
expansions of the reduced gradient. These functionals, which contain no empirically opti-
mized parameters, include B86, LG, P, PBE, and mPBE.

With respect to correlation functionals, corrections to the correlation energy density
following Eq. (8.29) include B88, P86, and PW91 (which uses a different expression than
Eq. (8.27) for the LDA correlation energy density and contains no empirical parameters).
Another popular GGA correlation functional, LYP, does not correct the LDA expression
but instead computes the correlation energy in toto. It contains four empirical parameters fit
to the helium atom. Of all of the correlation functionals discussed, it is the only one that
provides an exact cancellation of the self-interaction error in one-electron systems.

Typically in the literature, a complete specification of the exchange and correlation func-
tionals is accomplished by concatenating the two acronyms in that order. Thus, for instance,
a BLYP calculation combines Becke’s GGA exchange with the GGA correlation functional
of Lee, Yang, and Parr.
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[As an aside to the exasperated reader, this mishmash of acronyms for referring to density
functionals has resulted in part from failures on the parts of early developers to clearly specify
their own preferences for names for their methods. Thus, a tendency to refer to methods by
authors’ initials arose and has persisted. However, with multiple methods developed by the
same authors, occasionally described over more than one article with different co-authors, and
with some articles introducing both exchange and correlation functionals, the situation can be
extremely confusing. Worse still, different codes may adopt different keyword abbreviations
for the same method, so that comparable calculations may appear in the literature under
different acronyms. Thus, DFT suffers to some extent from the same problem as molecular
mechanics: reproducibility may depend on using the same code to ensure the same functional
specification. It is to be hoped that in the future careful definitions of nomenclature will
always be made, possibly even including program-specific keywords to generate particular
functionals.]

Given the Taylor-function-expansion justification for the importance of the gradient of the
density in Eq. (8.29), it is obvious that a logical next step in functional improvement might be
to take account of the second derivative of the density, i.e., the Laplacian. Becke and Roussel
were the first to proposed an exchange functional (BR) having such dependence while work
of Proynov, Salahub, and co-workers examined the same idea for the correlation functional
(Lap). Such functionals are termed meta-GGA (MGGA) functionals as they go beyond
simply the gradient correction. However, numerically stable calculations of the Laplacian of
the density pose something of a technical challenge, and the somewhat improved performance
of MGGA functionals over GGA analogs is balanced by this slight drawback.

An alternative MGGA formalism that is more numerically stable is to include in the
exchange-correlation potential a dependence on the kinetic-energy density τ , defined as

τ(r) =
occupied∑

i

1

2
|∇ψi(r)|2 (8.30)

where the ψ are the self-consistently determined Kohn–Sham orbitals. The BR functional
includes dependence on τ in addition to its already noted dependence on the Laplacian of
the density. The same is true of the τ1 correlation functional of Proynov, Chermette, and
Salahub. Other developers, however, have tended to discard the Laplacian in their MGGA
functionals, retaining only a dependence on τ . Various such MGGA functionals for exchange,
correlation, or both have been developed including B95, B98, ISM, KCIS, PKZB, τHCTH,
TPSS, and VSXC. The cost of an MGGA calculation is entirely comparable to that for a
GGA calculation, and the former is typically more accurate than the latter for a pure density
functional. Prior to a more detailed analysis of performance, however, we must consider at
least one additional wrinkle in functional design, namely, the inclusion of HF exchange.

8.4.3 Adiabatic Connection Methods

Imagine that one could control the extent of electron–electron interactions in a many-electron
system. That is, imagine a switch that would smoothly convert the non-interacting KS refer-
ence system to the real, interacting system. Using the Hellmann–Feynman theorem, one can



8.4 EXCHANGE-CORRELATION FUNCTIONALS 265

show that the exchange-correlation energy can then be computed as

Exc =
∫ 1

0
〈�(λ)|Vxc(λ)|�(λ)〉dλ (8.31)

where λ describes the extent of interelectronic interaction, ranging from 0 (none) to 1 (exact).
To evaluate this integral, it is helpful to adopt a geometric picture, as illustrated in Figure 8.2.
We seek the area under the curve defined by the expectation value of Vxc. While we know
very little about V and � as functions of λ in general, we can evaluate the left endpoint
of the curve. In the non-interacting limit, the only component of V is exchange (deriving
from antisymmetry of the wave function). Moreover, as discussed in Section 8.3, the Slater
determinant of KS orbitals is the exact wave function for the non-interacting Hamiltonian
operator. Thus, the expectation value is the exact exchange for the non-interacting system,
which can be computed just as it is in HF calculations except that the KS orbitals are used.
The total area under the expectation value curve thus contains the rectangle having the
curve’s left endpoint as its upper left corner, which has area EHF

x . The remaining area is

0 l1

A

B−E

(0, 〈Ψ(0)|K|Ψ(0)〉) (1, 〈Ψ(1)|Vxc|Ψ(1)〉)

(1, 〈Ψ(0)|K|Ψ(0)〉)

Figure 8.2 Geometrical schematic for the evaluation of the integral in Eq. (8.31). The area under
the curve is the sum of the areas of regions A and B. As region A is a rectangle, its area is trivially
computed to be one times the expectation value of the HF exchange operator acting on the Slater
determinantal wave function for the non-interacting system, �(0). The area of region B is less easily
determined. One simplification is to assume (i) that 〈�(1)|Vxc(1)|�(1)〉 is equal to the corresponding
computed value from an approximate DFT calculation and (ii) that area B will be some characteristic
fraction of the area of the rectangle having dotted lines for 2 sides (e.g., if the curve is well approx-
imated by a line, clearly the characteristic fraction would be 0.5). Note that if the curve rises very
steeply from its left endpoint, i.e., the value of z in Eq. (8.32) is very close to 1, then the adiabatic
connection method is of limited value
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some fraction z of the area corresponding to the rectangle sitting immediately on top of the
first; the second rectangle has area 〈�(1)|Vxc(1)|�(1)〉 − EHF

x . Unfortunately, not only do
we not know z, we also do not know the expectation value of the fully interacting exchange-
correlation potential applied to the fully interacting wave function. However, we may regard
z as an empirical constant to be optimized. In that case, we may as well approximate the
unknown right endpoint, and a convenient approximation is the Exc computed directly by
some choice of DFT functional. We see then that the total area under the expectation value
curve can be written as

Exc = EHF
x + z(EDFT

xc − EHF
x ) (8.32)

In practice, Eq. (8.32) is usually written using another variable, a, defined as 1 − z, providing

Exc = (1 − a)EDFT
xc + aEHF

x (8.33)

This analysis forms the basis of the so-called ‘adiabatic connection method’ (ACM), because
it connects between the non-interacting and fully interacting states.

If we adopt the assumption that the expectation value curve in Figure 8.2 is a line, simple
geometry allows us to determine that z = 0.5. Use of this value defines a so-called ‘half-
and-half’ (H&H) method. Using LDA exchange-correlation, Becke showed that the H&H
approach had an error of 6.5 kcal mol−1 over a subset of the G3 enthalpy of formation test
set mentioned in Chapter 7. This compared quite favorably with the GGA method BPW91,
which had an error of 5.7 kcal mol−1 over the same set.

One may in some sense regard the ACM approach as being similar in spirit to the KS
SCF scheme. In the latter case, one does not know the exact kinetic energy as a function of
the density, so one employs a scheme where a large portion of it is computed exactly (as
the expectation value of the kinetic energy operator over the KS determinant) and worries
later about the small remainder. So too, the ACM approach computes a large fraction of the
total exchange-correlation energy, and then worries later about the difference between the
total and the exact (HF) exchange.

Of course, if one is forced to estimate a constant like a, one might just as well choose
a value that maximizes the utility of the method. And one may legitimately ask whether
inclusion of additional empirical parameters results in sufficient improvement to make such
inclusion worthwhile. Becke was the first to do this, developing the 3-parameter functional
expression

EB3PW91
xc = (1 − a)ELSDA

x + aEHF
x + b�EB

x + ELSDA
c + c�EPW91

c (8.34)

where a, b, and c were optimized to 0.20, 0.72, and 0.81, respectively. The name of the
functional, B3PW91, implies its use of a three-parameter scheme, as well as the GGA
exchange and correlation functionals B and PW91, respectively (recall that the expression
for the LSDA correlation energy in PW91 is different from eq. 8.27).

Subsequently, Stevens et al. modified this functional to use LYP instead of PW91. Because
LYP is designed to compute the full correlation energy, and not a correction to LSDA, the
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B3LYP model is defined by

EB3LYP
xc = (1 − a)ELSDA

x + aEHF
x + b�EB

x + (1 − c)ELSDA
c + cELYP

c (8.35)

where a, b, and c have the same values as in B3PW91. Of all modern functionals, B3LYP
has proven the most popular to date. Its overall performance, as described in more detail
in Section 8.6, is remarkably good, particularly insofar as the three parameters were not
optimized! Such serendipity is rare in computational chemistry. The O3LYP functional is
similar in character to B3LYP, with a = 0.1161, b = 0.9262 (multiplying O exchange instead
of B exchange), and c = 0.8133. The two differ, however, in that B3LYP uses the VWN3
LSDA correlation functional while O3LYP uses the VWN5 version. The X3LYP functional
also uses the form of Eq. (8.35), with a = 0.218, b = 0.709 (multiplying a combination of
76.5% B exchange and 23.5% PW exchange instead of pure B exchange), and c = 0.129.

Because they incorporate HF and DFT exchange, ACM methods are also called ‘hybrid’
methods. Some interest has developed in so-called ‘parameter-free’ hybrid methods, but
this terminology must be regarded with some skepticism. Analysis of simple one- and two-
electron systems like H2 and H2

+ make it clear that the correct amount of HF exchange to
include in any hybrid model using a GGA functional cannot be a constant over all species (or
even all geometries of a single species; see, for instance, Gritsenko, Schipper, and Baerends
1996). In any case, besides the B3 methods a number of one-parameter models, restricting
themselves to adjusting the percentage of HF exchange included in the functional, have been
proposed. These include B1PW91 and B1LYP (a = 0.25, b = (1 − a), c = 1 in Eqs. (8.34)
and (8.35), respectively), B1B95, mPW1PW91, and PBE1PBE (sometimes called PBE0
because the parameter dictating the percentage contribution of HF exchange, 0.25, was
not empirically optimized, but instead chosen based on perturbation theory arguments, thus
there are ‘zero’ parameters). Overall, the performance of these functionals, as well as other
ACM functionals listed in Table 8.7, tends to be fairly comparable to the B3 methods.

From a careful comparison of DFT densities to those generated from highly correlated
wave functions, He et al. (2000) concluded that inclusion of HF exchange in a hybrid
functional makes up for an underestimation by pure functionals of the importance of ionic
terms in describing polar bonds. However, one may also adopt a less formal viewpoint of the
hybrid methods. Experience indicates that GGA functionals have certain systematic errors.
For instance, they tend to underestimate barrier heights to chemical reactions. Hartree–Fock
theory, on the other hand, tends to overestimate barrier heights. To the extent that errors
in total HF energies track with errors in HF exchange energy, one may regard the addition
of HF exchange to ‘pure’ DFT results as something of a back-titration to accuracy. With
this in mind, Lynch et al. have reoptimized the percent HF exchange in the mPW1PW91
model against a database of energies of activation and reaction for hydrogen-atom transfer
reactions, referring to this model as MPW1K (‘K’ for ‘kinetics’). MPW1K increases the
percentage HF contribution in the functional from the ‘default’ value of 25% to 42.8%;
this increase in HF exchange leads to significantly improved performance over the chosen
test set, although Boese, Martin, and Handy (2003) have noted that so high a fraction of
HF exchange degrades the functionals performance for geometries and atomization energies.
Zhao, Lynch, and Truhlar performed an equivalent optimization of percent HF exchange
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for B1B95 (42%, thereby generating BB1K) and observed that this kinetics model slightly
outperformed MPW1K while at the same time reducing the error in atomization energies
compared to MPW1K by 40%.

Other variations on this optimization scheme have also appeared, including mPW1N,
which uses a value of 40.6% in conjunction with the 6-31+G(d) basis set to maximize
accuracy over a set of halide/alkyl halide nucleophilic substitution reactions, and MPW1S,
which employs a value of 6% in conjunction with the 6-31+G(d,p) basis set to improve
the relative accuracy of computed conformational energies for sugars and sugar analogs.
Within the context of B3LYP, Salomon, Reiher, and Hess have shown that changing a in Eq.
(8.33) from 0.20 to 0.15 (which they dub B3LYP*) significantly improves energy separations
predicted for high and low spin states of molecules containing first-row transition metals;
heavier transition metals do not appear, however, to be as energetically sensitive to the
fraction of HF exchange (Poli and Harvey 2003).

In a similar spirit, Poater et al. have reoptimized the B3LYP parameters in order to mini-
mize differences between computed electron densities from this modified DFT level and
calculated at the QCISD level for a series of 16 small molecules (Poater, Duran, and Solà
2001). They observed, as already emphasized above, that different molecules require different
amounts of exact HF exchange for optimal agreement between the two methods.

Finally, ACM definitions involving MGGA functionals have also begun to appear and
these are listed in Table 8.7. Improvements associated with inclusion of HF exchange in the
ACM functional appear to be diminished in magnitude for MGGA functionals compared to
GGA functionals, but are still noticeable. Detailed comparisons between models are provided
in Section 8.6.

8.4.4 Semiempirical DFT

Adamson, Gill, and Pople have proposed a parameterized pure GGA functional (i.e., no HF
exchange is included) designed specifically to give good results with small basis sets; their
Empirical Density Functional 1 (EDF1) is thus essentially a semiempirical model, where
all limitations in theory and numerical accuracy are folded into the parameters. Of course,
one may legitimately claim that any DFT model, even if used with an infinite basis set,
is semiempirical if it includes any optimized parameters. It is easy to get bogged down in
this argument (particularly with individuals who treat ‘semiempirical’ as a pejorative term),
but one may turn the issue around and ask, can one develop DFT models with drastically
improved efficiency that, while semiempirical, may be particularly applicable to problems
still outside the range of more rigorous functionals?

One such model that has promise is density functional tight-binding (DFTB) theory. In
DFTB, we begin by expressing the energy associated with a reference density ρ0(r) as

E[ρ0(r)] =
occupied∑

i

〈
ψi(r)

∣∣hKS
i [ρ0(r)]

∣∣ ψi(r)
〉 − 1

2

∫ ∫
ρ0(r1)ρ0(r2)

|r1 − r2| dr1dr2

+ Exc[ρ0(r)] −
∫

Vxc[ρ0(r)]ρ0(r)dr + EN

(8.36)
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A quick comparison of this equation with Eqs. (8.15) and (8.18) should make clear that
this expression is indeed valid; its form is reminiscent of Eq. (4.39) insofar as the energy
is expressed as a sum of orbital energies (the first term on the r.h.s.) corrected for double-
counting of electron–electron interactions (the next three terms on the r.h.s.). In addition the
nuclear repulsion term, which is constant for a given geometry, is explicitly written here for
reasons that will become clear shortly.

Consider now the possibility that we are interested in minimizing the energy of Eq. (8.36),
but only subject to the shape of the KS orbitals, not to changing the density. That is, having
picked a density, we optimize the orbitals by variational minimization of basis set coefficients,
but we do not then recompute a new density from those orbitals (note that with a fixed density
and geometry, all terms on the r.h.s. of Eq. (8.36) are constants except for the KS orbitals
in the initial sum). Such a process is analogous to extended Hückel theory in the sense that
it is non-self-consistent, i.e., we solve a secular equation analogous to Eq. (4.21) a single
time in order to derive our KS orbital basis set coefficients and then we are finished. This
protocol defines the Harris functional approach, where the fixed density is usually chosen
to be the sum of unperturbed atomic densities computed by whatever manner is deemed
most appropriate. Energies from Harris functional calculations are obviously unlikely to be
particularly good, but the orbitals may themselves be useful either for qualitative analysis in
systems where charge transfer between atoms is small (e.g., in pure solid metals) or as very
good starting-guess orbitals for a follow-on calculation at some self-consistent level of theory
(e.g., HF or KS DFT); see Cullen (2004) for other applications of the Harris functional).

To speed this process up further for very large systems, one can make some further
assumptions entirely analogous to those found in semiempirical MO theory. In particular,
one may assume

〈
µ

∣∣hKS
∣∣ ν〉 =

{
εµ, µ = ν

〈µ|T + veff[ρ0,A(r) + ρ0,B(r)]|ν〉, µ ∈ A, ν ∈ B
(8.37)

where ε is the KS energy of the atomic orbital basis function (usually Slater-type orbitals)
in the neutral atom (or one could use an experimental ionization potential to replace this
number, in a semiempirical spirit), and the off-diagonal matrix elements depend only on the
two atoms involved, A and B, and T is the kinetic-energy operator and veff is the effective
potential deriving only from the electron densities and nuclei of atoms A and B. The off-
diagonal matrix elements then depend only on interatomic separation and can be computed
once and then either fit to analytic functions or interpolated from tabulations over various
distances.

This same restriction of consideration to no more than pairwise interactions can be adopted
for the remaining terms on the r.h.s. of Eq. (8.36), which are usually grouped together
and referred to collectively as the repulsive energy Erep, so that this energy component is
computed as

Erep[ρ0(r)] =
atoms∑

A

Erep[ρ0,A(r)] +
atoms∑
A<B

E(2)
rep[ρ0,A(r), ρ0,B(r)] (8.38)
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where, again, the pairwise terms can be computed once for every pair of atoms and then
either fit to analytic functions or tabulated for future reference.

With these further simplifications, enormously large systems may be handled fairly easily
to include geometry optimization. This non-self-consistent protocol defines DFTB.

The critical assumption of DFTB, however, is that the charge density of a composite
system is well represented by the sum of the charge densities of its unperturbed constituent
atoms. Clearly such a situation is inconsistent with the polarization that occurs in bonds
between elements having significantly different electronegativities. To address such polarized
systems, we consider a generalization of Eq. (8.36) that is valid to second order in the density
fluctuation δρ(r) about the fixed density ρ0(r), namely

E[ρ0(r) + δρ(r)] = E[ρ0(r)]

+ 1

2

∫ ∫ [(
1

|r1 − r2| + δ2Exc

δρ(r1)δρ(r2)

∣∣∣∣
ρ0

)
δρ(r1)δρ(r2)

]
dr1dr2

(8.39)

In the spirit of DFTB, one may consider δρ(r) to be decomposable into atomic contributions
according to

δρ(r) =
atoms∑

A

�qA (8.40)

where q is used for the atomic contribution to emphasize the analogy to partial atomic
charge. The second-order term in Eq. (8.39) may then be written as

1

2

∫ ∫ [(
1

|r1 − r2| + δ2Exc

δρ(r1)δρ(r2)

∣∣∣∣
ρ0

)
δρ(r1)δρ(r2)

]
dr1dr2 = 1

2

atoms∑
A,B

�qA�qBγAB

(8.41)

If the atomic charge distributions are assumed to be spherically symmetric, the effective
inverse distance γ is computed as

γAB =
{

2ηA, A = B
(aa|bb), A �= B

(8.42)

where η is an atomic hardness (formally the second derivative of the atomic energy with
respect to a change from neutrality in charge; η is well approximated as (IP − EA)/2, where
IP and EA are the atomic ionization potential and electron affinity, respectively) and a and b

are Slater-type s orbitals on atoms A and B, respectively, in which case the electron-repulsion
integral has an analytic solution. Once again this function, for which the off-diagonal terms
depend on the distance between atoms A and B, may be approximated with a simpler analytic
form or tabulated for all relevant atomic pairs.

The presence of the partial atomic charges in Eq. (8.41), however, poses the question of
how they are to be computed. A popular choice is to compute them from Mulliken population
analysis (see Section 9.1.3.2), in which case the partial atomic charges depend on the KS
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orbitals. Such dependence re-introduces a self-consistency requirement into the minimization
of the energy from Eq. (8.39), and this approach is called self-consistent charge density-
functional tight-binding (SCC-DFTB) theory. Thus, for a realistic representation of charge
redistribution, one must sacrifice the higher efficiency of DFTB for an SCF approach. Never-
theless, SCC-DFTB is about as fast as a semiempirical NDDO model and many promising
applications have begun to appear. For example, Elstner et al. (2003) found SCC-DFTB to
compare favorably to B3LYP and MP2 calculations with the 6-311+G(d,p) basis set for
structural and energetic properties associated with biological model systems coordinating
zinc. One feature requiring further attention, however, is that in very large molecules like
biopolymers there are likely to be non-bonded interactions, e.g., dispersion, between different
sections of the molecule. Dispersion is not well treated by SCC-DFTB; in a QM MD study
of the protein crambin, Liu et al. found that inclusion of an ad hoc scaled r−6 potential
between non-bonded atoms (i.e., the attractive portion of a Lennard-Jones potential, cf. Eq.
(2.14)) was required to maintain a structure in acceptable agreement with experiment.

8.5 Advantages and Disadvantages of DFT Compared
to MO Theory

Since 1990 there has been an enormous amount of comparison between DFT and alternative
methods based on the molecular wave function. The bottom line from all of this work is
that, as a rule, DFT is the most cost-effective method to achieve a given level of accuracy,
sometimes by a very wide margin. There are, however, significant exceptions to this rule,
deriving either from inadequacies in modern functionals or intrinsic limitations in the KS
approach for determining the density. This section describes some of these cases.

8.5.1 Densities vs. Wave Functions

The most fundamental difference between DFT and MO theory must never be forgotten: DFT
optimizes an electron density while MO theory optimizes a wave function. So, to determine a
particular molecular property using DFT, we need to know how that property depends on the
density, while to determine the same property using a wave function, we need to know the
correct quantum mechanical operator. As there are more well-characterized operators then
there are generic property functionals of the density, wave functions clearly have broader
utility. As a simple example, consider the total energy of interelectronic repulsion. Even if
we had the exact density for some system, we do not know the exact exchange-correlation
energy functional, and thus we cannot compute the exact interelectronic repulsion. However,
with the exact wave function it is a simple matter of evaluating the expectation value for
the interelectronic repulsion operator to determine this energy,

Eee =
〈
�

∣∣∣∣∣∣
∑
i<j

1

rij

∣∣∣∣∣∣ �
〉

(8.43)

where i and j run over all electrons.
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Another key example is in the area of dynamics, where transition probabilities depend
on matrix elements between different wave functions. Because densities do not have phases
as wave functions do, multistate resonance effects, interference effects, etc., are not readily
evaluated within a DFT formalism.

Because of the mechanical details of the KS formalism, it is easy to become confused
about whether there is a KS ‘wave function’. Early work in the field tended to resist any
attempts to interpret the KS orbitals, viewing them as pure mathematical constructs useful
only in construction of the density. In practice, however, the shapes of KS orbitals tend to be
remarkably similar to canonical HF MOs, and they can be quite useful in qualitative analysis
of chemical properties. If we think of the procedure by which they are generated, there are
indeed a number of reasons to prefer KS orbitals to HF orbitals. For instance, all KS orbitals,
occupied and virtual, are subject to the same external potential. HF orbitals, on the other
hand, experience varying potentials, and, in particular, HF virtual orbitals experience the
potential that would be felt by an extra electron being added to the molecule. As a result,
HF virtual orbitals tend to be too high in energy and anomalously diffuse compared to KS
virtual orbitals. (In exact DFT, it can also be shown that the eigenvalue of the highest KS
MO is the exact first ionization potential, i.e., there is a direct analogy to Koopmans’ theorem
for this orbital – in practice, however, approximate functionals are quite bad at predicting
IPs in this fashion without applying some sort of correction scheme, e.g., an empirical linear
scaling of the eigenvalues).

In point of fact, there is a DFT wave function; it is just not clear how useful it should
be considered to be. Recall that the Slater determinant formed from the KS orbitals is the
exact wave function for the fictional non-interacting system having the same density as the
real system. This KS Slater determinant has certain interesting properties by comparison
to its HF analogs. In open-shell systems, KS determinants usually show extremely low
levels of spin contamination, even for cases where HF determinants are pathologically bad
(Baker, Scheiner, and Andzelm 1993). For instance, the spin contamination in planar triplet
phenylnitrenium cation (PhNH+) is very high at the UHF/cc-pVDZ level (see Section 6.3.3)
as judged by an expectation value for S2 of 2.50. At the BLYP/cc-pVDZ level, on the
other hand the expectation value for S2 over the KS determinant is 2.01, very close to the
proper eigenvalue of 2.0. The high spin contamination at the UHF level leads to the planar
structure being erroneously determined to be a minimum, while at the BLYP level it is
correctly identified as a TS structure for rotation about the C–N bond (Cramer, Dulles, and
Falvey 1994).

While it is by no means guaranteed that the expectation value for S2 over the KS
determinant has any bearing at all on its expectation value over the exact wave function
corresponding to the KS density (see Gräfenstein and Cremer 2001), it is an empirical
fact that DFT is generally much more robust in dealing with open-shell systems where
HF methods show high spin contamination (recall that high HF spin contamination makes
post-HF methods of questionable utility, so DFT can be a happy last resort). Note, inci-
dentally, that expectation values of S2 are sensitive to the amount of HF exchange in the
functional. A ‘pure’ functional nearly always shows very small spin contamination, and
each added percent of HF exchange tends to titrate in a corresponding percentage of the spin
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contamination exhibited by the HF wave function. This behavior can mitigate the utility of
hybrid functionals in some open-shell systems.

Finally, one clear utility of a wave function is that excited states can be generated as linear
combinations of determinants derived from exciting one or more electrons from occupied to
virtual orbitals (see Section 14.1). Although the Hohenberg–Kohn theorem makes it clear
that the density alone carries sufficient information to determine the excited-state wave
functions, it is only very recently that progress has been made on applying DFT to excited
states (the exception being in symmetric molecules, where the lowest energy state in each
spatial irreducible representation is amenable to a simple SCF treatment as already noted in
Section 8.2.1). Additional discussion on this subject is deferred to Section 14.2.1.

8.5.2 Computational Efficiency

The formal scaling behavior of DFT has already been noted to be in principle no worse
than N3, where N is the number of basis functions used to represent the KS orbitals. This
is better than HF by a factor of N , and very substantially better than other methods that,
like DFT, also include electron correlation (see Table 7.4). Of course, scaling refers to how
time increases with size, but says nothing about the absolute amount of time for a given
molecule. As a rule, for programs that use approximately the same routines and algorithms
to carry out HF and DFT calculations, the cost of a DFT calculation on a moderately sized
molecule, say 15 heavy atoms, is double that of the HF calculation with the same basis set.

However, it is possible to do very much better than that in programs optimized for DFT.
One area where DFT enjoys a clear advantage over HF is in its ability to use basis functions
that are not necessarily contracted Gaussians. Recall that the motivation for using contracted
GTOs is that arbitrary four-center two-electron integrals can be solved analytically. In most
electronic structure programs where DFT was added as a new feature to an existing HF code,
the representation of the density in the classical electron-repulsion operator is carried out
using the KS orbital basis functions. Thus, the net effect is to create a four-index integral,
and these codes inevitably continue to use contracted GTOs as basis functions. However,
if the density is represented using an auxiliary basis set, or even represented numerically,
other options are readily available for the KS orbital basis set, including Slater-type functions.
STOs enjoy the advantage that fewer of them are required (since, inter alia, they have correct
cusp behavior at the nuclei) and certain advantages associated with symmetry can more
readily be taken, so they speed up calculations considerably. The widely used Amsterdam
Density Functional code (ADF) makes use of STO basis functions covering atomic numbers
1 to 118 (Snijders, Baerends, and Vernooijs 1982; van Lenthe and Baerends 2003; Chong
et al. 2004).

Another interesting possibility is the use of plane waves as basis sets in periodic infi-
nite systems (e.g., metals, crystalline solids, or liquids represented using periodic boundary
conditions). While it takes an enormous number of plane waves to properly represent the
decidedly aperiodic densities that are possible within the unit cells of interesting chemical
systems, the necessary integrals are particularly simple to solve, and thus this approach sees
considerable use in dynamics and solid-state physics (Dovesi et al. 2000).
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Even in cases where contracted GTOs are chosen as basis sets, DFT offers the advantage
that convergence with respect to basis-set size tends to be more rapid than for MO techniques
(particularly correlated MO theories). Thus, polarized valence double-ζ basis sets are quite
adequate for a wide variety of calculations, and very good convergence in many properties
can be seen at the level of employing polarized triple-ζ basis sets. Extensive studies of basis
set effects on functional performance and parameterization have been carried out by Jensen
(2002a, 2002b, 2003) and Boese, Martin, and Handy (2003). They found, inter alia, that
for most functionals Pople-type basis sets provide much better accuracy than cc-pVnZ basis
sets of similar size, that adding diffuse functions offers substantial improvement over using
the non-augmented analog basis (a point also made by Lynch, Zhao, and Truhlar (2003),
particularly for the computation of barrier heights or conformational energies in molecules
containing multiple lone pairs of electrons), that satisfactory convergence is generally arrived
at for most properties of interest by the time triple-ζ basis sets are used, and finally that
the optimal values for parameters that are included in various functionals are sensitive to
choice of basis set size. Thus, the optimal percent HF exchange for HCTH/407 was about
28% with double-ζ basis sets, but about 18% with triple-ζ basis sets. Jensen (2002b, 2003)
found that, with reoptimization of the polarization exponents for DFT, the pc-n basis sets
were always able to provide the best accuracy for a given basis set size.

Besides issues associated with basis sets, considerable progress has been made in
developing linear-scaling algorithms for DFT. In this regard, DFT is somewhat simpler
than MO theoretical techniques because all potentials are local (this refers to ‘pure’
DFT – incorporation of HF exchange introduces the non-local exchange operator). Thus,
one promising technique is the ‘divide-and-conquer’ formalism of Yang and co-workers,
where a large system is divided up into a number of smaller regions, within each of which
a KS SCF is carried out representing the other regions in a simplified fashion (Yang and
Lee 1995). The total cost of matrix diagonalization is thereby reduced from N3 scaling
to M(N/M)3 scaling where M is the number of sub-regions. Since the number of basis
functions in each sub-region (N/M) tends to be close to some fixed value irrespective of
N , the overall scaling goes as order M , i.e., linear. Of course, all the algorithms developed
to facilitate linear scaling in computing Coulomb interactions in HF and MD calculations
(e.g., fast multipole methods) can be used in DFT calculations as well.

As a final point with regard to efficiency, note that SCF convergence in DFT is sometimes
more problematic than in HF. Because of the similarities between the KS and HF orbitals,
this problem can often be very effectively alleviated by using the HF orbitals as an initial
guess for the KS orbitals. Because the HF orbitals can usually be generated quite quickly, the
extra step can ultimately be time-saving if it sufficiently improves the KS SCF convergence.

8.5.3 Limitations of the KS Formalism

It is important to emphasize that nearly all applications of DFT to molecular systems are
undertaken within the context of the Kohn–Sham SCF approach. The motivation for this
choice is that it permits the kinetic energy to be computed as the expectation value of
the kinetic-energy operator over the KS single determinant, avoiding the tricky issue of
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determining the kinetic energy as a functional of the density. However, as has already been
discussed in the context of MO theory, some chemical systems are not well described by a
single Slater determinant. The application of DFT to such systems is both technically and
conceptually problematic.

To illustrate this point, let us return to the cases of p-benzyne and N -protonated 2,5-
pyridyne already discussed at length in Section 7.6.2. When restricted DFT is applied to
the closed-shell singlet states of these molecules, the predicted splittings between the singlet
and triplet states at the BPW91/cc-pVDZ level are 3.1 and 3.7 kcal mol−1, respectively.
Comparing to the last line of Table 7.2, we see that these predictions are in error by about
8 kcal mol−1 and are qualitatively incorrect about which state is the ground state. A careful
analysis indicates that there is no problem with the triplet state, but that the singlet state
is predicted to be insufficiently stable as a consequence of enforcing a single-determinantal
description as part of the KS formalism (this also results in rather poor predicted geometries
for the singlets).

In cases like this, showing high degrees of non-dynamical correlation, there are two
primary approaches to correcting for inadequacies in the KS treatment. In the first approach,
the remedy is fairly simple: an unrestricted KS formalism is applied and the wave function
for the singlet is allowed to break spin symmetry. That is, even though the singlet is closed-
shell, the α and β orbitals are permitted to be spatially different. When this unrestricted
formalism is applied to p-benzyne and N -protonated 2,5-pyridyne, the S–T splittings are
predicted to be −3.6 and −3.9 kcal mol−1, respectively, in dramatically improved agreement
with experiment/best estimates (singlet geometries are also improved).

Similar results have been obtained in transition-metal compounds containing two metal
atoms that are antiferromagnetically coupled. An adequate description of the singlet state
sometimes requires a broken-symmetry SCF, and inspection of the KS orbitals afterwards
typically indicates the highest energy α electron(s) to be well localized on one metal atom
while the corresponding highest energy β electron(s) can be found on the other metal atom.
The transition from a stable restricted DFT solution to a broken-symmetry one takes place
as the distance between the metal atoms increases and covalent-like bonding gives way to
more distant antiferromagnetic interactions (Lovell et al. 1996; Cramer, Smith, and Tolman
1996; Adamo et al. 1999).

What is to be made of these broken-symmetry singlet KS wave functions? One interpreta-
tion is to invoke the variational principle and assert that, insofar as they lower the energy, they
must provide better densities and one is fully justified in using them. While pragmatic, this
view is somewhat unsatisfying in a number of respects. One troubling issue is that the expec-
tation value of the total spin operator for the KS determinant is often significantly in excess
of the expected exact value. Thus, in the case of the singlet arynes discussed above, 〈S2〉
values of zero are expected, but computed values are on the order of 0.2 for broken-symmetry
solutions. If these were HF wave functions, we would take such a value as being indicative
of a fair degree of spin contamination. However, it is by no means obvious that 〈S2〉 for the
non-interacting KS wave function is in any way indicative of what 〈S2〉 may be for the inter-
acting wave function corresponding to the final KS density. It may not be spin contaminated
at all. On the other hand, DFT energies where broken-symmetry KS wave functions have 〈S2〉
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values of 1.0 (i.e., they are equal mixtures of singlet and triplet) can be usefully interpreted
as being the average of the singlet and triplet state energies (see below and Section 14.4),
so it does not seem that one can ignore spin contamination as an issue entirely.

Indeed, if we have a situation where a higher-spin state is lower in energy than a corre-
sponding lower-spin state generated by a single spin flip (e.g., triplet and singlet), it is almost
always the case that a wave function corresponding to the higher-energy lower-spin state
will be unstable to symmetry breaking that can mix in character of the lower-energy higher-
spin state. A good example is phenylnitrene (PhN) whose triplet ground state and first three
singlet excited states are depicted in Figure 8.3. To properly model the S2 state, which is
closed-shell in character, we must use a restricted DFT formalism, and when this is done
the resulting state energy splitting agrees well with experiment (Johnson and Cramer 2001).
Note that the S3 state cannot be handled by standard DFT formalisms because, since it has
the same spatial symmetry as the S2 state, restricted DFT variationally collapses to the latter.
As for the broken-symmetry approach, when that is applied to a system having an equal
number of α and β electrons, a KS wave function is obtained having an 〈S2〉 value of 1.0
which, as mentioned above, is best interpreted as a 50:50 mixture of T0 and S1.

An important point with respect to phenylnitrene is that the S1 state is not multidetermi-
nantal because of the mixing of different electronic configurations having similar weights.
Instead, it is intrinsically two-determinantal because it is an open-shell singlet. In order to
better accommodate systems like this, some efforts have been undertaken to develop multi-
determinantal DFT formalisms. Gräfenstein, Kraka, and Cremer (1998) have proposed a
restricted open-shell singlet (ROSS) methodology specifically for such states, while Filatov
and Shaik (1998) have advanced a more general MCSCF-like formalism named restricted
open-shell Kohn–Sham (ROKS) theory. Khait and Hoffman (2004) have also described
a general multireference spin-adapted DFT. The details of these methods are sufficiently
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Figure 8.3 Configuration cartoons for the ground-state triplet and first three singlet states of phenyl-
nitrene. Note that the cartoon for S1 glosses over its two-determinantal character
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Figure 8.4 Illustration of the two-configurational character of singlet carbenes compared to their
triplet congeners. Single-determinantal methodologies are entirely appropriate for the triplet, but begin
to fail for the singlets as the weights c1 and c2 grow closer to one another. Empirically, KS-DFT
methods are less sensitive to this instability than HF, but they ultimately fail as well, at least within a
restricted formalism

technical and the range of their applications still sufficiently narrow that we will not discuss
them at any more length.

As a practical point, however, returning to non-dynamical correlation as it gives rise to
wave functions best described in MO theory as a combination of configurations, DFT seems
to be less sensitive to this issue than HF theory. Thus, for example, as has already been
mentioned, HF theory usually does very poorly with singlet–triplet splittings in carbenes
and isoelectronic analogs because the singlet states are best described as mixtures of two (or
more) configurations (Figure 8.4). Speaking very roughly, the weights of the two dominant
configurations are in the range of 85:15 for some of the more typical cases. Interestingly,
DFT usually does very well indeed for these same systems, and it is not until the weights
of the individual configurations become much nearer one another (e.g., the 60:40 balance
for p-benzyne discussed above) that DFT too begins to badly underestimate the stability of
the singlet. In one case, the ring opening of methylenecyclopropane to closed-shell singlet
trimethylenemethane (see Section 7.1) was examined and the BP86/cc-pVDZ level of theory
was found to be accurate up to about a 75:25 mixing of the dominant configurations for
TMM, at which point it began to diverge from a multireference description of the reaction
coordinate (Cramer and Smith 1996).

Note that the generally lower sensitivity of DFT to multireference character is again
dependent on the amount of HF exchange included in the functional. Pure DFT functionals
seem to be most robust, and inclusion of HF exchange introduces a proportional degree
of instability for systems with multiconfigurational character. Thus, the generally higher
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accuracy of the ACM methods can fail to extend to systems where they are methodologically
less stable owing to their Hartree–Fock component.

8.5.4 Systematic Improvability

In molecular orbital theory, there is a clear and well defined path to the exact solution of the
Schrödinger equation. All we need do is express our wave function as a linear combination
of all possible configurations (full CI) and choose a basis set that is infinite in size, and we
have arrived. While such a goal is essentially never practicable, at least the path to it can be
followed unambiguously until computational resources fail.

With density functional theory, the situation is much less clear when it comes to evaluating
how to do a ‘better’ calculation. One thing that seems fairly clear is that, as a general rule,
results from MGGA functionals tend to improve on those from GGA functionals, which in
turn drastically improve on those from LSDA. Somewhat less clear is the status of hybrid
functionals. The best ones are competitive in quality with the best MGGA functionals (and
B3LYP seems to continue to be the ‘magic’ functional in project after project) subject to
the caveat that in certain situations the presence of HF exchange may cause problems that
are associated with the single-determinant KS formalism to become manifest more quickly.
As for basis-set effects, just as with MO theory one can examine convergence with respect
to basis-set size, but there is no guarantee that this may not lead to increased errors since
errors associated with basis-set incompleteness may offset errors associated with approximate
functionals.

All that being said, experience dictates that, across a surprisingly wide variety of systems,
DFT tends to be remarkably robust. Thus, unless a problem falls into one of a few classes
of well characterized problems for DFT, there is good reason to be optimistic about any
particular calculation.

Finally, it seems clear that routes to further improve DFT must be associated with better
defining hole functions in arbitrary systems. In particular, the current generation of func-
tionals has reached a point where finding efficient algorithms for correction of the classical
self-interaction error are likely to have the largest qualitative (and quantitative) impact.

8.5.5 Worst-case Scenarios

Certain failures of modern DFT should be anticipated, and others are readily explained
after some thought about the forms of current functionals. One clear problem with modern
functionals is that they make the energy a function entirely of the local density and possibly
the density gradient. As such, they are incapable of properly describing London dispersion
forces, which, as noted in Section 2.2.4, derive entirely from electron correlation at ‘long
range’. Adding HF exchange to the DFT functional cannot entirely alleviate this problem,
since the HF level of theory, while non-local, does not account in any way for opposite-spin
electron correlation.

So, even though noble-gas dimers like He2, Ne2, etc., exhibit potential energy minima
at van der Waals contact, DFT predicts the potential energy curve for these diatomics to
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be purely repulsive, at least as long as saturated basis sets are used. If an incomplete basis
set is used, it is possible for BSSE to introduce a spurious minimum in the association
curve at about the right position, but this is purely fortuitous – the physics of dispersion is
simply not included in the functional(s). This is an area of active developmental research
(see, for instance, Lein, Dobson, and Gross 1999) and indeed Adamo and Barone (2002)
have reported that mPBE does reasonably well for noble-gas-dimer geometries and energies
with saturated basis sets, and Xu and Goddard (2004a) have shown that XLYP and X3LYP
give reasonable results for the dimers of He and Ne.

Other problems with non-bonded complexes have also been documented with DFT. In
hydrogen bonded systems, heavy-atom–heavy-atom distances tend to be rather variable
as a function of functional. Hobza and Sponer (1999) have examined a large number of
nucleic acid base pairs and found, by comparison to X-ray crystal structures and high levels
of correlated MO theory, that heavy-atom–heavy-atom distances predicted by GGA DFT
functionals are typically too short by about 0.1 Å. Nevertheless, interaction energies are
often reasonably well predicted at these levels. Critical to accurate prediction, however,
is that a basis set including diffuse functions be employed, as large errors can otherwise
be observed, particularly for intramolecular hydrogen bonds (an interesting comparison is
provided by Ma, Schaefer, and Allinger 1998 and Lii, Ma, and Allinger 1999; see also
Lynch, Zhao, and Truhlar 2003). Staroverov et al. (2003) have provided an analysis of 16
different functionals for the energetics and geometrics of 11 hydrogen-bonded systems with
the 6-311++G(3df,3pd) basis set; their results suggest that B3LYP and TPSS are both fairly
robust, with mean unsigned errors for dissociation of about 0.5 kcal mol−1 and for H-bond
lengths of about 0.02 Å. Xu and Goddard (2004a, 2004b) observe similarly good performance
for X3LYP applied to the water dimer.

Somewhat more problematic are intermolecular complexes bound together by charge
transfer interactions. Modern DFT functionals have a tendency to predict such interactions to
be stronger than they should be. Thus, Ruiz, Salahub, and Vela (1995) showed that some pure
DFT functionals overestimated the binding of ethylene and molecular fluorine by as much
as 20 kcal mol−1. Including HF exchange in the functional alleviates the problem to some
extent, but only by cancellation of errors, since HF theory incorrectly predicts the interaction
between ethylene and molecular fluorine to be purely repulsive. Dative bonds have also been
found to be problematic for many functionals. Gilbert (2004) found that heterolytic B−N
bond dissociation energies in amine-boranes were underestimated by standard functionals,
and that inclusion of a substantial fraction of HF exchange (e.g., as in MPW1K) was required
to improve agreement with experiment for this quantity.

A problem with DFT that is not restricted to intermolecular complexes is what might
be called ‘overdelocalization’. In part because of problems in correcting for the classical
self-interaction energy, many functionals overstabilize systems having more highly delocal-
ized densities over more localized alternatives. Such an imbalance can lead to erroneous
predictions of higher symmetry structures being preferred over lower symmetry ones, as has
been observed, for instance, for phosphoranyl radical structures (Lim et al. 1996), transition-
state structures for cationic [4+3] cycloadditions (Cramer and Barrows 1998), and in the
comparison of cumulenes to poly-ynes (Woodcock, Schaefer, and Schreiner 2002). It can
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also lead to very poor predictions along coordinates for bond dissociation (Bally and Sastry
1997; Zhang and Wang 1998; Gräfenstein, Kraka, and Cremer 2004), nucleophilic substi-
tution (Adamo and Barone 1998; Gritsenko et al. 2000), competing cycloaddition pathways
(Jones et al. 2002), and rotation about single bonds in conjugated systems, like the benzylic
bond in styrene (Choi, Kertesz, and Karpfen 1997).

Note that, because electron correlation often stabilizes delocalized electronic structures
over localized ones, HF theory tends to be inaccurate for such systems in the opposite direc-
tion from DFT, and thus, again, hybrid ACM functionals tend to show improved performance
by an offsetting of errors.

A number of different methods have been proposed to introduce a self-interaction correc-
tion into the Kohn–Sham formalism (Perdew and Zunger 1981; Kümmel and Perdew 2003;
Gräfenstein, Kraka, and Cremer 2004). This correction is particularly useful in situations
with odd numbers of electrons distributed over more than one atom, e.g., in transition-state
structures (Patchkovskii and Ziegler 2002). Unfortunately, the correction introduces an addi-
tional level of self-consistency into the KS SCF process because it depends on the KS
orbitals, and it tends to be difficult and time-consuming to converge the relevant equations.
However, future developments in non-local correlation functionals may be able to correct
for self-interaction error in a more efficient manner.

8.6 General Performance Overview of DFT
While the cases noted in the immediately preceding section illustrate certain pathological
failures of current DFT functionals, the general picture for DFT is really quite bright. For
the ‘average’ problem, DFT is the method of choice to achieve a particular level of accuracy
at lowest cost. With the appearance of each new functional, there has tended to be at least
one paper benchmarking the performance of that functional on a variety of standard test sets
(for energies, structures, etc.) and there is now a rather large body of data that is somewhat
scattered and disjoint with respect to individual functional performance. The comparisons
made below are designed to provide as broad a coverage as possible without becoming
unwieldy, and as such are not necessarily exhaustive.

8.6.1 Energetics

Exact DFT is an ab initio theory (even if most modern implementations may be regarded
as having a semiempirical flavor) and like other such theories its quality with respect to
energetic predictions is usually judged based on its performance for atomization energies.
Table 8.1 collects average unsigned and maximum absolute errors in atomization energies
as computed for various functionals, and for some other computational methodologies, over
several different test sets of increasing complexity. The G2/97 and G3/99 test sets (columns
D and E) include substituted hydrocarbons, radicals, inorganic hydrides, unsaturated ring
hydrocarbons, and polyhalogenated organics and inorganics. While effort is made to describe
all levels of theory accurately, it should be noted that in many cases geometries are optimized
(and zero-point vibrational energies computed) using a basis set smaller than that used to
compute the atomization energies. In addition, some results for the larger test sets include
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Table 8.1 Mean absolute errors and maximum errors, where available, in atomization energies for
different methods over several different test sets (kcal mol−1)

Level of theory Test setsa

A B C D E

MO theoretical methods
MNDO 9.3

(116.7)
AM1 7.8

(58.2)
PM3 7.0

(32.2)
MNDO/d 7.3

(33.9)
HF/6-31G(d) 85.9 80.5 150.6b

(184.3)
HF/6-31G(d,p) 119.2
HF/6-311G(2df,p) 82.0 146.2b

HF/6-311+G(3df,2p) 74.5 144.4b 148.3c 211.5c

(170.0) (344.1) (582.2)
MP2/6-31G(d) 22.4 16.0 38.1b

(40.3)
MP2/6-31G(d,p) 23.7 22.0
MP2/6-311+G(3df,2p) 7.3 9.7b

(25.4)
MP4/6-31G(2df,p) 13.5b

QCISD/6-31G(d) 28.8 51.7b

MC-QCISD 1.7b

CCSD(T)/6-311G(2df,p) 11.5
G2(MP2) 1.8

(8.8)
CBS-4 2.7

(12.9)
G2 1.2 1.2 1.4

(4.9) (10.6)
CBS-q 2.3

(11.4)
CBS-Q 1.0 1.4b 1.2

(3.3) (8.1)
G3(MP2) 1.2 1.2

(9.3)
G3 1.1 0.9b 0.9 1.1

(4.0) (4.9) (7.1)
G3S(MP2) 1.2 1.3
G3S 0.9b 1.0 1.1
MCG3 1.0b

(continued overleaf )
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Table 8.1 (continued )

Level of theory Test setsa

A B C D E

W1 0.6
(2.2)

W2 0.5
(1.9)

LSDA functionals
SVWN/6-31G(d) 35.7 36.4 83.8

(84.0)
SVWN/6-31G(d,p) 52.2
SVWN/TZ2P 50.1
SVWN/6-311+G(2df,p) 43.5 83.7c 121.9c

(207.7) (347.5)

GGA and MGGA functionals
BB95/numeric 8.6

(28.6)
BISM/6-311+G(3df,2p) 5.9

(21.8)
BVWN/6-31G(d) 4.4
BKCIS/6-311+G(3df,2p) 8.2 14.6

(25.9) (39.6)
BLYP/6-31G(d) 5.6 5.3

(18.8)
BLYP/6-31G(d,p) 7.0
BLYP/6-31+G(d) 4.4

(16.3)
BLYP/6-311G(2df,p) 9.6
BLYP/6-311+G(3df,2p) 5.0 7.3 9.3

(15.8) (28.4)
BLYP/6-311++G(3df,3pd) 9.6 7.3c 9.5c

(28.1) (41.0)
BLYP/pVQZ 7.0d

(27.8)
BP86/6-31G(d) 7.2

(24.0)
BP86/6-311+G(3df,2p) 10.3 20.1c 26.3c

(25.4) (48.7) (72.7)
BPW91/6-31G(d,p) 7.4
BPW91/TZ2P 7.3
BPW91/6-311+G(3df,2p) 7.8

(32.2)
BPW91/6-311++G(3df,3pd) 6.0 8.0c 9.0c

(32.4) (28.0)
EDF1/6-31+G(d) 3.2

(15.3)
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Table 8.1 (continued )

Level of theory Test setsa

A B C D E

HCTH/6-311++G(3df,3pd) 5.6c 7.2c

(28.0) (28.0)
OLYP/pVQZ 5.5d 4.8c 5.9c

(23.6) (27.0) (27.0)
PBE/6-311+G(3df,2p) 8.2 16.9c 22.2c

(29.1) (50.5) (79.7)
mPBE/6-311++G(3df,3pd) 4.6 6.3

(18.9) (27.5)
PBEKCIS/6-311+G(3df,2p) 11.9 24.9

(35.2) (66.5)
PKZB/6-311+G(3df,2p) 3.6 4.8c 7.0c

(11.0) (39.8) (39.8)
PKZBKCIS/6-311+G(3df,2p) 4.1 9.7

(14.4) (38.8)
PWPW91/6-311++G(3df,3pd) 8.6 17.7c 23.6c

(52.7) (81.1)
mPWPW91/6-311++G(3df,3pd) 6.7 15.0
TPSS/6-311++G(3df,3pd) 6.0c 5.8c

(22.9) (22.9)
VSXC/6-311+G(3df,2p) 2.5 2.8c 3.5c

(10.0) (11.5) (12.0)
XLYP/6-311+G(3df,2p) 7.6e

Hybrid functionals
BH&HLYP/6-311++G(3df,3pd) 11.7 21.7e

(23.4)
B0KCIS/6-311+G(3df,2p) 3.0 5.3

(10.5) (28.6)
B1B95/numeric 2.0

(7.5)
B1LYP/6-311++G(3df,3pd) 3.1

(12.2)
B1PW91/6-311++G(3df,3pd) 5.4

(14.3)
MPW1K/MG3S 11.0b

PBE1PBE/6-311+G(3df,2p) 3.1 4.4b 4.9c 6.7c

(10.7) (21.3) (35.6)
PW1PW91/6-311+G(3df,2p) 5.3e

mPW1PW91/6-311++G(3df,3pd) 3.5 4.2b 3.9e

(6.7)
TPSSh/6-311++G(3df,3pd) 4.2c 3.9c

(22.0) (16.2)

(continued overleaf )
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Table 8.1 (continued )

Level of theory Test setsa

A B C D E

B97/numeric 1.8
(5.5)

B97-1/pVQZ 3.2d

(9.8)
B3LYP/6-31G(d) 5.2 6.8

(31.5)
B3LYP/6-31+G(d) 5.9

(35.9)
B3LYP/6-311+G(3df,2p) 2.4 3.1 4.8

(9.9) (20.2) (21.6)
B3LYP/aug-cc-pVTZ 2.6

(18.2)
B3LYP/6-311++G(3df,3pd) 3.3 4.2b 3.1c 4.9c

(20.1) (20.8)
B3LYP/pVQZ 3.4d

(22.2)
B3LYP*/TZVPP 3.0

(11.1)
B3P86/6-31G(d) 5.9

(22.6)
B3P86/6-311+G(3df,2p) 7.8 18.2c 26.1c

(22.7) (48.1) (79.2)
B3PW91/6-31G(d,p) 6.8
B3PW91/TZ2P 6.5
B3PW91/6-311+G(3df,2p) 3.5

(21.8)
B3PW91/6-311++G(3df,3pd) 4.8 3.4c 3.9c

(21.6) (21.6)
O3LYP/pVQZ 3.9d 4.2e

(11.8)
mPW3PW91/6-311++G(3df,3pd) 2.7

(7.4)
X3LYP/6-311+G(3df,2p) 2.8e

aA: G2 subset (32 molecules containing only first-row atoms, see Johnson, Gill, and Pople 1993); B: G2 set (55
molecules including first- and second-row atoms, see Curtiss et al. 1991); C: (108 molecules including first- and
second-row atoms, see Scheiner, Baker, and Andzelm 1997); D: G2/97 set (148 molecules including first- and
second-row atoms, see Curtiss et al. 1998 and also http://chemistry.anl.gov/compmat/g3theory.htm); E: G3/99
set (223 molecules including first- and second-row atoms, larger organics, and problematic inorganic molecules,
see Curtiss et al. 2000).
bZero-point-exclusive atomization energies for 109 molecules having high overlap with test set C, MG3S basis set
for DFT values, see Lynch and Truhlar 2003a.
cGeometries and ZPVE obtained at the B3LYP/6-31G(2df,p) level with scaling of vibrational frequencies by 0.9854;
electronic energies use 6-311++G(3df,3pd) basis set; see Staroverov et al. (2003).
d 105 molecules having high overlap with test set C, see Hoe, Cohen, and Handy (2001).
e MP2 geometries and scaled HF thermal contributions; electronic energies use 6-311+G(3df,2p) basis set; see Xu
and Goddard (2004a, 2004b).
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spin-orbit corrections and updated experimental data for the heats of formation of the silicon
and beryllium atoms and carbonyl difluoride, while others do not. Readers may refer to the
original literature listed in the bibliography for full details.

Some key points may be inferred from Table 8.1.

1. For a given average level of accuracy, hybrid and meta-GGA DFT methods are obviously
the most efficient, showing mean unsigned errors almost equal in quality to the much
more expensive multilevel correlated methods. However, the maximum absolute errors
are larger with the former methods than the latter, indicating a slightly lower generality
even in the most current generation of functionals.

2. Hybrid and meta-GGA DFT functionals usually offer some improvement over corre-
sponding pure DFT functionals.

3. Increasing basis-set size does not always improve the accuracy of the DFT models,
although it must, of course, ultimately lead to a converged prediction.

4. Of the currently available DFT models, it is clear that GGA models offer a major
improvement over the older LSDA model. It further appears that the P86 functional
should be avoided. With respect to a more specific ranking of functionals, Boese, Martin
and Handy (2003) have carried out a careful evaluation of a large number of functionals
for various energetic quantities (atomization enthalpies, IPs, EAs, geometries, etc.) using
polarized triple-ζ basis sets. They conclude that for pure GGA functionals an error
ranking (i.e., lower is better) is HCTH < OLYP < BPW91 < BLYP < mPWPW91
< BP86 < PWPW91 < PBE. They further conclude that for hybrid and meta-GGA
functionals, which are overall better than pure functionals, an analogous error ranking
is hybrid τ -HCTH < B97-1 < τ -HCTH < VSXC ∼ B97-2 ∼ B3LYP ∼ B98 <

PBE1PBE << MPW1K < PKZB (note that these comparisons do not take into account
predicted reaction activation enthalpies). Prior work by Proynov, Chermette, and Salahub
(2000) suggests that Bmτ1 and BLap3 have qualities intermediate between B3LYP and
PBE1PBE in the latter rank ordering.

While fewer data are available, the utility of DFT in computing the bond strengths between
transition metals and hydrides, methyl groups, and methylene groups has also been demon-
strated (Table 8.2). Because of the non-dynamical correlation problem associated with the
partially filled metal d orbitals, such binding energies are usually very poorly predicted by
MO theory methods, until quite high levels are used to account for electron correlation.

In the area of reaction energetics, Baker, Muir, and Andzelm have compared six
levels of theory for the enthalpies of forward activation and reaction for 12 organic
reactions: the unimolecular rearrangements vinyl alcohol → acetaldehyde, cyclobutene →
s-trans butadiene, s-cis butadiene → s-trans butadiene, and cyclopropyl radical → allyl
radical; the unimolecular decompositions tetrazine → 2HCN + N2 and trifluoromethanol →
carbonyl difluoride + HF; the bimolecular condensation reactions butadiene + ethylene →
cyclohexene (the Diels–Alder reaction), methyl radical + ethylene → propyl radical, and
methyl radical + formaldehyde → ethoxyl radical; and the bimolecular exchange reactions
FO + H2 → FOH + H, HO + H2 → H2O + H, and H + acetylene → H2 + HC2. Their
results are summarized in Table 8.3 (Reaction Set 1). One feature noted by these authors is
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Table 8.2 Mean absolute errors in metal–ligand binding
energies for different methods (kcal mol−1)a

Level of theoryb Ligand

H CH3 CH2

MO theoretical methods
MCPF 6 9 20
QCISD(T) 6
PCI-80 2 2 4

Density functional methods
SVWN 12
BP86 8
BH&HLYP 16
BH&HLYP/ECP 5 9
B3LYP 5 6 4
B3LYP/ECP 9 7

aComplexes MX+ where M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
and X = ligand.
bBasis sets are for the most part double-ζ polarized in quality. Use
of metal effective core potentials is indicated by ECP.

that the pure DFT functional BLYP badly underestimated the activation enthalpies for the
H-atom transfer reactions. This behavior has since been noted by many other authors, and
is part of the motivation for the MPW1K model discussed in Section 8.4.3.

In a different analysis of hydrogen-atom transfer reaction barriers, Lynch and Truhlar
(2003b) considered the forward and reverse barriers for 22 such reactions, and then demon-
strated that the performance of various models on only six data (the forward and reverse
barrier heights for HO + CH4 → H2O + CH3, H + OH → O + H2, and H + H2S → H2 +
HS) was highly predictive of their accuracy for all 44 barrier heights. In this and subsequent
work by Zhao et al. (2004), they assayed the accuracy of a substantial number of different
models for this test set and found that modern functionals, and particularly those including a
dependence on the kinetic energy density, gave the best results (Table 8.3, Reaction Set 2).
However, all of the geometries used in this analysis were obtained at the QCISD/MG3 level
(partly in recognition of the multideterminantal character of many H-atom transition-state
structures). So, the reported errors might be expected to change somewhat were geometries
to be located at the DFT levels of theory. In this regard, it is noteworthy that Kang and
Musgrave (2001) examined 29 different barrier heights for H-atom transfer using geometries
optimized at the same level as used to compute energies, and reported mean unsigned errors
of 0.9, 3.3, 3.2, and 2.9 kcal mol−1, respectively, for KMLYP, B3LYP, BH&HLYP, and G2.

With respect to chemical reactions not involving H-atom transfer, Guner et al. (2003,
2004) examined a set of 11 pericyclic organic reactions having experimental data available
for nine enthalpies of activation and six enthalpies of forward reaction. They found the
B3LYP and MPW1K functionals to be about as accurate for the activation enthalpies as the
more expensive CBS-QB3 and CASPT2 levels, with other functionals doing somewhat less
well (Table 8.3, Reaction Set 3). Interestingly, they found the performance of the B3LYP
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Table 8.3 Mean and maximum absolute errors (kcal mol−1) in enthalpies of activation and forward
reaction for different methods

Level of theory Activation Reaction

Mean Maximum Mean Maximum

Reaction set 1a,b

MNDO 23.4 51.8 10.9 57.7
AM1 9.3 34.2 7.5 22.1
HF/6-31G(d)c 13.6 30.6 10.5 24.8
MP2 9.9 28.8 6.3 26.0
BLYP 5.9 21.9 5.9 13.0
BLYP/6-311G(2df,2pd) 5.8 16.0
B3LYP 5.0 9.4
B3LYP/6-311G(2df,2pd) 3.7 8.5
B3PW91 3.7 12.9 6.8 17.7
OLYP 4.6 12.7
OLYP/6-311G(2df,2pd) 3.6 10.6
O3LYP 4.6 11.6
O3LYP/6-311G(2df,2pd) 2.8 7.1

Reaction set 2d

HF 12.4 149.5
MP2 5.5 24.4
QCISD 3.9 38.6
QCISD(T) 3.1 32.3
CBS-Q 0.8 1.3
MC-QCISD 0.9 1.1
MCG3 0.8 0.8
BB95 8.3 8.2
BLYP 8.3 6.8
BP86 9.4 13.0
G96LYP 6.9 11.1
HCTH 5.4 5.3
mPWPW91 8.6 7.2
OLYP 6.0 3.4
PBE 9.5 12.1
PWPW91 9.8 12.1
VSXC 5.1 3.4
B1B95 3.7 3.4
B97-1 4.2 5.8
B97-2 3.1 3.9
B98 4.1 6.3
KMLYP 2.9 1.0
mPW1PW91 3.9 8.0
MPW1K 1.4 14.9
PBE1PBE 4.6 7.1
B3LYP 5.0 7.2

(continued overleaf )
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Table 8.3 (continued )

Level of theory Activation Reaction

Mean Maximum Mean Maximum

B3PW91 4.4 5.8
O3LYP 4.7 5.8

Reaction set 3b,e

HF 18.7 26.7 3.8 6.5
CASSCF 16.0 34.6 14.7 20.6
MP2 4.6 7.6 6.0 9.6
CASPT2//CASSCF 2.4 5.7 1.6 4.5
CBS-QB3 1.9 4.3 1.6 2.5
BPW91 3.7 6.9 3.4 7.4
KMLYP 3.2 10.3 12.7 19.8
OLYP 3.4 9.0 6.2 12.9
OLYP/6-311+G(2d,p) 4.4 13.0 9.8 20.5
MPW1K/6-31+G(d,p) 2.2 6.9 6.2 10.0
B3LYP 1.7 6.0 4.1 8.6
B3LYP/6-31+G(d,p) 2.4 8.1 7.0 13.6
B3LYP/6-311+G(2d,p) 2.9 10.1 8.2 15.9
O3LYP//OLYP 3.0 9.0 3.9 8.3

aSee Baker, Muir, and Andzelm (1995).
b6-31G(d) basis set unless otherwise indicated.
cUsing five spherical d functions instead of the usual six Cartesian functions implied by this basis set name.
dSee Lynch and Truhlar (2003a) and Zhao et al. (2004); 6-31+G(d,p) basis set; the Reaction column refers to the
atomization enthalpies for six molecules chosen to be representative of a larger set in a fashion analogous to the
H-atom transfer reactions, namely, SiO, S2, silane, propyne, glyoxal, and cyclobutane.
eSee Guner et al. (2003, 2004).

functional to become systematically worse with increasing basis-set size, so some cancella-
tion of errors appears to be responsible for the excellent performance of this functional when
used with the 6-31G(d) basis set. This analysis is supported as well by the relatively poor
performance of B3LYP for the forward reaction enthalpies. Indeed, although the best MO
methods continue to perform well for this latter test, the best DFT functional was found to
be BPW91, which was the worst for the activation enthalpies.

St-Amant et al. (1995) have analyzed the utility of HF, MP2, LSDA, and BP86, using
basis sets of DZP to TZP quality, for the prediction of 35 conformational energy differences
in small to medium-sized organic molecules (e.g., axial–equatorial disposition of substituents
on cyclohexanes, E vs. Z amide rotamers, s-cis vs. s-trans rotamers of carboxylic acids and
conjugated systems, etc.) The mean unsigned errors over the data for these four methods are
0.5, 0.4, 0.6, and 0.3 kcal mol−1, respectively; the average conformational energy difference
is 1.6 kcal mol−1.

A substantial body of data exists evaluating the utility of DFT (and other methods) for
computing ionization potentials and electron affinities following a �SCF approach. These
data are summarized over four different test sets in Table 8.4. The conclusions one may
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Table 8.4 Mean absolute errors and maximum errors, where available, in IPs and EAs for different
methods over several different test sets (eV)

Level of theory IP test sets EA test sets

G2a G2/97b G2 G2/97

MO theoretical methods
HF 1.03c 1.10c

(2.60) (2.21)
G2(MP2) 0.1 0.1
G2 0.06 0.06 0.06 0.06

(0.19) (0.19) (0.14) (0.17)
CBS-QB3 0.05 0.05

(0.12) (0.12)
G3 0.04 0.04 0.05 0.04

(0.18) (0.18) (0.18) (0.18)
W1 0.01 0.02 0.02 0.02

(0.06) (0.13) (0.05) (0.08)
W2 0.01 0.01

(0.05) (0.04)

LSDA functionals
SVWN/6-311+G(2df,p) 0.7 0.6 0.7 0.7

(1.2) (1.7) (1.2) (1.3)
SVWN/aug-cc-pVTZ 0.7 0.8
SVWN5/6-311+G(2df,p) 0.2 0.23c 0.3 0.24c

(0.6) (1.18) (0.7) (0.88)

GGA and MGGA functionals
BB95/numeric 0.2

(0.5)
BLYP/6-311+G(3df,2p) 0.19 0.29c 0.11 0.12c

(0.6) (1.06) (0.4) (0.70)
BLYP/aug-cc-pVTZ 0.2 0.1
BP86/6-311+G(3df,2p) 0.18 0.22c 0.21 0.19c

(1.21) (0.89)
BP86/aug-cc-pVTZ 0.2 0.2
BPW91/6-311+G(3df,2p) 0.16 0.24c 0.09 0.12c

(1.14) (0.78)
HCTH/6-311++G(3df,3pd) 0.23c

(1.34)
OLYP/6-311++G(3df,3pd) 0.29c 0.15c

(1.11) (0.60)
PBE/6-311+G(3df,2p) 0.16 0.24c 0.12 0.12c

(0.5) (1.11) (0.3) (0.78)
PKZB/6-311++G(3df,3pd) 0.31c 0.15c

(1.31) (0.57)
PWPW91/6-311++G(3df,3pd) 0.16 0.22c 0.14

(1.19)

(continued overleaf )
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Table 8.4 (continued )

Level of theory IP test sets EA test sets

G2a G2/97b G2 G2/97

mPWPW91/6-311+G(3df,2p) 0.16 0.12
TPSS/6-311++G(3df,3pd) 0.24c 0.14c

(1.22) (0.82)
VSXC/6-311+G(3df,2p) 0.1 0.23c 0.13c

(0.4) (1.20) (0.78)
XLYP/6-311+G(3df,2p) 0.19 0.12

Hybrid functionals
BH&HLYP/6-311+G(3df,2p) 0.21 0.25
B1B95/numeric 0.1

(0.4)
B97/numeric 0.1 0.1

(0.6) (0.4)
B3LYP/cc-pVDZ 0.2
B3LYP/aug-cc-pVDZ 0.2
B3LYP/6-31+G(d) 0.2 0.2
B3LYP/6-311+G(3df,2p) 0.17 0.18c 0.10 0.12c

(0.8) (1.57) (0.5) (1.10)
B3LYP/aug-cc-pVTZ 0.2 0.1
B3LYP*/TZVPP 0.4 0.1

(0.7) (0.4)
B3P86/6-311+G(3df,2p) 0.64 0.55c 0.59 0.59c

(2.13) (1.63)
B3PW91/6-311+G(3df,2p) 0.16 0.19c 0.10 0.14c

(1.58) (1.08)
O3LYP/6-311+G(3df,2p) 0.14 0.11
PBE1PBE/6-311+G(3df,2p) 0.16 0.20c 0.13 0.16c

(0.7) (1.61) (0.3) (1.09)
PW1PW91/6-311+G(3df,2p) 0.16 0.11
mPW1PW91/6-311+G(3df,2p) 0.16 0.11
TPSSh/6-311++G(3df,3pd) 0.23c 0.16c

(1.41) (0.95)
X3LYP/6-311+G(3df,2p) 0.15 0.09

a38 IPs and 25 EAs, see Curtiss et al. (1991).
b83 IPs and 58 EAs, see Curtiss et al. (1998) and also http://chemistry.anl.gov/compmat/g3theory.htm.
cIP set includes three additional data for toluene, aniline, and phenol; geometries and ZPVE obtained at the
B3LYP/6-31G(2df,p) level with scaling of vibrational frequencies by 0.9854; electronic energies use 6-311++
G(3df,3pd) basis set; see Staroverov et al. (2003).

draw from the table are for the most part similar to those noted above based on atomization
energies, except that there is now much less, if any, preference for hybrid functionals over
pure functionals, so long as P86 is avoided. In analyses of other systems, including metal
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atoms, Rienstra-Kiracofe et al. (2002) and Bauschlicher and Gutsev (2002) have separately
noted that B3LYP with large basis sets seems to be particularly robust.

Finally, atomic and molecular proton affinities (PAs) have also been evaluated for various
functionals for ammonia, water, acetylene, silane, phosphine, silylene, hydrochloric acid, and
molecular hydrogen. For G2 and G3 theories, the mean unsigned error in PAs is 1.1 and
1.3 kcal mol−1, respectively. At the SVWN, BLYP, BP86, BPW91, B3LYP, B3P86, and
B3PW91 levels (using the 6-311+G(3df,2p) basis set), the corresponding errors are 5.8, 1.8,
1.5, 1.5, 1.3, 1.1, and 1.2 kcal mol−1, respectively (quantitatively similar results have also
been obtained with more modern functionals). The much cheaper hybrid DFT methods are
thus entirely competitive with G2 and G3, although the data set is perhaps too small to come
to any firm conclusions on this topic (cf. Pokon et al. 2001).

8.6.2 Geometries

Analytic first derivatives are available for almost all density functionals, and as a result
geometry optimization can be carried out with facility. The performance of the various
functionals is usually quite good when it comes to predicting minimum energy structures.
As summarized in Table 8.5, bond lengths at the LDA level for molecules composed of first-
and second-row atoms are typically as good as those predicted from MP2 optimizations, with
both these levels being somewhat improved over HF theory. The use of GGA functionals
does not usually result in much improvement over the LDA level. However, the GGA
functionals tend to systematically overestimate bond lengths. As noted in Section 6.4.2, the
HF level tends to systematically underestimate bond lengths. Thus, it should come as no
surprise that the hybrid ACM functionals, which mix the two, give noticeable improvement
in predicted bond lengths (of course, the improvements are on the order of 0.005 Å, and
it should be noted that most molecular properties are very little affected by such small
variations in bond lengths). Very small improvements in geometrical accuracy are usually
noted with increasing basis-set size beyond those listed in Table 8.5. Accuracies in bond
angles for all flavors of DFT average about 1◦, the same as is found for HF and MP2.
Similarly, the limited amount of data available for dihedral angles suggests that HF, MP2,
and DFT all perform equivalently in this area.

Table 8.5 also indicates that the most popular functionals fail to be as accurate for
molecules containing third-row main-group elements as they are for molecules made up
of elements from the first two rows. The LYP correlation functional seems to perform
particularly badly, while the PW91 functional is more robust.

It is, however, for the transition metals themselves that DFT has proven to be a tremendous
improvement over HF and post-HF methods, particularly for cases where the metal atom is
coordinatively unsaturated. The narrow separation between filled and empty d-block orbitals
typically leads to enormous non-dynamical correlation problems with an HF treatment, and
DFT is much less prone to analogous problems. Even in cases of a saturated coordination
sphere, DFT methods typically significantly outperform HF or MP2. Jonas and Thiel (1995)
used the BP86 functional to compute geometries for the neutral hexacarbonyl complexes
of Cr, Mo, and W, the pentacarbonyl complexes of Fe, Ru, and Os, and the tetracarbonyl
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Table 8.5 Mean absolute errors in bond lengths for
different methods over several different test sets (Å)

Level of theory Test setsa

A B C

MO theoretical methods

HF 0.022 0.021
MP2 0.014b 0.014 0.022
QCISD 0.013b

CCSD(T) 0.005b

LSDA functionals

SVWN 0.017 0.016
0.013d

GGA and MGGA functionals

BLYP 0.014 0.021 0.048
0.019c

0.022d

BP86 0.018d

BPW91 0.014 0.017 0.020
0.017d

HCTH 0.013c

0.014d

OLYP 0.018d

PBE 0.012 0.016d

PKZB 0.027d

PWPW91 0.012 0.014d

mPWPW91 0.012
TPSS 0.014d

VSXC 0.013d

Hybrid functionals

BH&HLYP 0.015
B1LYP 0.005
B1PW91 0.010
B97-1 0.008c

mPW1PW91 0.010
PBE1PBE 0.012 0.010d

TPSSh 0.010d

B3LYP 0.004 0.008c 0.030
0.010d
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Table 8.5 (continued )

Level of theory Test setsa

A B C

B3P86 0.008d

B3PW91 0.008 0.011 0.020
0.009d

mPW3PW91 0.008

aA: G2 subset (32 molecules containing only first-row
atoms, see Johnson, Gill, and Pople 1993), 6-311G(d,p)
basis set unless otherwise specified; B: (108 molecules
including first- and second-row atoms, see Scheiner, Baker,
and Andzelm 1997), 6-31G(d,p) basis set; C: (40 molecules
containing third-row atoms Ga-Kr, see Redfern, Blaudeau,
and Curtiss 1997).
b6-31G(d,p) basis set.
cA 40-molecule subset with a polarized triple-ζ basis set,
see Hamprecht et al. (1998).
dA 96-molecule set with the 6-311++G(3df,3pd) basis set,
see Staroverov et al. (2003).

complexes of Ni, Pd, and Pt. Over the 10 unique metal–carbon bond lengths for which
experimental data are available, they observed no error in excess of 0.01 Å except for W,
where the error was 0.017 Å. At the HF and MP2 levels using equivalent basis sets, the
corresponding average absolute errors are 0.086 and 0.028 Å, and the maximum deviations
are 0.239 and 0.123 Å (Frenking et al. 1996).

To the extent DFT shows systematic weaknesses in geometries, it is in those areas where it
similarly does poorly for energetics. Thus, van der Waals complexes tend to have interfrag-
ment distances that are too large because the dispersion-induced attraction is not properly
modeled (although it may accidentally be mimicked by BSSE). Hydrogen bonds are some-
what too short as a rule, and indeed, most charge transfer complexes have their polarities
overestimated so that they are too tightly bound. Finally, the tendency noted above in
Section 8.5.6 for DFT to overdelocalize structures can show up in geometrical predictions.
Thus, for instance, in 1,3-butadiene DFT tends to predict the formal single bond to be a
bit too short and the formal double bonds to be somewhat too long (and this extends to
other conjugated π systems). As already noted above in Section 8.5.6, this can also lead to a
tendency to favor higher symmetry structures over ones of lower symmetry since the former
tend to have more highly delocalized frontier orbitals (see also Section 9.1.6). Finally, loose
transition state structures can result from this phenomenon; for instance, the C–Cl bond
lengths in the TS structure illustrated in Figure 6.12 are 2.45 and 2.39 Å at the BLYP/6-
31G(d) and B3LYP/6-31G(d) levels of theory, respectively. Of course, this is a significant
improvement over HF theory, and insofar as TS structures tend to be fairly floppy, the
remaining geometrical errors may have only small energetic consequences.

Wiest, Montiel, and Houk (1997) have studied carefully a large number of TS structures
for organic electrocyclic reactions and, based on comparison to experiment (particularly
including kinetic isotope effect studies) and very high levels of electronic structure theory,
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concluded that the B3LYP functional is particularly robust for predicting geometries in
this area. This is consistent with the good behavior of this functional when applied to
minimum-energy structures composed only of first-row atoms as already noted above. Cramer
and Barrows (1998) have emphasized, however, that overdelocalization problems can arise
in ionic examples of such electrocyclic reactions, and caution may be warranted in these
instances.

8.6.3 Charge Distributions

Over the 108 molecules in Test Set B of Table 8.5, Scheiner, Baker, and Andzelm computed
the mean unsigned errors in predicted dipole moments to be 0.23, 0.20, 0.23, 0.19, and
0.16 D at the HF, MP2, SVWN, BPW91, and B3PW91 levels of theory, respectively, using
the 6-31G(d,p) basis set. These results were improved somewhat for the DFT levels of theory
when more complete basis sets were employed.

Cohen and Tantirungrotechai (1999) compared HF, MP2, BLYP, and B3LYP to one another
with respect to predicting the dipole moments of some very small molecules using a very
large basis set, and their results are summarized in Table 8.6. In general the performances of
MP2, the pure BLYP functional, and the hybrid B3LYP functional are about equal, although
both DFT functionals do very slightly better than MP2 for several cases. HF theory shows
its typical roughly 10–15 percent overestimation of dipole moments, and its historically
well-known reversal of moment for carbon monoxide.

In addition to the moments of the charge distribution, molecular polarizabilities have also
seen a fair degree of study comparing DFT to conventional MO methods. While data on
molecular polarizabilities are less widely available, the consensus appears to be that for this
property DFT methods, pure or hybrid, fail to do as well as the MP2 level of theory, with
conventional functionals typically showing errors only slightly smaller than those predicted
by HF (usually about 1 a.u.), while the MP2 level has errors only 25 percent as large. In
certain instances, ACM functionals have been more competitive with MP2, but still not quite
as good.

Table 8.6 Dipole moments (D) for eight small molecules at four levels of
theory using the very large POL basis seta

Molecule HF MP2 BLYP B3LYP Experiment

NH3 1.62 1.52 1.48 1.52 1.47
H2O 1.98 1.85 1.80 1.86 1.85
HF 1.92 1.80 1.75 1.80 1.83
PH3 0.71 0.62 0.59 0.62 0.57
H2S 1.11 1.03 0.97 1.01 0.97
HCl 1.21 1.14 1.08 1.12 1.11
CO −0.25 0.31 0.19 0.10 0.11
SO2 1.99 1.54 1.57 1.67 1.63

aFrom Cohen and Tantirungrotechai 1999.
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Table 8.7 Density Functionalsa

Abbreviation Comments Reference(s)

B Becke’s 1988 GGA exchange functional
containing one empirical parameter and
showing correct asymptotic behavior.

Becke, A. D. 1988. Phys. Rev. A,
38, 3098.

B0KCIS One-parameter hybrid functional of B and
KCIS incorporating 25% HF exchange
(B1KCS optimizes the percent HF exchange
to 23.9%).

Toulouse, J., Savin, A., and
Adamo, C. 2002. J. Chem.
Phys., 117, 10465.

B1B95 One-parameter hybrid functional of B and B95
incorporating 28% HF exchange.

Becke, A. D. 1996. J. Chem.
Phys., 104, 1040.

B1LYP One-parameter hybrid functional of B and LYP
incorporating 25% HF exchange.

Adamo, C. and Barone, V. 1997.
Chem. Phys. Lett., 274, 242.

B1PW91 One-parameter hybrid functional of B and
PW91 incorporating 25% HF exchange.

Adamo, C. and Barone, V. 1997.
Chem. Phys. Lett., 274, 242.

B3LYP ACM functional discussed in more detail in
Section 8.4.3.

Stephens, P. J., Devlin, F. J.,
Chabalowski, C. F., and Frisch,
M. J. 1994. J. Phys. Chem., 98,
623.

B3LYP* ACM functional discussed in more detail in
Section 8.4.3.

Salomon, O., Reiher, M., and
Hess, B. A. 2002. J. Chem.
Phys., 117, 4729.

B3PW91 ACM functional discussed in more detail in
Section 8.4.3.

Becke, A. D. 1993b. J. Chem.
Phys., 98, 5648.

B86 Becke’s 1986 GGA exchange functional. Becke, A. D. 1986. J. Chem.
Phys., 84, 4524.

B88 Becke’s 1988 GGA correlation functional. Becke, A. D. 1988. J. Chem.
Phys., 88, 1053.

B95 Becke’s 1995 (sic) MGGA correlation
functional.

Becke, A. D. 1996. J. Chem.
Phys., 104, 1040.

B97 Becke’s 1997 GGA exchange-correlation
functional containing 10 optimized
parameters including incorporating 19.43%
HF exchange.

Becke, A. D. 1997 J. Chem. Phys.,
107, 8554.

B97-1 Hamprecht, Cohen, Tozer, and Handy hybrid
GGA exchange-correlation functional based
on a reoptimization of empirical parameters
in B97 and incorporating 21% HF exchange.

Hamprecht, F. A., Cohen, A. J.,
Tozer, D. J., and Handy, N. C.
1998. J. Chem. Phys., 109,
6264.

B97-2 Wilson, Bradley, and Tozer’s hybrid GGA
exchange-correlation functional based on
further reoptimization of empirical
parameters in B97 and incorporating 21%
HF exchange.

Wilson, P. J., Bradley, T. J., and
Tozer, D. J. 2001. J. Chem.
Phys., 115, 9233.

B98 Schmider and Becke’s 1998 revisions to the
B97 hybrid GGA exchange-correlation
functional to create a hybrid MGGA
incorporating 21.98% HF exchange.

Schmider, H. L. and Becke, A. D.
1998. J. Chem. Phys., 108,
9624.

BB1K Optimization of B1B95 primarily for kinetics
of H-atom abstractions by using 40% HF
exchange instead of default 28%.

Zhao, Y., Lynch, B. J., and
Truhlar, D. G. 2004. J. Phys.
Chem. A, 108, 2715.

(continued overleaf )
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Table 8.7 (continued )

Abbreviation Comments Reference(s)

Bm A modification of B88 to optimize its
performance with the τ1 correlation
functional.

Proynov, E., Chermette, H., and
Salahub, D. R. 2000. J. Chem.
Phys., 113, 10013.

BR Becke and Roussel’s 1989 MGGA exchange
functional that includes a dependence on the
Laplacian of the density in addition to its
gradient.

Becke, A. D. and Roussel, M. R.
1989. Phys. Rev. A, 39, 3761.

CAM Cambridge GGA exchange functional (denoted
as either CAM(A) or CAM(B))

Laming, G. J., Termath, V., and
Handy, N. C. 1993. J. Chem.
Phys., 99, 8765.

CS Colle and Salvetti’s correlation functional
(depending on more than only the density)
parameterized to be exact for the He atom.

Colle, R. and Salvetti, O. 1975.
Theor. Chim. Acta, 37, 329.

EDF1 Empirical density functional 1 designed as a
pure GGA exchange-correlation functional
to be used with small basis sets.

Adamson, R. D., Gill, P. M. W.,
and Pople, J. A. 1998. Chem.
Phys. Lett., 284, 6.

FT97 Filatov and Thiel’s GGA exchange functional. Filatov, M. and Thiel, W. 1997.
Mol. Phys., 91, 847.

G96 Gill’s 1996 GGA exchange functional. Gill, P. M. W. 1996. Mol. Phys.,
89, 433.

H&H One-parameter hybrid exchange functional
combining 50% LSDA with 50% HF
exchange.

Becke, A. D. 1993b. J. Chem.
Phys., 98, 1372.

HCTH Hamprecht, Cohen, Tozer, and Handy GGA
exchange-correlation functional based on a
reoptimization/extension of empirical
parameters in B97 and a removal of HF
exchange. Now a family of functionals with
optimizations over different numbers of
test-set molecules, typically denoted
HCTH/n where n is the number of
molecules in the test set, e.g., HCTH/93,
HCTH/120, HCTH/147, and HCTH/407.

Hamprecht, F. A., Cohen, A. J.,
Tozer, D. J., and Handy, N. C.
1998. J. Chem. Phys., 109,
6264. (Most recent refinement,
Boese, A. D., Martin, J. M. L.,
and Handy, N. C. 2003. J.
Chem. Phys., 119, 3005.)

ISM Imamura, Scuseria, and Martin’s MGGA
correlation functional based on CS.

Imamura, Y., Scuseria, G. E., and
Martin, R. M. 2002. J. Chem.
Phys., 116, 6458.

KCIS Kriger, Chen, Iafrate, and Savin’s MGGA
correlation functional including a
self-interaction correction.

Krieger, J. B., Chen, J., Iafrate, G.
J., and Savin, A. 1999. In
Electron Correlations and
Materials Properties, Gonis, A.
and Kioussis, N., Eds., Plenum:
New York, 463.

KMLYP Kang and Musgrave two-parameter hybrid
exchange-correlation functional using a
mixture of Slater and HF (55.7%) exchange
and a mixture of LSDA and LYP (44.8%)
correlation functionals.

Kang, J. K. and Musgrave, C. B.
2001. J. Chem. Phys., 115,
11040.
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Table 8.7 (continued )

Abbreviation Comments Reference(s)

Lap MGGA correlation functionals that include a
dependence on the Laplacian of the density
in addition to its gradient, typically denoted
either Lap1 or Lap3 depending on version.

Proynov, E. I., Sirois, S., and
Salahub, D. R. 1997. Int. J.
Quantum Chem., 64, 427.

LG Lacks and Gordon’s GGA correlation
functional.

Lacks, D. J. and Gordon, R. G.
1993. Phys. Rev. A, 47, 4681.

LT2A Local square kinetic energy density exchange
functional depending only on the kinetic
energy density (i.e., not at all on the electron
density).

Maximoff, S. N., Enzerhof, M.,
Scuseria, G. E. 2002. J. Chem.
Phys., 117, 3074.

LYP Lee, Yang, and Parr’s GGA correlation
functional based on the CS functional but
depending only on the density.

Lee, C., Yang, W., and Parr, R. G.
1988. Phys. Rev. B, 37, 785.

mPBE Adamo and Barone’s modification of PBE
exchange with PBE correlation.

Adamo, C. and Barone, V. 2002.
J. Chem. Phys., 116, 5933.

mPW Adamo and Barone’s modification of PW. Adamo, C. and Barone, V. 1998.
J. Chem. Phys., 108, 664.

MPW1K Optimization of mPW1PW91 for kinetics of
H-atom abstractions by using 42.8% HF
exchange instead of default 25% and the
6-31+G(d,p) basis set.

Lynch, B. J., Fast, P. L., Harris,
M., and Truhlar, D. G. 2000. J.
Phys. Chem. A, 104, 4811.

mPW1N Optimization of mPW1PW91 for
halide/haloalkane nucleophilic substitution
reactions by using 40.6% HF exchange
instead of default 25% and the 6-31+G(d)
basis set.

Kormos, B. L. and Cramer, C. J.
2002. J. Phys. Org. Chem., 15,
712.

MPW1S Optimization of mPW1PW91 for sugar
conformational analysis by using 6% HF
exchange instead of default 25% and the
6-31+G(d,p) basis set.

Lynch, B. J., Zhao, Y., and
Truhlar, D. G. 2003. J. Phys.
Chem. A, 107, 1384.

O Handy and Cohen OPTX GGA exchange
functional including two optimized
parameters

Handy, N. C. and Cohen, A. J.
2001. Mol. Phys., 99, 403.

O3LYP ACM functional discussed in more detail in
Section 8.4.3.

Hoe, W.-M., Cohen, A. J., and
Handy, N. C. 2001. Chem.
Phys. Lett., 341, 319.

P Perdew’s 1986 GGA exchange functional. Perdew, J. P. 1986. Phys. Rev. B,
33, 8822

P86 Perdew’s 1986 GGA correlation functional. Perdew, J. P. 1986. Phys. Rev. B,
33, 8822

PBE Perdew, Burke, and Enzerhof GGA
exchange-correlation functional.

Perdew, J. P., Burke, K., and
Enzerhof, M. 1996. Phys. Rev.
Lett., 77, 3865 and erratum
1997. ibid., 78, 1396.

(continued overleaf )
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Table 8.7 (continued )

Abbreviation Comments Reference(s)

PBE1PBE One-parameter hybrid PBE functional
incorporating 25% HF exchange (sometimes
alternatively called PBE0, PBE0PBE, or
PBE1).

Adamo, C., Cossi, M., and
Barone, V. 1999. J. Mol. Struct.
(Theochem), 493, 145.

PKZB Perdew, Kurth, Zupan, and Blaha’s MGGA
exchange-correlation functional developed
primarily for solids.

Perdew, J. P., Kurth, S., Zupan,
A., and Blaha, P. 1999. Phys.
Rev. Lett., 82, 2544.

PW Perdew and Wang’s GGA exchange functional. Perdew, J. P. and Wang, Y. 1986.
Phys. Rev. B, 33, 8800.

PW91 Perdew and Wang’s (sic) 1991 GGA
correlation functional.

Perdew, J. P. 1991. In: Electronic
Structure of Solids ’91, Ziesche,
P. and Eschig, H., Eds.,
Akademie Verlag: Berlin, 11.

τ1 A MGGA correlation functional. Proynov, E., Chermette, H., and
Salahub, D. R. 2000. J. Chem.
Phys., 113, 10013.

τHCTH MGGA extension of the HCTH functional.
Comes in both hybrid and pure DFT
variations.

Boese, A. D. and Handy, N. C.
2002. J. Chem. Phys., 116,
9559.

TPSS Tao, Perdew, Staroverov, and Scuseria’s
MGGA exchange-correlation functional.

Tao, J., Perdew, J. P., Staroverov,
V. N., and Scuseria, G. E. 2003.
Phys. Rev. Lett., 91, 146401.

TPSSh One-parameter ACM of TPSS incorporating
10% HF exchange.

Staroverov, V. N., Scuseria, G. E.,
Tao, J., Perdew, J. P. 2003. J.
Chem. Phys., 119, 12129.

VSXC van Voorhis and Scuseria’s MGGA
exchange-correlation functional.

van Voorhis, T. and Scuseria, G.
E. 1998. J. Chem. Phys., 109,
400.

VWN Local correlation functional of Vosko, Wilk,
and Nusair fit to the uniform electron gas.
Note that VWN proposed several different
forms for this functional, usually identified
by a trailing number, e.g., VWN3 or VWN5.
Different gradient-corrected and hybrid
functionals built onto the VWN local
correlation functional may use different
versions. For example, B3LYP is defined to
use VWN3, while O3LYP is defined to use
VWN5.

Vosko, S. H., Wilk, L., and
Nussair, M. 1980. Can. J. Phys.,
58, 1200.

X GGA exchange functional defined as a
combination of one part LSDA, 0.722 parts
B, and 0.347 parts PW91.

Xu, X. and Goddard, W. A., III.
2004. Proc. Natl. Acad. Sci
(USA), 101, 2673.

X3LYP ACM functional discussed in more detail in
Section 8.4.3.

Xu, X. and Goddard, W. A., III.
2004. Proc. Natl. Acad. Sci
(USA), 101, 2673.

aExchange, correlation, and specific, specially defined combinations or hybrid functionals are contained herein.
Routine combinations of exchange and correlation functionals (e.g., BLYP, OP86, or PWPW91) are not included.
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8.7 Case Study: Transition-Metal Catalyzed Carbonylation
of Methanol

Synopsis of Kinnunen and Laasonen (2001), ‘Reaction Mechanism of the Reductive Elim-
ination in the Catalytic Carbonylation of Methanol. A Density Functional Study’.

Acetic acid is made industrially by the condensation of methanol and carbon monoxide
catalyzed by either a diiododicarbonylrhodium species or the corresponding iridium
complex. The proposed catalytic cycle for this process is illustrated in Figure 8.5.
Experimentally establishing a complete catalytic mechanism can be quite challenging, since
reactive intermediates in the cycle may be present at such low concentrations that they are
very difficult to detect. Theory can therefore play a useful role in establishing the energetic
profiles for proposed catalytic steps, with the ultimate goal being the design of improved
catalysts based on a fundamental understanding of the mechanism.

To that end, Kinnunen and Laasonen model the reductive elimination pathways from the
anionic acetyltriiododicarbonyl rhodium and iridium anions, and from the acetyldiiodotri-
carbonyl iridium neutral using the B3LYP functional in combination with an unpolarized
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Figure 8.5 Catalytic cycle for the metal-catalyzed carbonylation of methanol, with the reduc-
tive elimination step highlighted. In the case of iridium, the diiodotricarbonyl species has
also been suggested as a possible precursor to reductive elimination. What are the issues of
stereochemistry associated with the intermediates? What special basis-set requirements will be
involved in modeling this system?
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double-ζ basis set on C, H, and O, and a valence basis set of similar size for I and the metals
combined with relativistic effective core potentials. Happily, from a simplicity standpoint,
all species are predicted to be ground-state singlets by large margins, so a restricted DFT
formalism can be employed. In this instance, some experimental data are available for
species involved in the reductive elimination step, so the adequacy of the theoretical level
can be evaluated.

The authors begin by characterizing the relative energies of all possible stereoisomers in
the octahedral complexes. For acetyltriiododicarbonyl metal complexes, there are mer,trans,
mer,cis, and fac,cis possibilities (mer implies two iodides to be trans to one another while
fac implies all I–M–I bond angles to be about 90◦; trans and cis refer to whether the
central iodine atom in the mer arrangement is opposite the acetyl group or adjacent to it)
as well as acetyl rotamers to consider. For both rhodium and iridium, a single mer,trans
geometry is predicted to be lower than all other possibilities by at least 2.7 kcal mol−1.
Experimental IR and NMR data for the Rh system are in accord with this prediction, while
IR data for the Ir system suggest the presence of fac,cis, which is the next lowest energy
species predicted from the computations. Kinnunen and Laasonen suggest that weak IR
bands for the mer,trans isomer may make it difficult to detect experimentally, and infer
that it is possible that both may be present experimentally.

Of course, while the intermediate energies are of interest, so long as interconversion
between stereoisomers takes place at lower energy than reductive elimination, the latter
process may potentially go through any stereoisomer on the way to the lowest energy TS
structure for the reaction (the Curtin–Hammett principle). For the Rh system the lowest
energy TS structure, which follows from a mer,cis reactant, has an associated 298 K free
energy of activation of 20.1 kcal mol−1, which compares well with an experimental value
of about 18. In the case of Ir, a fac,cis TS structure is computed to be slightly lower
than the mer,cis structure, and the overall free energy of activation is about 8 kcal mol−1

higher than was the case for Rh. In both cases, iodide dissociation is predicted to proceed
with a lower barrier than reductive elimination, so stereoisomer scrambling via elimina-
tion/addition should be possible prior to reductive elimination.

Kinnunen and Laasonen carry out a similarly thorough analysis for the diiodotricar-
bonyliridium case. Consideration of all possibilities is complicated (and will depend exper-
imentally on the iodide ion concentration and carbon monoxide pressure) but in essence ‘all’
stationary points corresponding to stereoisomeric minima and transition state structures for
dissociation/association and reductive elimination steps are found and characterized energet-
ically (‘all’ in quotes here because in such complicated systems it is essentially impossible
to be entirely certain that every stationary point has been found). This exhaustive mapping
of the PES provides insight into the catalytic process in a fashion typically not avail-
able experimentally, and takes good advantage of DFT’s ability to handle transition metal
systems in an efficient manner.
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9
Charge Distribution and
Spectroscopic Properties

9.1 Properties Related to Charge Distribution

We know from the fundamental theorems of DFT that the charge distribution (i.e., the
density) determines the external potential, and that this determines the Hamiltonian operator,
and that this in turn ultimately determines the wave function. So, in a formal sense, one
might say that the charge distribution determines all molecular properties. For purposes of
presentation, however, we will distinguish between properties that are rather direct measures
of the charge distribution, and others, such as rotational and vibrational frequencies, that
may be regarded as being decoupled from the charge distribution except to the extent that
the molecular potential energy surface is intimately connected with it.

This chapter concerns itself with the prediction of a variety of measurable spectroscopic
properties, including molecular multipole moments and polarizabilities, electron spin reso-
nance (ESR) hyperfine coupling constants, nuclear magnetic resonance (NMR) chemical
shifts and spin–spin coupling constants, and molecular rotational, vibrational, and photo-
electron spectra. Because the modeling of electronic spectroscopy – the prediction of energy
separations and transition probabilities between distinct electronic states – is somewhat more
complex than these others in implementation, its discussion is deferred until Chapter 14.
In addition, some ‘unmeasurable’ properties are examined, the most important of which,
because it forms the basis for much chemical reasoning, is the concept of partial atomic
charge.

9.1.1 Electric Multipole Moments

In Cartesian coordinates, the expectation values of multipole moment operators are
computed as

〈xkylzm〉 =
atoms∑

i

Zix
k
i y

l
i z

m
i −

∫
�(r)


electrons∑

j

xk
j yl

j z
m
j


 �(r)dr (9.1)
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where the sum of k, l, and m determines the type of moment (0 = monopole, 1 = dipole,
2 = quadrupole, etc.), Zi is the nuclear charge on atom i, and the integration variable r
contains the x, y, and z coordinates of all of the electrons j . When � is expressed as a
single Slater determinant, we may write

〈xkylzm〉 =
atoms∑

i

Zix
k
i y

l
i z

m
i −

electrons∑
j

∫
ψj(rj )(x

k
j yl

j z
m
j )ψj (rj )drj (9.2)

where ψj and rj are the molecular orbital occupied by electron j and its Cartesian coordinate
system, respectively. Equation (9.2) is also valid for DFT, where the various ψ are occupied
KS orbitals. For ease of notation, we will restrict our discussion to situations where Eq. (9.2)
holds, but all of the qualitative details we will consider are equally valid within the more
general formalism of Eq. (9.1).

The simplest moment to evaluate is the monopole moment, which has only the component
k = l = m = 0, so that the operator becomes 1 and, independent of coordinate system,
we have

〈1〉 =
atoms∑

i

Zi −
electrons∑

j

∫
ψj(rj )ψj (rj )drj

=
atoms∑

i

Zi − N (9.3)

where N is the total number of electrons (the simplification of the second term on the r.h.s.
follows from the normalization of the MOs). The monopole moment is thus the difference
between the sum of the nuclear charges and the number of electrons, i.e., it is the molecular
charge.

For the dipole moment, there are three possible components: x, y, or z depending on
which of k, l, or m is one (with the others set equal to zero). These are written µx , µy , and
µz. Experimentally, however, one rarely measures the separate components of the dipole
moment, but rather the total magnitude, µ, which can be determined as

〈µ〉 =
√

〈µx〉2 + 〈µy〉2 + 〈µz〉2 (9.4)

The dipole moment measures the degree to which positive and negative charge are differen-
tially distributed relative to one another, i.e., overall molecular polarity. Thus, for instance,
if the electronic wave function has a large amplitude at some positive x value while the
nuclear charge is concentrated at some negative x value, inspection of Eq. (9.2) indicates
that the dipole moment in the x direction will be negative. If they are both concentrated at
the same position and the total electronic charge is equal to the total nuclear charge, the first
and second terms on the r.h.s. of Eq. (9.2) cancel, and the dipole moment is zero. Figure 9.1
illustrates the concept for the case of the water molecule. The nuclear charges are shown
here lying flat in the xy plane, and entirely at the nuclear positions. The electrons of the
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Figure 9.1 Contributions to the dipole moment of the water molecule

hydrogen atoms, however, are pulled to the positive x direction relative to the H nuclei by
bonding interactions with the more electronegative O atom (the polarization is exaggerated
here by depicting the σ orbitals with surfaces that fail to encompass the nuclear positions).
In addition, the oxygen atom contributes two electrons into its in-plane lone pair, the orbital
for which is localized at large, positive values of x, while only contributing a single electron
each to the σ orbitals, resulting in another net polarization of negative charge in the positive
x direction. The sum of these and other effects is such that water has a dipole moment
of 1.8 D in the direction indicated (parallel with the x axis by symmetry). Note that the
out-of-plane p orbital may be thought of as ‘cancelling’ two protons in the oxygen nucleus
when the dipole moment is computed, since it is circularly symmetric about the nucleus
when projected into the xy plane. (Since it is also symmetric above and below the xy plane,
as are all other orbitals, there is no z component to the dipole moment.)

Note that, if the total number of electrons is equal to the total nuclear charge, then the
dipole moment is independent of the choice of origin. This is again fairly obvious from
inspection of Eq. (9.2), since any change in origin will affect the total contribution of the
first term on the r.h.s. by the same amount as the second term, and the terms have opposite
sign; thus, so long as the sum of the atomic numbers is equal to the number of the electrons
the net effect of moving the origin is zero. However, if it is not the case that the two are
equal, i.e., the system carries a positive or negative charge, then the dipole moment is not
independent of origin, since moving it will cause a larger change in the magnitude of the
first term on the r.h.s. compared to the second for cations, and of the second term compared
to the first for anions. One can show in general that only the first non-zero electric moment
of a molecule is independent of origin. For a charged molecule, this is the monopole, for a
neutral molecule, the dipole, for a neutral molecule with zero dipole moment (perhaps by
symmetry, e.g., CO2), it is the quadrupole, etc. Any other, higher moment that is reported
from a calculation must specify the origin that was chosen in order to be meaningful. The
most common choices are the center of charge and the center of mass.

Electrical moments are useful because at long distances from a molecule the total electronic
distribution can be increasingly well represented as a truncated multipole expansion,
and thus molecular interactions can be approximated as multipole–multipole interactions
(charge–charge, charge–dipole, dipole–dipole, etc.), which are computationally particularly
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simple to evaluate. At short distances, however, the multipole expansion may be very slowly
convergent, and the multipole approximation has less utility.

9.1.2 Molecular Electrostatic Potential

A (truncated) multipole expansion is a computationally convenient single-center formalism
that allows one to quantitatively compute the degree to which a positive or negative test
charge is attracted to or repelled by the molecule that is being represented by the multi-
pole expansion. This quantity, the molecular electrostatic potential (MEP), can be computed
exactly for any position r as

VMEP(r) =
nuclei∑

k

Zk

|r − rk| −
∫

�(r′)
1

|r − r′|�(r′)dr′ (9.5)

Note that this assumes no polarization of the molecule in response to the test charge. The MEP
is an observable, although in practice it is rather difficult to design appropriate experiments
to measure it. Computationally, it is usually evaluated within the formalism of either HF or
DFT theories, in which case one may write

VMEP(r) =
nuclei∑

k

Zk

|r − rk| −
∑
r,s

Prs

∫
ϕr(r′)

1

|r − r′|ϕS(r′)dr′ (9.6)

where r and s run over the indices of the AO basis set, P is the one-electron density matrix
defined by Eq. (4.57) or its appropriate analog for UHF and DFT, and the orbitals ϕ are
those comprising the basis set.

The MEP is particularly useful when visualized on surfaces or in regions of space, since it
provides information about local polarity. Typically, after having chosen some sort of region
to be visualized, a color-coding convention is chosen to depict the MEP. For instance,
the most negative potential is assigned to be red, the most positive potential is assigned
to be blue, and the color spectrum is mapped to all other values by linear interpolation.
If this is done on the molecular van der Waals surface, one can immediately discern
regions of local negative and positive potential, which may be informative for purposes
of predicting chemical reactivity. Figure 9.2 provides an example of this procedure for a
particular example.

Mapping of the electrostatic potential to grid points in three dimensions has also proven
useful for comparative molecular field analysis (CoMFA). This procedure is used to identify
common features in the electrostatic potentials of several molecules when the goal is to
correlate such commonality with another chemical property, e.g., pharmaceutical activity. In
the latter instance, a group of molecules having high activity are oriented about a common
origin (finding the correct orientation for each molecule is a key challenge in CoMFA) and the
electrostatic potential of each is evaluated at each grid point. A subsequent averaging of the
values at every point may identify key regions of positive or negative potential associated
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NO2

NH2

Br

NO2

Figure 9.2 MEP of the radical anion produced by one-electron reduction of the dinitroaromatic
shown at left. The spectrum is mapped so that red corresponds to maximum negative charge density
and deep blue to minimum (here shown in grayscale). This depiction indicates that the buildup of
negative charge density is larger on the nitro group ortho to the amino group than on that para to
NH2. Such polarization is consistent with the observed reactivity of the molecule under reducing
conditions (Barrows et al. 1996)

with activity and that information may be used for the design of future drug candidates.
Full scale CoMFA typically considers more fields than only the electrostatic potential (e.g.,
steric or non-polar fields), but there is a strong tendency for electrostatic effects to influence
pharmaceutical activity and specificity.

For very large molecules (like biopolymers) the ESP can be very useful for analyzing
function, but direct calculation from quantum mechanics is restricted to fairly low levels
of theory (Khandogin, Hu, and York 2000). An alternative method that shows promise is
to assemble the full molecular density from high-level calculations on small constituent
fragments (Exner and Mezey 2002).

9.1.3 Partial Atomic Charges

A very old concept in chemistry is to associate molecular polarity with charge build-up or
depletion on the individual atoms. In rationalizing hydrogen bonding in water, for instance,
we speak of the oxygen being ‘negative’ and the hydrogen atoms ‘positive’. Part of the
driving force for this conceit is that it allows one to conveniently ignore the wave char-
acter of the electrons and deal only with the pleasantly more particulate atoms, these atoms
reflecting electronic distribution by the degree to which they carry positive or negative
charge. Absolutely critical to the efficiency of most force-field methodologies is that they
compute electrical interactions as atom-centered charge–charge interactions, so the devel-
opment of methods for assigning accurate partial charges to atoms in molecules has seen
considerable research.

The concept of a partial atomic charge, however, is ill defined. One often sees it written
that the atomic partial charge is not a quantum mechanical observable. This is, however,
a bit misleading. One can define unambiguous procedures making use of well-defined
quantum mechanical operators for computing the partial atomic charge, and such procedures
are in principle subject to experimental realization (e.g., the atoms-in-molecules charges
defined in Section 9.1.3.3). However, there is no universally agreed upon ‘best’ procedure
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for computing partial atomic charge. This failure to agree is, in some sense, inevitable,
because partial atomic charges are used in different ways within the context of different
quantitative and qualitative models in chemistry, so there is no reason to expect a single
procedure for determining such charges to be optimal for all purposes. Thus, many method-
ologies have been promulgated for computing partial charges, and we will examine the most
prevalent ones here. For taxonomical purposes, it is helpful to categorize different partial
charge methodologies into four classes, and the remainder of this section will be subdivided
along these lines.

9.1.3.1 Class I charges

A Class I charge is one which is not determined from quantum mechanics, but through
some arbitrary or intuitive approach. For instance, in a neutral diatomic molecule having
a known dipole moment, one atomic charge must be +q and the other, to preserve charge
balance, must be −q. One obvious choice for q will be that value that, in conjunction with
the experimental bond length re, causes the classical dipole moment qre to be equal to the
experimental one.

Class I charges have been very popular historically because of the enormous speed with
which they may in principle be computed. If one is interested in obtaining atomic partial
charges for, say, 100 000 drug-like molecules (perhaps because one wants to carry out
CoMFA analyses as described in Section 9.1.2), one might well look to Class I charges
for succor. One widely used Class I approach is the partial equalization of orbital elec-
tronegativity (PEOE) method as codified by Gasteiger and Marsilli (1980). This model
assumes that the electronegativity χ of an atom type k, where types tend to be depen-
dent upon atomic number and also hybridization, is a quadratic function of the atomic
partial charge

χk = ak + bk(Zk − Qk) + ck(Zk − Qk)
2 (9.7)

where Z is the atomic number, Q is the number of electrons on the atom (thus the partial
charge q = Z − Q), and a, b, and c are parameters to be optimized.

The partial equalization of orbital electronegativity then proceeds as a convergent, iterative
process. At step 0, all atoms are assigned charges based on their atomic type (usually zero,
but possibly not if the atom is part of an intrinsically charged functional group). Then, for
each subsequent step n, electronic charge is transferred from atoms of lower electronegativity
k to atoms of higher electronegativity k′ within every bonded pair according to

�Q
(n)
k→k′ = χ

(n−1)
k′ − χ

(n−1)
k

ak + bk + ck

f n
kk′ (9.8)

where iteration numbers appearing in parentheses as superscripts are simply used for
indexing, the denominator is the electronegativity of the less electronegative atom’s cation
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(cf. Eq. (9.7)), and f is a damping factor raised to the nth power. New electronic populations
are then computed according to

Q
(n)
k = Q

(n−1)
k −

∑
k′ bonded

to k

χk′ >χk

�Q
(n)
k→k′ +

∑
k′ bonded

to k

χk>χk′

�Q
(n)
k′→k (9.9)

In the original PEOE method, the damping function f was simply taken to be the constant 0.5,
which led to practical convergence in the atomic partial charges within about five iterations.
No et al. (1990a, 1990b) subsequently proposed a modification in which different damping
factors were used for different bonds (MPEOE) and observed that this, together with some
other minor changes, gave improved charge distributions when compared to known multipole
moments. More recently, Cho et al. (2001) proposed computing the damping factor as

fkk′ = min

[
0,

(
1 − rkk′

rvdw
k + rvdw

k′

)]
(9.10)

where rkk′ is the distance between the two atoms and rvdw is a parametric van der Waals
radius. The use of Eq. (9.10) delivers geometry-dependent atomic charge (GDAC) values,
which were found to improve additionally on computed electrical moments.

Another Class I charge model that is also sensitive to geometry is the QEq charge equili-
bration model of Rappé and Goddard (1991). From representing the energy u of an isolated
atom k as a Taylor expansion in its charge truncated at second order, one can derive

uk = ũk + χkqk + 1

2
Jkkq

2
k (9.11)

where ũ is the energy of the neutral isolated atom, χ is the electronegativity (experimentally
the average of the atomic IP and EA), and J is the idempotential, which is formally equal
to IP − EA. With this formula in hand, we may write the electrostatic energy of a collection
of N atoms as

U =
N∑

k=1

(ũk + χkqk) + 1

2

N∑
k=1

N∑
k′=1

Jkk′qkqk′ (9.12)

where J is a matrix of Coulomb integrals for which we have already defined the diag-
onal elements as the idempotentials. The off-diagonal elements are computed as (aa|bb)
where a and b are STOs on the centers k and k′, respectively (thereby introducing geom-
etry dependence). QEq charges q are then determined from minimization of U subject to
the constraint that the total molecular charge remain constant. Note the close conceptual
similarities between QEq and SCC-DFTB described in Section 8.4.4.

Eq. (9.12) does not require any specification of bonding – all atoms electrically interact
with all other atoms. Sefcik et al. (2002) have combined QEq electrostatics with Morse
potentials for non-electrostatic non-bonded interactions between all atom pairs to create a
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‘connectivity-free’ force field for zeolites that provides highly realistic structural and dynamic
data for these species. Such connectivity-free force fields are in principle equally well suited
to modeling systems where bonds are being made and broken as they are to modeling stable
structures, although in practice parameter optimization for such a global force field tends to
be hampered by a scarcity of data for high-energy regions of phase space.

9.1.3.2 Class II charges

Class II charge models involve a direct partitioning of the molecular wave function into
atomic contributions following some arbitrary, orbital-based scheme. The first such scheme
was proposed by Mulliken (1955), and this method of population analysis now bears his
name. Conceptually, it is very simple, with the electrons being divided up amongst the
atoms according to the degree to which different atomic AO basis functions contribute to
the overall wave function. Starting from the expression used for the total number of electrons
in Eq. (9.3), and expanding the wave function in its AO basis set, we have

N =
electrons∑

j

∫
ψj(rj )ψj (rj )drj

=
electrons∑

j

∑
r,s

∫
cjrϕr(rj )cjsϕs(rj )drj

=
electrons∑

j


∑

r

c2
jr +

∑
r �=s

cjrcjsSrs


 (9.13)

where r and s index AO basis function ϕ, cjr is the coefficient of basis function r in MO
j , and S is the usual overlap matrix element defined in Eq. (4.18).

From the last line of Eq. (9.13), we see that we may divide the total number of electrons up
into two sums, one including only squares of single AO basis functions, the other including
products of two different AO basis functions. Clearly, electrons associated with only a
single basis function (i.e., terms in the first sum in parentheses on the r.h.s. of the last line
of Eq. (9.13)) should be thought of as belonging entirely to the atom on which that basis
function resides. As for the second term, which represents the electrons ‘shared’ between
basis functions, Mulliken suggested that one might as well divide these up evenly between
the two atoms on which basis functions r and s reside. If we follow this prescription and
furthermore divide the basis functions up over atoms k so as to compute the atomic population
Nk , Eq. (9.13) becomes

Nk =
electrons∑

j


∑

r∈k

c2
jr +

∑
r,s∈k,r �=s

cjrcjsSrs +
∑

r∈k,s /∈k

cjrcjsSrs


 (9.14)

Note that the orthonormality of basis functions of different angular momentum both residing
on the same atom k causes many terms in the second sum of Eq. (9.14) to be zero. The
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Mulliken partial atomic charge is then defined as

qk = Zk − Nk (9.15)

where Z is the nuclear charge and Nk is computed according to Eq. (9.14).
With minimal or small split-valence basis sets, Mulliken charges tend to be reasonably

intuitive, certainly in sign if not necessarily in magnitude. Analysis of changes in charge as
a function of substitution or geometric change tends to be the best use to which Mulliken
charges may be put, and this can often provide chemically meaningful insight, as illustrated
in Figure 9.3.

The use of a non-orthogonal basis set in the Mulliken analysis, however, can lead to
some undesirable results. For instance, if one divides up the total number of electrons over
AO basis functions (in a fashion exactly analogous to that used for atoms), it is possible
for individual basis functions to have occupation numbers greater than 1 (which would be
greater than 2 in a restricted theory) or less than 0, and such a situation obviously can
have no physical meaning. In addition, the rule that all shared electrons should be divided
up equally between the atoms on which the sharing basis functions reside would seem to
ignore the possibly very different electronegativities of these atoms. Finally, Mulliken partial
charges prove to be very sensitive to basis-set size, so that comparisons of partial charges
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Figure 9.3 AM1 Mulliken charges of the hydroxyl (circles) and oxonium (squares) oxygen atoms in
protonated dihydroxymethane as a function of HOCO+ dihedral angle. Standard precepts of confor-
mational analysis suggest that hyperconjugation of hydroxyl oxygen lone-pair density (acting as a
donor) into the C–O+ σ ∗ orbital (acting as an acceptor) may occur, and the effect is expected to be
maximal at a dihedral angle of 90◦, and minimal at 0◦ and 180◦. The computed Mulliken charges
on the oxygen atoms support hyperconjugation being operative, with about one-tenth of a positive
charge being transferred from the oxonium oxygen to the hydroxyl oxygen at a dihedral angle of 90◦

compared to 180◦ (an interpretation also consistent with geometric and energetic analysis, see Cramer
1992)
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from different levels of theory are in no way possible. Moreover, with very complete basis
sets, Mulliken charges have a tendency to become unphysically large.

To alleviate a number of these problems, Löwdin proposed that population analysis not
be carried out until the AO basis functions ϕ were transformed into an orthonormal set of
basis functions χ using a symmetric orthogonalization scheme (Löwdin 1970; Cusachs and
Politzer 1968)

χr =
∑

s

S−1/2
rs ϕs (9.16)

where r and s run over the total number of basis functions, and S−1/2 is the inverse of the
square root of the overlap matrix. When the MOs φ are expressed in the new orthonormal
basis set, the result is

φj =
∑

r

ajrχr

=
∑

r

∑
s

S1/2
rs cjrχr (9.17)

where the new coefficients a can be easily determined from the old coefficients c. Note that
Mulliken analysis applied with the adoption of the orthogonalized basis set has no problem
with shared electrons, because the overlap matrix in the new basis set is the unit matrix, so
all terms in the last two sums on the r.h.s. of Eq. (9.14) are zero.

Löwdin population analysis enjoys much better stability than Mulliken analysis in terms
of the predicted atomic partial charges as a function of basis set. For instance, the Mulliken
charge on the central carbon atom of the allenyl anion (C3H3

−) changes from −0.17 at the
HF/3-21G level to 2.47 when diffuse functions are added to the basis set. By contrast, the
Löwdin charge changes only from −0.09 to −0.21. Nevertheless, even Löwdin charges can
eventually become unstable with very large basis sets, although Thompson et al. (2002) have
proposed a renormalized Löwdin population analysis (RLPA) that reduces the sensitivity of
the procedure to the presence of diffuse functions.

The shortcoming in the Löwdin procedure derives from the symmetric nature of the
orthogonalization. In a very large basis set, only a few AOs are really very important, but in
the Löwdin process all AOs are distorted in a similar fashion to achieve orthonormality. A
considerably more complicated procedure for achieving orthogonality is used in the Natural
Population Analysis (NPA) scheme of Reed, Weinstock, and Weinhold (1985). Ignoring the
exact details, orthogonalization takes place in a four-step process in such a way that the
electron density around each atom is initially rendered as compact as possible, and further
diagonalization is carried out so as to preserve the shape of the strongly occupied atomic
orbitals to as large an extent as possible. Following orthogonalization, again, a Mulliken-like
analysis in the new basis gives the atomic populations with no contributions from off-diagonal
terms.

The most appealing feature of the NPA scheme is that each atomic partial charge effectively
converges to a stable value with increasing basis-set size. In comparison to other schemes,
however, including some of those yet to be discussed, NPA charges tend to be amongst the



9.1 PROPERTIES RELATED TO CHARGE DISTRIBUTION 315

largest in magnitude, which can be mildly disquieting. However, as with any population
analysis method, a focus on absolute partial atomic charges is usually much less profitable
than an analysis of trends in charge(s) as a function of some variable (see, for instance,
Gross, Seybold, and Hadad 2002).

Note that all of the Class II charge models discussed here suffer from the disadvantage of
their population analyses being orbital-based. To illustrate this point, consider a calculation
on the water molecule using an infinite basis, but one with every basis function defined so as
to be centered on the oxygen atom. Insofar as the basis set is infinite, we should be able to
obtain an arbitrarily good representation of the density, but in this case, Mulliken and Löwdin
analyses, for instance, are equivalent, and both predict that the oxygen atom charge is −2
and the hydrogen atom charges are +1, since all electrons necessarily reside on oxygen, that
being the only atom with basis functions. Nevertheless, the great speed with which Class II
charges can be computed (Mulliken charges are the fastest, followed by Löwdin, and then
by NPA) suggests that they will remain useful tools for qualitative analysis for some time
to come.

9.1.3.3 Class III charges

Rather than being determined from an (arbitrary) analysis of the wave function itself, Class
III charges are computed based on analysis of some physical observable that is calculated
from the wave function. As already noted in Section 9.1.3.1, there is an obvious relationship
that may be proposed between atomic partial charges and dipole moments in diatomics.
Cioslowski (1989) has generalized this idea for polyatomic molecules, defining the general-
ized atomic polar tensor (GAPT) charge as

qk = 1

3

(
∂µx

∂xk

+ ∂µy

∂yk

+ ∂µz

∂zk

)
(9.18)

where the quantities evaluated on the r.h.s. are the changes in the molecular dipole moment
as a function of moving atom k in each of the three Cartesian directions (the GAPT charge
is independent of coordinate system).

While GAPT charges converge quickly with respect to basis-set size, it is important to note
that a level of theory that fails to give good dipole moments (e.g., HF) is then unlikely to give
useful charges. In addition, GAPT charges are relatively expensive to compute – equivalent
to the cost of a vibrational frequency calculation, as described in Section 9.3.2.2 – and as
such they have seen only moderate use in the literature.

An alternative physical observable that has been used to define partial atomic charges
is the electron density. In X-ray crystallography, the electron density is directly measured,
and by comparison to, say, spherically symmetric neutral atoms, atomic partial charges
may be defined experimentally, following some decisions about what to do with respect to
partitioning space between the atoms (Coppens 1992). Bader and co-workers have adopted
a particular partitioning scheme for use with electronic structure calculations that defines
the atoms-in-molecules (AIM) method (Bader 1990). In particular, an atomic volume is
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H C N

Figure 9.4 Electron density gradient paths in a plane containing the atoms of the HCN molecule.
The solid lines are the intersections of the zero-flux surfaces with the plane. The large black dots are
the bond critical points

defined as that region of space including the nucleus that lies within all zero-flux surfaces
surrounding the nucleus.

To make this more clear, let us consider the electron density more closely. As already
noted in Section 8.1.1, local maxima in the density occur at the positions of the nuclei.
Now, imagine following some path outwards from the nucleus, where the direction we take is
opposite to the gradient of the density. Two possibilities exist and are illustrated in Figure 9.4
for the case of HCN. Either we will proceed outward from the molecule indefinitely, with the
density dropping off exponentially but in principle never reaching zero, or, on rare occasions,
we will come to a point where the gradient does reach zero, because it passes from a negative
value (falling back towards the nucleus we started from) to a positive value (falling towards
some other nucleus). These latter points are called ‘bond critical points’ and in AIM theory
it is their existence that defines whether a bond between two atoms exists or not. In any case,
we may define the zero-flux surface mathematically as the union of all points for which

∇ρ · n = 0 (9.19)

where ρ is the density and n is the unit vector normal to the surface. Note that to satisfy
this condition, either the gradient of the density must run along the surface itself (in which
case it is orthogonal to the unit vector) or it must be zero (i.e., the density has a critical
point). Bond critical points are minima in the density for the direction to and from the two
nuclei defining the bond, but maxima for the density within the zero-flux surface itself. Two
other kinds of critical points can exist, so-called ‘ring critical points’, which are found in the
interiors of rings and are minima in two dimensions but maxima in one, and ‘cage critical
points’, which can be found in the middle of polyhedral structures, and are local minima in
all directions.

The analysis of bond, ring, and cage critical points, and of the behavior of the electron
density in their vicinity, is a subject of considerable interest for the analysis of chemical
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structure and reactivity, but beyond the scope of this text (interested readers are directed to
Bader 1991). For our purposes, we will restrict ourselves to consideration of partial atomic
charge which, within the AIM theory, is defined as nuclear charge less the total number of
electrons residing within the atomic basin. That is

qk = Zk −
∫


k

ρ(r)dr (9.20)

where the integral is marked to indicate that it is over the spatial volume 
k encompassed
by the zero-flux surface of k.

Partial atomic charges from the AIM method are derived from a formalism that is really
quite elegant, but in practice they are of little chemical utility. At times, AIM charges can
even seem rather bizarre – for instance, saturated hydrocarbons are predicted to have weakly
positive carbon atoms and weakly negative hydrogen atoms, in disagreement with essentially
every other method for assigning partial atomic charges. This odd behavior does not derive
from any particular flaw within the methodology, but more from it being inconsistent with the
purpose to which partial charges are usually meant to be put. The problem is that the charge
within an atomic basin may be very non-uniformly distributed, as illustrated in Figure 9.5
for the methyldiazonium cation. In such an instance, the electron density may be ‘piled
up’ rather far from the nucleus, but Eq. (9.20) does not distinguish that situation from the
charge being spherically symmetric about the nucleus. In Figure 9.5, the polarization of the
molecule is such that the electronic charge associated with the basin of the terminal nitrogen
localizes predominantly in the region labeled a, while there is proportionately much less in
the region labeled b. Thus, there is a rather large local dipole moment associated with this
basin. This dipole is not well represented when only partial atomic charges are considered
and the partial atomic charge itself is obtained by simply summing the total density in the
basin with the nuclear charge. Moreover, the position of the zero-flux surface between two

C

H

N N

a b

Figure 9.5 AIM partitioning of space in a plane containing four atoms of CH3N2
+ (the other two

hydrogen atoms are symmetrically above and below the plane)
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identical atoms (e.g., the two nitrogen atoms) is very sensitive to their substitution, since
they otherwise have equal electronegativities. Small movements of the surface (e.g., when
methyl is changed to ethyl) can cause large changes in the total density assigned to each
basin, even though the density itself does not change much. This leads to unphysically large
changes in partial atomic charge that are simply artifacts if higher electrical moments in the
basins are not also taken into consideration.

The solution to this problem is to compute not simply the AIM charges, but also atomic
multipole moments (defined over the atomic basins in a fashion analogous to their definition
over all space for molecules; Laidig 1993). However, while this provides an accurate picture
of the electron density distribution, it is inconsistent with the simplification that is the goal
of using only partial atomic charges in the first place. As a rule, then, AIM partial atomic
charges should not be used for analysis without some indication that the lower atomic multi-
pole moments are quantitatively unimportant. As the necessary determinations of atomic
volumes and the integrations over them are time-consuming, AIM analysis is not an entirely
routine undertaking (Biegler-Konig and Schonbohm 2002).

Voronoi cells have also been used for the partitioning of space into atomic volumes. A
Voronoi cell is essentially defined by the volume enclosed by intersecting planes each of
which bisects the vector defined by any two neighboring atoms. Guerra et al. (2004) have
found analysis of the deformation density in Voronoi cells (i.e., the degree to which the
density differs from that expected for the unbonded atom) to provide chemically intuitive
partial atomic charges that in particular tend not to overstate ionic character, as is sometimes
the case for Bader or NPA charges. These Voronoi deformation density (VDD) charges also
prove to be largely insensitive to choice of basis set.

The final observable from which charges are typically derived is the MEP. In the field of
partial charges, the more common notation is to replace MEP with ESP, for ‘electrostatic
potential’ (and not ‘extrasensory perception’), and we will follow that convention from this
point on. The ESP is perhaps the most obvious property to reproduce if one wants partial
atomic charges that will be useful in modeling molecule–molecule interactions at short to
long range, as is the case, say, in molecular mechanics simulations (Williams 1988). All
ESP charge-fitting schemes involve determining atomic partial charges qk that, when used
as a monopole expansion according to

VESP(r) =
nuclei∑

k

qk

|r − rk| (9.21)

minimize the difference between VESP and the correct VMEP calculated according to Eq. (9.5).
Typical algorithms select a large number of points spaced evenly on a cubic grid surrounding
the van der Waals surface of the molecule. To ensure rotational invariance, a reasonable
density of points is required. The two algorithms in widest use are CHELPG (Breneman and
Wiberg 1990), which is a modification designed to improve the stability of the charges from
electrostatic potentials (CHELP) algorithm of Chirlian and Francl (1987), and the scheme of
Besler, Merz, and Kollman (1990), which is sometimes slightly less robust than CHELPG,
but usually gives very similar results.
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When ESP charges are to be used in molecular simulations for flexible molecules, it is
something of a problem to decide what to do about the conformational dependence of the
partial charges. Thus, for instance, no more than two of the three methyl hydrogen atoms
in methanol are ever symmetrically related for any reasonable conformation, so there will
always be at least two different hydrogen partial atomic charges. Since the methyl group is
freely rotating in a simulation, however, it is unreasonable to distinguish between the hydro-
gens. A modification of the ESP method advanced by Cornell et al. (1993) to address this
issue is the restrained ESP (RESP) approach, where such dilemmas are erased by fiat (Bayly
et al. 1993). Of course, if resources permit, a more accurate simulation can take account
of the conformational dependence of partial atomic charges, but such a protocol is very
rarely adopted since it is not only intrinsically expensive, but complicates force-field energy
derivatives enormously. One compromise solution is to use fixed partial charges that are
adjusted to reflect some weighted average over accessible conformations (see, for example,
Basma et al. 2001).

A more serious problem with ESP methods is that the resulting partial charges have been
shown to be ill conditioned. That is, the statistical reliability for some or many of the charges
may be very low. This problem is particularly true for atoms in molecules that are not near
the molecular surface. Wide variations in partial atomic charge for such atoms have minimal
impact on the ESP at any point, particularly if the charges for atoms nearer to the surface are
allowed to adjust slightly, so the final value from the minimization process is not particularly
meaningful (and indeed, numerical instabilities in the fitting procedure may arise in unfa-
vorable cases). For example, for two different conformations of glycerylphosphorylcholine,
the variations computed for the partial atomic charges of the carbons in the ethanolamine
bridge were about 0.5 charge units, and that for the ammonium nitrogen was 0.3 charge units.
However, use of either charge set was observed to have negligible impact on the ESP about
the functionality in question for either conformation (Francl and Chirlian 2000). While this
problem is not necessarily anything to worry about when computing intermolecular interac-
tions within a force-field calculation (if the ESP is insensitive to that partial charge, then so
is the interaction energy), to the extent intramolecular interactions are also computed using
the ESP charges, problems may develop.

9.1.3.4 Class IV charges

A hallmark of Class II and Class III charges is that they are derived from analysis of
computed wave functions and physical observables, respectively. Thus, to the extent that
an employed level of theory is in error for the particular quantity computed, the partial
charges will faithfully reflect that error. A Class IV charge, on the other hand, is one that is
derived by a semiempirical mapping of a precursor charge (either from a Class II or Class III
model), in order to reproduce an experimentally determined observable.

Charge Model 1 (CM1) was the first method developed to compute Class IV charges
(Storer et al. 1995). In this model, the input charges are Mulliken charges determined
at a semiempirical level – different CM1 mappings are available for both the AM1 and
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PM3 Hamiltonians – and the experimental observable for which the mappings were opti-
mized was the molecular dipole moment as computed from the atomic partial charges
according to

µ =

(∑

k

qkxk

)2

+
(∑

k

qkyk

)2

+
(∑

k

qkzk

)2



1/2

(9.22)

The form of the mapping itself is relatively simple, with the CM1 charge defined as

qCM1
k = q

(0)
k + Bk�qk −

∑
k′ �=k

Bkk′�qk′, (9.23)

where q
(0)
k is the input Mulliken charge, Bkk′ is the bond order between atoms k and k′, and

Bk is defined as the sum of the bond orders of atom k to all other atoms. The quantity �qk

is where the mapping comes in, and it is computed as

�qk = ckq
(0)
k + dk (9.24)

where parameters c and d are optimized for each atom k so as to minimize errors in the
predicted dipole moments. The form of Eq. (9.23) is such that (i) charge redistribution is
local (since charge is passed between atoms based on the bond order between them) and (ii)
total charge is preserved. The bond order is determined, as originally suggested by Mulliken
in conjunction with population analysis, as

Bkk′ =
∑
µ∈k

∑
ν∈k′

P 2
µν (9.25)

The CM1 models for AM1 and PM3 yield root-mean-square errors of 0.30 and 0.26 D,
respectively, in the dipole moments of 195 neutral molecules consisting of 103 molecules
containing H, C, N, and O covering variations of multiple common organic functional groups,
68 fluorides, chlorides, bromides, and iodides, 15 compounds containing H, C, Si or S, and 9
compounds containing C–S–O or C–N–O linkages. Duffy and Jorgensen have demonstrated
the utility of using CM1-AM1 partial atomic charges for arbitrary solutes in force-field
simulations (Duffy and Jorgensen 2000).

In subsequent work, Li et al. (1998, 1999) and Winget et al. (2002) defined the next
generation Charge Models 2 (CM2) and 3 (CM3), respectively. CM2 and CM3 differ from
one another for the most part only with respect to the size and diversity of the training
sets and levels of theory for which they were parameterized (CM3 is more diverse in both
instances). Both models have a common functional form that is different in several ways
from that for CM1. Most critically, in order to minimize sensitivity to basis set size at ab
initio and density functional levels of theory, Löwdin starting charges and Mayer bond orders
are used in place of their Mulliken analogs in the CM2 and CM3 charge mapping schemes.
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The Mayer (1983) bond order is defined as

Bkk′ =
∑
µ∈k

∑
ν∈k′

(PS)µν(PS)νµ (9.26)

where P and S are the usual density and overlap matrices, respectively. This definition of bond
order proves to be quite robust across a wide variety of bonding situations (for an example of
its use to settle a controversy over alternative modes of bonding in a silylpalladium complex,
see Sherer et al. 2002).

CM2 and CM3 charges are then defined as

q
CM2/CM3
k = q

(0)
k +

∑
k �=k′

Bkk′(CZkZk′ + DZkZk′ Bkk′) (9.27)

where C and D are model parameters specific to pairs of atoms (as opposed to individual
atoms, as in CM1), and charge normalization is assured simply by taking

CZkZk′ = −CZk′ Zk
and DZkZk′ = −DZk′Zk

(9.28)

CM2 and CM3 mappings have to date been defined for many different levels of theory,
including AM1, PM3, SCC-DFTB, HF, and DFT.

Table 9.1 provides several molecular dipole moments as computed by a variety of different
charge models and electronic structure methods, and compares them to experiment. The
expectation value of the dipole moment operator evaluated for MP2/6-31G(d) wave functions
has an RMS error compared to experiment of 0.21 D. The same expectation value at the HF
level shows the expected increase in error from the tendency of the HF level to overestimate
dipole moments. Dipole moments computed using Eq. (9.22) and ESP charges have about
the same accuracy as the operator expectation value (indeed, it is possible to constrain the
ESP fit so that the expectation value of the dipole moment is exactly reproduced; of course,
this is not necessarily desirable if one knows the expectation value to suffer from a systematic
error because of the level of theory). Eq. (9.22) used with either Mulliken or NPA charges
shows rather high errors. Indeed, the error associated with the NPA charges is larger than
the dispersion in the data (the dispersion is the RMS error for the simple model that assumes
every dipole moment to be 2.11 D, which is the mean of the experimental data). At the PM3
level, not only are the Mulliken charges rather bad, but the expectation value of the dipole
moment operator is not particularly good either. However, the CM1 mapping corrects for
the errors in the PM3 electronic structures sufficiently well that the RMS error for the CM1P
model is lower than that for the MP2 expectation value. The CM1 model with the AM1
Hamiltonian, the CM2 model for the BPW91/MIDI! level of theory, and the CM3 model
for a tight-binding DFT level also do well. Note also that the CMx models, the last four
columns of the table, represent the four fastest methodologies listed.

Jakalian, Jack, and Bayly (2002) have described a scheme similar in spirit to the CMn

models insofar as AM1 charges are corrected in a bond-dependent fashion. In their AM1
bond charge corrections (AM1-BCC) model, however, each bond is assigned by the chemist
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to be one of a large number of possible types, and a fixed correction determined from
having fit these parameters on a 2700-molecule test set of HF/6-31G(d) ESP charges is
applied. While this protocol is robust for most molecules, it cannot be readily applied to
structures not characterized by standard bonding, like transition states or structures along a
reaction pathway.

9.1.4 Total Spin

Well-behaved wave functions are eigenfunctions of the total spin operator S2, having eigen-
values of s(s + 1), where the quantum number s is 0 for a singlet, 1/2 for a doublet, 1 for
a triplet, etc. One sometimes sees it written that s is equal to the sum of the sz values for
all of the electrons, where sz is the expectation value of the corresponding operator Sz (spin
angular momentum along the z coordinate) and takes on values in a.u. of +1/2 for an α

electron and −1/2 for a β electron. This is incorrect, however. In fact, s is equal to the
magnitude of the vector sum of the individual electronic angular momenta, and thus s can
take on values according to

s = |nα − nβ |
2

,
|nα − nβ |

2
+ 1, . . . ,

nα + nβ

2
(9.29)

where nξ is the number of unpaired electrons of spin ξ . Thus, for instance, a system having
an α and a β electron that are not paired with one another in the same MO can be either a
singlet or a triplet (the so-called Sz = 0 triplet), reflecting the ability of s to take on values
of either 0 or 1.

As described in more detail in Appendix C, the Sz = 0 triplet cannot be expressed as a
single determinant over spin orbitals, so it cannot be represented in HF or KS theory. Of
course, this is not usually a concern, since it is trivial to construct one of the other two
degenerate representations of the triplet state (having an excess of either two α or two β

electrons), and these can be approximated as single-determinantal wave functions, so we
work with them instead. The point, however, is that one cannot arbitrarily sum together
the sz eigenvalues for all the unpaired electrons in a single determinant and assign to that
determinant a unique spin state with s equal to the sum. Unless all of the unpaired electrons
have the same spin (in which case inspection of Eq. (9.29) indicates that s can only take on
one value), a single determinant is usually a mixture of states, and any properties determined
as expectation values over that determinant reflect this mixing.

In UHF theory, the expectation value of the total spin operator over the single-
determinantal UHF wave function is computed as

〈S2〉 =
( |Nα − Nβ |

2

) ( |Nα − Nβ |
2

+ 1
)

+ min{Nα, Nβ} −
αocc.∑
i=1

βocc.∑
j=1

〈φα
i |φβ

j 〉 (9.30)

where Nξ is the total number of electrons of spin ξ and the φξ are the UHF MOs for spin
ξ . Note that if all of the ‘doubly’ occupied orbitals are identical in shape for the α and
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β electrons, then the final term on the r.h.s. will be equal to the total number of doubly
occupied orbitals, since the overlap integrals can then be computed as the Krönecker δ.
If all of the electrons having the minority spin occupy such orbitals, then the third term
on the r.h.s. will exactly cancel the second, and the wave function will be a high-spin
eigenfunction of S2 – indeed, this describes exactly the nature of an ROHF high-spin wave
function. If, on the other hand, the orbitals of the electrons of minority spin have high
amplitude in regions of space occupied to a lesser extent by electrons of the opposite spin,
then the sum of the overlap integrals will be less than the second term on the r.h.s., and
S2 will be greater than the presumably desired eigenvalue corresponding to the first term
on the r.h.s. The degree to which the expectation value exceeds this eigenvalue reflects
the spin contamination. Since the expectation value is larger than the expected value, the
deviation derives from higher spin states contaminating the UHF wave function. So-called
‘spin-projection’ techniques can be used to remove these contaminating states, as discussed
in more detail in Appendix C.

In DFT, there is no formal way to evaluate spin contamination for the (unknown)
interacting wave function. As has already been discussed in Sections 8.5.1 and 8.5.3,
however, the expectation value of S2 computed from Eq. (9.30) over the KS determinant can
nevertheless sometimes provide qualitative information about the likely utility of the DFT
results with respect to their interpretation as corresponding to a pure spin state compared to
a mixture of different spin states.

9.1.5 Polarizability and Hyperpolarizability

In Section 9.1.1, we discussed the molecular dipole moment as a measure of the inhomo-
geneity of the charge distribution. The dipole moment for an isolated molecule in a vacuum,
which corresponds to that which would be computed in a typical electronic structure calcu-
lation, is often referred to as the ‘permanent’ electric dipole, µ0. However, if an electric field
E is applied to the molecule, since the charge distribution interacts with the electric field
through a new term in the Hamiltonian, the dipole moment will change. The magnitude of
that change per unit of electric field strength defines the electric polarizability α, i.e.,

α = ∂µ

∂E
(9.31)

Note that since both µ and E are vector quantities, α is a second-rank tensor. The elements
of α can be computed through differentiation of Eqs. (9.1) and (9.2). The difference between
the permanent electric dipole moment and that measured in the presence of an electric field
is referred to as the ‘induced’ dipole moment.

Experimentally, the dipole moment is usually determined by measuring the change in
energy for a molecule when an electric field is applied – the so-called Stark effect. At low
electric-field strength, the energy change is linear in field strength, and the slope of the
line is the permanent electric dipole moment. At larger field strengths, the energy change
becomes quadratic because the dipole moment begins to increase proportional to the polar-
izability, and this permits measurement of that quantity. For still larger field strengths, a
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cubic contribution to the energy change can be measured (although technically it becomes
increasingly challenging to fit the data reliably) and this change can be used to define the
first hyperpolarizability, β (now a third-rank tensor).

It is possible to generalize this discussion in a useful way. Spectral measurements invari-
ably assess how a molecular system changes in energy in response to some sort of external
perturbation. The example presently under discussion involves application of an external
electric field. If we write the energy as a Taylor expansion in some generalized vector
perturbation X, we have

E(X) = E(0) + ∂E

∂X

∣∣∣∣
X=0

· X + 1

2!

∂2E

∂X2

∣∣∣∣
X=0

· X2 + 1

3!

∂3E

∂X3

∣∣∣∣
X=0

· X3 + · · · (9.32)

Thus, Eq. (9.32) makes more clear the measurement of the Stark effect, for instance. At
low electric field strengths, the only expansion term having significant magnitude involves
the first derivative, and it defines the permanent dipole moment. At higher field strengths, the
second derivative term begins to be noticeable, and it contributes to the energy quadratically
and defines the polarizability. Finally, we see naturally how additional terms in the Taylor
expansion can be used to define the first hyperpolarizability, the second hyperpolarizability
γ , etc. (Note that conventions differ somewhat on whether the 1/n! term preceding the
corresponding nth derivative term is included in the value of the physical constant or not, so
that care should be exercised in comparing values reported from different sources to ensure
consistency in this regard.)

Analogous quantities to the electric moments can be defined when the external perturbation
takes the form of a magnetic field. In this instance the first derivative defines the permanent
magnetic moment (always zero for non-degenerate electronic states), the second derivative
the magnetizability or magnetic susceptibility, etc.

Equation (9.32) is also useful to the extent it suggests the general way in which various
spectral properties may be computed. The energy of a system represented by a wave function
is computed as the expectation value of the Hamiltonian operator. So, differentiation of the
energy with respect to a perturbation is equivalent to differentiation of the expectation value
of the Hamiltonian. In the case of first derivatives, if the energy of the system is minimized
with respect to the coefficients defining the wave function, the Hellmann–Feynman theorem
of quantum mechanics allows us to write

∂

∂X
〈�|H|�〉 =

〈
�|∂H

∂X
|�

〉
(9.33)

Note that H here is the complete Hamiltonian, that is, it presumably includes new terms
dependent on the nature of X. It is occasionally the case that the integral on the r.h.s. of
Eq. (9.33) can be readily evaluated. Indeed, it is choice of X = E that leads to the definition
of the dipole moment operator presented in Eq. (9.1).

However, even when it is not convenient to solve the integral on the r.h.s. of Eq. (9.33)
analytically, or when Eq. (9.33) does not hold because the wave function is not variationally
optimized, it is certainly always possible to carry out the differentiation numerically. That
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is, one can compute the energy in the absence of the perturbation, then modify the Hamil-
tonian to include the perturbation (e.g., introduce an electric-field term), then compute the
property as

∂

∂X
〈�|H|�〉 = lim

X→0

〈�|H|�〉 − 〈�|H(0)|�〉
X

(9.34)

where H is again the complete Hamiltonian and H(0) is the perturbation-free Hamiltonian.
This procedure is called the ‘finite-field’ approach. In practice, one must take some care to
ensure that computed values are numerically converged (a balance must be struck between
using a small enough value of the perturbation that the limit holds but a large enough value
that the numerator does not suffer from numerical noise).

Note that Eq. (9.34) can be generalized for higher derivatives, but numerical stability now
becomes harder to achieve. Moreover, the procedure can be rather tedious, since in practice
one must carry out a separate computation for each component associated with properties that
are typically tensors. It is computationally much more convenient when analytic expressions
can be found that permit direct calculation of these higher-order derivatives in a fashion that
generalizes the procedure by which Eq. (9.33) is derived (not shown here).

As for the utility of different levels of theory for computing the polarizability and hyper-
polarizability, the lack of high-quality gas-phase experimental data available for all but the
smallest of molecules makes comparison between theory and experiment rather limited. As
a rough rule of thumb, ab initio HF theory seems to do better for these properties than
for dipole moments – at least there does not appear to be any particular systematic error.
Semiempirical levels of theory are less reliable. DFT and correlated levels of MO theory do
well, but it is not obvious for the latter that the improvement over HF necessarily justifies
the cost, at least for routine purposes.

9.1.6 ESR Hyperfine Coupling Constants

When a molecule carries a net electronic spin, that spin interacts with the (non-zero) spins of
the individual nuclei. The energy difference between the two possibilities of the electronic and
nuclear spins being either aligned or opposed in the z direction can be measured by electron
spin resonance (ESR) spectroscopy and defines the isotropic hyperfine splitting (h.f.s.) or
hyperfine coupling constant. If we were to pursue computation of this quantity using the
approach outlined in the last section, we would modify the Hamiltonian to introduce a spin
magnetic dipole at a particular nuclear position. The integral that results when Eq. (9.33) is
used to evaluate the necessary perturbation is known as a Fermi contact integral. Isotropic
h.f.s. values are determined as

aX = (4π/3)〈Sz〉−1ggXββXρ(X) (9.35)

where 〈Sz〉 is the expectation value of the operator Sz (1/2 for a doublet, 1 for a triplet,
etc.), g is the electronic g factor (typically taken to be 2.0, the approximate value for a free
electron), β is the Bohr magneton, gX and βX are the corresponding values for nucleus X,
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and ρ(X) is the Fermi contact integral which, when the wave function can be expressed as
a Slater determinant, can be computed as

ρ(X) =
∑
µν

P α−β
µν ϕµ(rX)ϕν(rX) (9.36)

where Pα−β is the one-electron spin-density-difference matrix (computed as the difference
between the two separate density matrices for the α and β electrons), and evaluation of the
overlap between basis functions ϕµ and ϕν is only at the nuclear position, rX.

We have previously defined the one-electron spin-density matrix in the context of stan-
dard HF methodology (Eq. (6.9)), which includes semiempirical methods and both the UHF
and ROHF implementations of Hartree–Fock for open-shell systems. In addition, it is well
defined at the MP2, CISD, and DFT levels of theory, which permits straightforward compu-
tation of h.f.s. values at many levels of theory. Note that if the one-electron density matrix
is not readily calculable, the finite-field methodology outlined in the last section allows
evaluation of the Fermi contact integral by an appropriate perturbation of the quantum
mechanical Hamiltonian.

For Eq. (9.35) to be useful the density matrix employed must be accurate. In particular,
localization of excess spin must be well predicted. ROHF methods leave something to be
desired in this regard. Since all doubly occupied orbitals at the ROHF level are spatially
identical, they make no contribution to Pα−β ; only singly occupied orbitals contribute. As
discussed in Section 6.3.3, this can lead to the incorrect prediction of a zero h.f.s. for all
atoms in the nodal plane(s) of the singly occupied orbital(s), since their interaction with the
unpaired spin(s) arises from spin polarization. In metal complexes as well, the importance
of spin polarization compared to the simple analysis of orbital amplitude for singly occupied
molecular orbitals (SOMOs) has been emphasized (Braden and Tyler 1998).

UHF, on the other hand, does optimize the α and β orbitals so that they need not be
spatially identical, and thus is able to account for both spin polarization and some small
amount of configurational mixing. As a result, however, UHF wave functions are generally
not eigenfunctions of the operator S2, but are contaminated by higher spin states.

The challenge with unrestricted methods is the simultaneous minimization of spin ‘contam-
ination’ and accurate prediction of spin ‘polarization’. The projected UHF (PUHF, see
Appendix C) spin density matrix can be employed in Eq. (9.36), usually with somewhat
improved results.

A complicating factor is that each spin density matrix element is multiplied by the
corresponding basis function overlap at the nuclear positions. The orbitals having maximal
amplitude at the nuclear positions are the core s orbitals, which are usually described with
less flexibility than valence orbitals in typical electronic structure calculations. Moreover,
actual atomic s orbitals are characterized by a cusp at the nucleus, a feature accurately
modeled by STOs, but only approximated by the more commonly used GTOs. As a result,
there are basis sets in the literature that systematically improve the description of the core
orbitals in order to improve prediction of h.f.s., e.g. IGLO-III (Eriksson et al. 1994) and
EPR-III (Barone 1995).
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Figure 9.6 P-containing radicals for which experimental ESR data are available

A considerable body of data exists for the evaluation of different methods with respect
to computing h.f.s. values. One particularly interesting data set is composed of 25 different
radicals all of which contain one phosphorus atom (Figure 9.6). The experimental data that
have been taken for this set, primarily as condensed-phase measurements, include 20 isotropic
h.f.s. values for 31P, 8 for 19F, 7 for 35Cl, and 5 for 1H, spanning a range of about 1650 G.
Cramer and co-workers (Cramer and Lim 1994; Lim et al. 1996) and Nguyen, Creve, and
Vanquickenborne (1997) have examined the accuracy of a number of different levels of
theory over these data, primarily using the 6-311G(d,p) basis set.

When geometries optimized at the MP2/6-31G(d,p) were employed, the mean unsigned
errors at the ROHF, UHF, PUHF, and MP2 levels of theory were 35.8, 45.6, 24.8, and
21.1 G, respectively. ROHF theory is more accurate than UHF theory in this case, presum-
ably owing to moderate spin contamination in the latter. Projecting out the spin contamination
at the PUHF level reduces the error by almost one half, while going to second-order pertur-
bation theory (which introduces electron correlation and also probably reduces the spin
contamination compared to UHF) provides an improvement of about the same order.
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Of these four levels, the computation of the MP2 spin-density matrix is considerably
more time-consuming than the other three. It is thus of interest to examine the accuracy of
DFT methods, which by construction include electron correlation directly into their easily
computed spin-density matrices. For the same geometries, the mean unsigned errors for
the BVWN, BLYP, B3P86, and B3LYP levels of theory were 32.6, 32.6, 29.7, and 28.9 G.
Somewhat surprisingly, these errors increased in every case when geometries were optimized
at the corresponding DFT level, to 60.5, 54.4, 30.9, and 34.3 G. For this particular data
set, several of the radicals seem prone to the DFT overdelocalization problem noted in
Section 8.5.6. Guerra (2000) has shown similarly poor performance of the B3LYP functional
in the context of vinylacyl radicals, where the functional strongly overestimates the stability
of π delocalized radicals relative to σ alternatives, in contravention of experimental data.

In cases where overdelocalization is not a problem, however, DFT methods have proven
to be quite robust for computing h.f.s. constants. For instance, Adamo, Cossi, and Barone
(1999) have reported results for h.f.s. constants in the methyl radical using PW, B3LYP, and
PBE1PBE that are competitive with correlated MO methods (Chipman 1983; Cramer 1991;
Barone et al. 1993). Moreover, if a given system suffers from heavy spin contamination at
the UHF level of theory, DFT may be the only reasonable recourse.

In general, then, DFT methods provide the best combination of accuracy and efficiency so
long as overdelocalization effects do not poison their performance. The MP2 level of theory
also provides a reasonably efficient way of carrying out h.f.s. calculations at a correlated
level of theory. More highly correlated levels of MO theory are generally more accurate,
but can be prohibitively expensive in large systems.

As a final note, although we have focused here on the computation of isotropic h.f.s. values,
it is also straightforward to compute anisotropic hyperfine couplings, although these cannot
be observed experimentally unless the system can be prevented from random tumbling (e.g.,
by freezing in a matrix or single crystal). Similarly, it is possible to calculate the electronic
g value. These subjects are beyond the scope of the text, however, and interested readers
are referred to relevant titles in the bibliography.

9.2 Ionization Potentials and Electron Affinities

As the general utility of semiempirical, HF, and DFT methods for the computation of IPs
and EAs has already been discussed in some detail in Sections 5.6.1, 6.4.1, and 8.6.1, this
section is restricted to a very brief recapitulation of the most important points relative to
these properties.

Koopmans’ theorem suggests that the ionization energies for any orbital (usually ‘IP’
refers specifically to the ionization potential associated with the HOMO) will be equal to the
negative of the eigenvalue of that orbital in HF theory. This provides a particularly simple
method for estimating IPs, and because of canceling errors in basis-set incompleteness and
failure to adequately account for electron correlation, the approach works reasonably well
for the occupied orbitals in the highest energy range in ab initio HF wave functions (with
semiempirical methods, performance is spottier). However, as one ionizes from orbitals
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that are lower in energy, relaxation effects become large, and Koopmans’ approximation
breaks down.

A more rigorous alternative, at least in formulation, is to explicitly calculate the energy
of the radical cation resulting from ionization, either at the neutral geometry (in which case
the energy difference with the neutral is the vertical IP) or at its own optimized geometry
(in which case the energy difference with the neutral is the adiabatic IP). However, in order
to obtain reasonable accuracy with this so-called �SCF approach, it is critical to employ
a level of theory capable of accurately capturing the differential correlation energies in
these systems having different numbers of electrons. It must be noted, incidentally, that
Koopmans’ approximation should really be regarded only as an approach to the vertical
IP – good agreement with adiabatic IPs when it occurs is purely fortuitous insofar as neither
electronic nor geometric relaxation effects are accounted for in any way.

In DFT, Koopmans’ theorem does not apply, but the eigenvalue of the highest KS orbital
has been proven to be the IP if the functional is exact. Unfortunately, with the prevailing
approximate functionals in use today, that eigenvalue is usually a rather poor predictor of
the IP, although use of linear correction schemes can make this approximation fruitful.
�SCF approaches in DFT can be successful, but it is important that the radical cation not
be subject to any of the instabilities that can occasionally plague the DFT description of
open-shell species.

Koopmans’ theorem also implies that the eigenvalue associated with the HF LUMO may
be equated with the EA. However, in the case of EAs errors associated with basis set incom-
pleteness and differential correlation energies do not cancel, but instead they reinforce one
another, and as a result EAs computed by this approach are usually entirely untrustworthy.

Although �SCF methods are more likely to be successful, it is critical that diffuse functions
be included in the basis set so that the description of the radical anion is adequate with respect
to the loosely held extra electron. In general, correlated methods are to be preferred, and
DFT represents a reasonably efficient choice that seems to be robust so long as the radical
anion is not subject to overdelocalization problems. Semiempirical methods do rather badly
for EAs, at least in part because of their use of minimal basis sets.

9.3 Spectroscopy of Nuclear Motion

Within the context of the Born–Oppenheimer approximation, the potential energy surface
may be regarded as a ‘property’ of an empirical molecular formula. With a defined PES, it
is possible to formulate and solve Schrödinger equations for nuclear motion (as opposed to
electronic motion) [

−
N∑
i

1

2mi

∇2
i + V (q)

]
�(q) = E�(q) (9.37)

where N is the number of atoms, m is the atomic mass, V is the potential energy from
the PES as a function of the 3N nuclear coordinates q, and � is the nuclear wave function
that is expressed in those coordinates. Solution of Eq. (9.37) provides entry into the realms
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of rotational and vibrational spectroscopy. The following subsections describe the relevant
theory and detail the applicability of different methodologies for such computations.

9.3.1 Rotational

The simplest approach to modeling rotational spectroscopy is the so-called ‘rigid-rotor’
approximation. In this approximation, the geometry of the molecule is assumed to be constant
at the equilibrium geometry qeq. In that case, V (qeq) in Eq. (9.37) becomes simply a multi-
plicative constant, so that we may write the rigid-rotor rotational Schrödinger equation as

−
N∑
i

1

2mi

∇2
i �(q) = E�(q) (9.38)

where E0, the eigenvalue for Eq. (9.38) corresponding to the lowest-energy rotational state,
is taken to be the electronic energy for the equilibrium geometry.

Equation (9.38), if restricted to two particles, is identical in form to the radial component
of the electronic Schrödinger equation for the hydrogen atom expressed in polar coordi-
nates about the system’s center of mass. In the case of the hydrogen atom, solution of the
equation is facilitated by the simplicity of the two-particle system. In rotational spectroscopy
of polyatomic molecules, the kinetic energy operator is considerably more complex in its
construction. For purposes of discussion, we will confine ourselves to two examples that are
relatively simple, presented without derivation, and then offer some generalizations there-
from. More advanced treatises on rotational spectroscopy are available to readers hungering
for more.

The simplest possible case is a non-homonuclear diatomic (non-homonuclear because a
dipole moment is required for a rotational spectrum to be observed). In that case, solution of
Eq. (9.38) is entirely analogous to solution of the corresponding hydrogen atom problem, and
indicates the eigenfunctions � to be the usual spherical harmonics Ym

J (θ, φ), with eigenvalues
given by

EJ = J (J + 1)h̄2

2I
(9.39)

where the moment of inertia I about a given axis is defined as

I =
nuclei∑

k

mkr
2
k (9.40)

In the special case of a heteronuclear diatomic, rotation occurs exclusively about a single
axis passing through the center of mass and perpendicular to the bond, and I is simply µr2

eq,
where the reduced mass µ is computed as

µ = m1m2

m1 + m2
(9.41)
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Because the wave functions are the spherical harmonics, each rotational level is (2J + 1)-
fold degenerate (over the quantum number m); note that the lowest rotational level has a
rotational energy of zero, consistent with the earlier statement that the total energy associated
with this level is just the electronic energy of the equilibrium structure. Selection rules dictate
that transitions occur only between adjacent levels, i.e., �J = ±1 (see Section 14.5), in
which case the energy change observed for transition from level J to level J + 1 is

�E = {(J + 1)[(J + 1) + 1] − J (J + 1)}h̄2

2I

= 2(J + 1)h̄2

2I
(9.42)

When probed spectroscopically, the absorption frequency ν can be determined as

νJ = �E

h

= 2(J + 1)h̄2

2hI

= 2(J + 1)B (9.43)

where B, the molecular rotational constant, is

B = h

8π2I
(9.44)

Non-linear molecules are more complicated than linear ones because they are characterized
by three separate moments of inertia. In highly symmetric cases, however, relatively simple
solutions of Eq. (9.38) continue to exist. For instance, in molecules possessing an axis of
rotation that is three-fold or higher in symmetry, the two moments of inertia for rotation
about the two axes perpendicular to the high-symmetry axis will be equal. For example, in
fluoromethane, which is C3ν , there is one moment of inertia, IA, about the symmetry axis
A, and there are two equal moments of inertia, IB and IC, about the axes perpendicular to
axis A. In this particular case, the magnitude of the latter two moments is larger than that
of the former moment because the heavy atoms have displacements of 0 from axis A but
not from the other two, and such a molecule is called a prolate top. In the case of a prolate
top, the rotational eigenvalues are given by

EK
J = J (J + 1)h̄2

2IB

+ K2
(

1

IA
− 1

IB

)
h̄2

2
(9.45)

where K is the quantum number, running over −J , −J + 1, . . ., J−1, J , expressing the
component of the angular momentum along the highest symmetry axis. The selection rules
for a rotational transition in this case are �J = ±1 and �K = 0, and thus Eqs. (9.43) and
(9.44) continue to be valid for absorption frequencies using I = IB.
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Less symmetric molecules require a considerably more complicated treatment, but in
the end their spectral transitions are functions of their three moments of inertia (see
Section 10.3.5). From a computational standpoint, then, prediction of rotational spectral lines
depends only on the moments of inertia, and hence only on the molecular geometry. Thus,
any method which provides good geometries will permit an accurate prediction of rotational
spectra within the regime where the rigid-rotor approximation is valid.

Since even very low levels of theory can give fairly accurate geometries, rotational spectra
are quite simple to address computationally, at least over low rotational quantum numbers.
For higher-energy rotational levels, molecular centrifugal distortion becomes an issue, and
more sophisticated solutions of Eq. (9.37) are required.

9.3.2 Vibrational

When thinking about chemical thermodynamics and kinetics, it is a convenient formalism
to picture a molecule as being a ball rolling on a potential energy surface. In this simple
model, the exact position of the ball determines the molecular geometry and the potential
energy, and its speed as it rolls in a frictionless way determines its kinetic energy. Of
course, quantum mechanical particles are different than classical ones in many ways; one
of the more important differences is that they are subject to the uncertainty principle. One
consequence of the uncertainty principle is that polyatomic molecules, even at absolute zero,
must vibrate – within the simple ball and surface picture, the ball must always be moving,
with a sum of potential and kinetic energy that exceeds the energy of the nearest minimum
by some non-zero amount. This energy is contained in molecular vibrations.

Transitions in molecular vibrational energy levels typically occur within the IR range
of the frequency spectrum. Because vibrational motions tend to be highly localized within
molecules, and the energy spacings associated with individual linkages tend to be reason-
ably similar irrespective of remote molecular functionality, IR spectroscopy has a long
history of use in structure determination. Vibrational frequencies also have other impor-
tant uses, for example in kinetics (Section 14.3) and computational geometry optimization
(Section 2.4.1), so their accurate prediction has been a long-standing computational goal.
We now examine different approaches towards that goal, and the utility of different levels
of theory in application.

9.3.2.1 One-dimensional Schrödinger equation

It is again useful to begin with the simplest possible case, the diatomic molecule.
Equation (9.37), when restricted to the vibrational motion alone, is clearly a function of
only a single variable, the interatomic distance r . Solutions of differential equations of only
a single variable are typically reasonably straightforward. Our only challenge here is that
we do not know exactly what the potential energy function V looks like as a function of
r . Given a level of theory, however, we can compute V point by point to an arbitrary
level of fineness (i.e., simply compute the electronic energy of the system for various fixed
values of r). Those points may then be fit to any convenient analytic function – polynomial,
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Figure 9.7 Vibrational energy levels determined from solution of the one-dimensional Schrödinger
equation for some arbitrary variable θ (some higher levels not shown). In addition to the energy levels
(horizontal lines across the potential curve), the vibrational wave functions are shown for levels 0 and
3. Conventionally, the wave functions are plotted in units of (probability)1/2 with the same abscissa
as the potential curve and an individual ordinate having its zero at the same height as the location of
the vibrational level on the energy ordinate – those coordinate systems are explicitly represented here.
Note that the absorption frequency typically measured by infrared spectroscopy is associated with the
0 → 1 transition, as indicated on the plot. For the harmonic oscillator potential, all energy levels are
separated by the same amount, but this is not necessarily the case for a more general potential

Morse, etc. – and the one-dimensional Schrödinger equation solved using standard numerical
recipes to yield eigenfunctions and eigenvalues. A typical representation of the results from
such a calculation is provided in Figure 9.7. Assuming a high level of theory is used in the
generation of V , very high accuracy can be achieved for the energies of all of the vibrational
levels, and hence for the energies of transition between them.

In a more complicated polyatomic molecule, Eq. (9.37) is a function of 3N variables
(now including translation and rotation in the overall motion), for instance, the x, y, and
z coordinates of each atom in some laboratory frame. If N is more than a very small
number of atoms, however, it becomes quite tedious to generate V pointwise as a func-
tion of all of these variables. Moreover, neither the fitting of V to an analytic form nor
the solution of the resulting multi-dimensional differential equation is at all trivial, so the
approach described above for diatomics is rarely used to compute vibrational data for larger
molecules. The exception is in certain instances of high symmetry, where group theory may
sometimes be used to reduce the dimensionality of the problem by separating vibrational
coordinates according to their irreducible representations. Such efforts are not, however,
routine.
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One way to simplify the problem is to recognize that most chemical systems of interest are
at sufficiently low temperature that only their lowest vibrational levels are significantly popu-
lated. Thus, from a spectroscopic standpoint, only the transition from the zeroth vibrational
level to the first is observed under normal conditions, and so it is these transitions that we are
most interested in predicting accurately. Another way of thinking about this situation is that
we are primarily concerned only with regions of the PES relatively near to the minimum,
since these are the regions sampled by molecules in their lowest and first excited vibrational
states. Once we restrict ourselves to regions of the PES near minima, we may take advantage
of Taylor expansions to simplify our construction of V .

9.3.2.2 Harmonic oscillator approximation

Let us consider again our simple diatomic case. Using Eq. (2.2) for the potential energy from
a Taylor expansion truncated at second order, Eq. (9.37) transformed to internal coordinates
becomes [

− 1

2µ

∂2

∂r2
+ 1

2
k(r − req)

2
]

�(r) = E�(r) (9.46)

where µ is the reduced mass from Eq. (9.41), r is the bond length, and k is the bond force
constant, i.e., the second derivative of the energy with respect to r at req (see Eq. (2.1)). Eq.
(9.46) is the quantum mechanical harmonic oscillator equation, which is typically considered
at some length in elementary quantum mechanics courses. Its eigenfunctions are products of
Hermite polynomials and Gaussian functions, and its eigenvalues are

E =
(
n + 1

2

)
hω (9.47)

where n is the vibrational quantum number and

ω = 1

2π

√
k

µ
(9.48)

The selection rules for the QM harmonic oscillator permit transitions only for �n =
±1 (see Section 14.5). As Eq. (9.47) indicates that the energy separation between any two
adjacent levels is always hω, the predicted frequency for the n = 0 to n = 1 absorption
(or indeed any allowed absorption) is simply ν = ω. So, in order to predict the stretching
frequency within the harmonic oscillator equation, all that is needed is the second derivative
of the energy with respect to bond stretching computed at the equilibrium geometry, i.e.,
k. The importance of k has led to considerable effort to derive analytical expressions for
second derivatives, and they are now available for HF, MP2, DFT, QCISD, CCSD, MCSCF
and select other levels of theory, although they can be quite expensive at some of the more
highly correlated levels of theory.

Prior to proceeding, it is important to address the errors introduced by the harmonic
approximation. These errors are intrinsic to the truncation of the Taylor expansion, and will
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remain even for an exact level of electronic structure theory. The most critical difference is
that real bonds dissociate as they are stretched to longer and longer values. Thus, as indicated
in Figure 9.7, the separation between vibrational levels narrows with increasing vibrational
quantum number, and the total number of levels is finite. By contrast, the harmonic oscillator
has an infinite number of levels, all equally spaced.

While the differences between the harmonic oscillator approximation and the true system
are largest for higher vibrational levels, even at very short distances beyond the equilibrium
bond length the true potential energy of the bond stretch curve is lower than that predicted
by the parabolic potential of the harmonic approximation. Since the more shallow correct
potential generates a lower vibrational frequency than that associated with the parabola, this
means that an ‘exact’ harmonic frequency will always be greater than the true frequency.
Over the few data available for diatomics that are sufficiently complete so that the PES can
be constructed and harmonic frequencies inferred, the difference averages about 3%. Any
level of theory that exceeds this accuracy using the harmonic approximation is presumably
simply benefiting from a fortuitous cancellation of errors.

What about the polyatomic case? In that case, we must carry out a multi-dimensional
Taylor expansion analogous to Eq. (2.26). This leads to the multi-dimensional analog of
Eq. (9.46) [

−
3N∑
i

1

2mi

∂2

∂x2
i

+ 1

2
(x − xeq)

†H(x − xeq)

]
�(x) = E�(x) (9.49)

where x is the vector of atomic coordinates, xeq defines the equilibrium structure, and H is
the Hessian matrix defined by Eq. (2.37).

While Eq. (9.49) has a well-defined potential energy function, it is quite difficult to solve
in the indicated coordinates. However, by a clever transformation into a unique set of
mass-dependent spatial coordinates q, it is possible to separate the 3N -dimensional Eq. (9.49)
into 3N one-dimensional Schrödinger equations. These equations are identical to Eq. (9.46)
in form, but have force constants and reduced masses that are defined by the action of the
transformation process on the original coordinates. Each component of q corresponding to a
molecular vibration is referred to as a ‘normal mode’ for the system, and with each compo-
nent there is an associated set of harmonic oscillator wave functions and eigenvalues that
can be written entirely in terms of square roots of the force constants found in the Hessian
matrix and the atomic masses.

Note that because Eq. (9.49) is over the full 3N coordinates, the transformed coordinate
system q includes three translational and three rotational (two for linear molecules) ‘modes’.
The eigenvalues associated with these modes are typically very close to zero, and indeed,
the degree to which they are close to zero can be regarded as a diagnostic of how well
optimized the structure is in terms of being at the local minimum geometry.

A few last technical points merit some discussion prior to an assessment of the relative
utilities of different theoretical levels for prediction of IR spectra. First, note that the first
derivatives in the Taylor expansion disappear only when the potential is expanded about a
critical point on the PES (since then the gradients are all zero). Thus, the form of Eq. (9.49)
is not valid if the level of theory used in the computation of the Hessian matrix differs from
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that used for geometry optimization, since the two different levels of theory will almost
inevitably have different minimum energy structures. Put more succinctly, there is little
value in a frequency calculation for a particular geometry under the harmonic oscillator
approximation unless the geometry in question was optimized at the same level of theory.
(Note that mathematically one could certainly include the gradient term in the potential in
Eq. (9.49), but the resulting differential equation is not worth working with.)

Another interesting point in this regard is that the form of Eq. (9.49) is valid for other
stationary points that are not minima on the PES. However, in this instance there will be one
or more normal mode force constants that will be negative, corresponding to motion along
modes that lead to energy lowering. Insofar as the frequencies are computed from the square
roots of the force constants, this leads to an imaginary frequency (one often sees these called
negative frequencies in the literature, but this is simply sloppy). Frequency calculations thus
are diagnostic as to the nature of stationary points. All positive frequencies implies a (local)
minimum, one imaginary frequency implies a transition state structure, and two or more
imaginary frequencies refers to stationary points characterized by additional negative force
constants. Such structures are sometimes useful in searching for TS structures by following
the various energy-lowering modes, but they have no chemical significance.

The utility of Eq. (9.49) depends on the ease with which the Hessian matrix may be
constructed. Methods that allow for the analytic calculation of second derivatives are obvi-
ously the most efficient, but if analytic first derivatives are available, it may still be worth
the time required to determine the second derivatives from finite differences in the first
derivatives (where such a calculation requires that the first derivatives be evaluated at a
number of perturbed geometries at least equal to the number of independent degrees of
freedom for the molecule). If analytic first derivatives are not available, it is rarely practical
to attempt to construct the Hessian matrix.

A technical point in this regard with respect to DFT is that when one refers to
‘analytic’ derivatives, what is actually meant is analytic derivatives to the quadrature
schemes that are used to approximate the solution of the complicated integrals defining the
exchange-correlation energy; analytic solutions to these integrals are not in general available,
and hence neither are their derivatives. In practice, failure to converge the quadrature schemes
has a considerably larger effect on second derivatives than it does on energies, and it is not
uncommon to see potentially rather large changes in computed vibrational frequencies when
switching from default to more dense quadrature-point densities (sometimes also called
‘grid’ densities) in standard electronic-structure packages. This effect can be particularly
troubling with low frequencies, since the error can cause the frequencies to switch from
real to imaginary and vice versa, and some care should be exercised where such issues are
important.

With respect to absolute accuracy, Table 9.2 provides the mean unsigned errors in harmonic
vibrational frequencies for a number of levels of theory over the 32 molecules in the
reduced G2 test set. HF theory shows the poorest performance (AM1 and PM3 are in
general somewhat worse than HF with a moderate basis set, however data are not available
for this particular test set). MP2 shows significant improvement over HF, but substantial
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Table 9.2 Mean absolute errors in harmonic
vibrational frequencies over a 32-molecule
G2 subset (cm−1)a

Level of theory Error

MO theoretical methods
HF/6-311G(3df,2p) 144
MP2/6-31G(d,p) 99
CCSD(T)/6-311G(3df,2p) 31

LSDA functionals
SVWN/6-31G(d,p) 75

GGA functionals
BLYP/6-311G(d,p) 59
BPW91/6-311G(d,p) 69
PWPW91/6-311G(d,p) 66
mPWPW91/6-311G(d,p) 66

Hybrid functionals
BH&HLYP/6-311G(d,p) 100
B1LYP/6-311G(d,p) 33
B1PW91/6-311G(d,p) 48
mPW1PW91/6-311G(d,p) 39
B3LYP/6-311G(d,p) 31
B3PW91/6-311G(d,p) 45
mPW3PW91/6-311G(d,p) 37

aTest set includes 32 molecules containing only
first-row atoms, see Johnson, Gill, and Pople
(1993). Data from Adamo and Barone (1998).

error remains. CCSD(T) and some of the hybrid levels of density functional theory show
the highest accuracies. In general, the BLYP combination seems to be more accurate than
BPW91, whether pure or hybrid in formulation, but PWPW91 is nearly as accurate as BLYP,
again whether pure or hybrid in formulation.

Of some interest in the error analysis is the degree to which the error is systematic.
Although HF errors are large, they are very systematic. HF overemphasizes bonding, so
all force constants are too large, and thus so are all frequencies. However, application of
a constant scaling factor to the HF frequencies improves their accuracy enormously (Pople
et al. 1993). Scott and Radom studied this issue in detail for eight different levels of theory
using a database of 122 molecules and 1066 fundamentals (i.e., measured, anharmonic vibra-
tional frequencies) and a summary of their results, together with a few other recommended
scaling factors, is provided in Table 9.3 (Scott and Radom 1996; see also, Wong 1996). Note
that even though the scale factor required for the HF/6-31G(d) level of theory is substan-
tial, reducing every frequency by more than 10%, the final accuracy is quite high – better
than the considerably more expensive MP2. Note also that the pure DFT functional BLYP
requires essentially no scaling, i.e., its errors are random about the experimental values,
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Table 9.3 Scale factors and post-scaling errors in vibrational frequencies from different
levels of theorya

Level of theory Scale factor RMS error (cm−1) Outliers (%)b

AM1 0.9532 126 15
PM3 0.9761 159 17
HF/3-21G 0.9085 87 9
HF/6-31G(d) 0.8953 50 2
HF/6-31G(d,p) 0.8992 53 3
HF/6-311G(d)c 0.9361 32
HF/6-311G(d,p) 0.9051 54 3
HF/LANL2DZc 0.9393 49
MP2/6-31G(d) 0.9434 63 4
MP2/6-31G(d,p)d 0.9646
MP2/pVTZe 0.9649 70
QCISD/6-31G(d) 0.9537 37 2
BLYP/6-31G(d) 0.9945 45 2
BLYP/6-311G(d)c 1.0160 38
BLYP/LANL2DZc 1.0371 47
BP86/6-31G(d) 0.9914 41 2
B3LYP/6-31G(d) 0.9614 34 1

0.9664f 46
0.9800g

B3LYP/6-311G(d)c 0.9739 38
B3LYP/pVTZd 0.9726 42
B3LYP/6-311+G(3df,2p)g 0.9890
B3LYP/6-311++G(3df,3pd)f 0.9542 31
B3LYP/LANL2DZc 0.9978 45
B3PW91/6-31G(d) 0.9573 34 2
B3PW91/pVTZd 0.9674 43
VSXC/6-31G(d) 0.9659 48
VSXC/6-311++G(3df,3pd)f 0.9652 37

aData from Scott and Radom (1996) unless otherwise indicated. bNumber of frequencies still in error by
more than 20% of the experimental value after scaling. cFrom analysis of 511 frequencies in 50 inorganic
molecules (Bytheway and Wong 1998). dPople et al. (1993). eFrom analysis of 900 frequencies for 111
molecules comprised of first- and second-row atoms and hydrogen (Halls, Velkovski, and Schlegel 2001).
f From analysis of 110 frequencies for 31 small molecules having only first-row atoms and hydrogen
(Jaramillo and Scuseria 1999). gBauschlicher and Partridge (1995).

while the hybrid functionals require scale factors consistent with their inclusion of some
HF character. Thus, including HF character results in proportionately too high predictions
in vibrational frequencies, although the scaling procedure is very effective here as well.
Finally, the errors in the semiempirical levels are quite high, and scaling is only modestly
helpful. For those looking for the highest accuracy, the U.S. National Institute of Standards
and Technology (NIST) maintains a web facility that permits users to select a focused set of
molecules from NIST’s computational chemistry database (presumably based upon the user’s
interest in a structurally related unknown) and then to compute least-squares best scaling
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factors for specific levels of theory based only on those molecules (srdata.nist.gov/cccbdb/).
One example of such an approach, albeit not using the NIST website, was provided by Yu,
Srinivas, and Schwartz (2003) who optimized scale factors just for the C−O stretch of metal
bound carbonyls.

Results from molecular mechanics can also be of reasonable accuracy, so long as the
molecules addressed contain only functionality well represented in the force field training
set. While extensive compilations of data are not available, Halgren has compared MM3 and
MMFF94 over a test set of 157 frequencies from organic molecules and found RMS errors
of 57 and 60 cm−1, respectively.

An interesting alternative to scaling the frequencies is instead to scale the force constants
in the Hessian, which permits some sensitivity to different kinds of vibrations, e.g., stretches,
bends, and torsions (see, for example, Grunenberg and Herges 1997; Baker, Jarzecki, and
Pulay 1998; Arenas et al. 2000). Of course, as with any parameterization procedure, as the
number of parameters increases so too does the requirement for additional data to ensure
statistical reliability, and this approach has not yet seen wide application.

One final caveat with respect to comparing experimental IR spectra with theoretically
predicted frequencies is that the latter do not account for such experimental complications
as Fermi resonances (where two nearby fundamentals are shifted to higher and lower
frequencies, respectively), overtones, etc. Such details require case-by-case evaluation.

In comparing complete theoretical spectra to complete experimental spectra in molecules
of moderate to large size, there can be a large number of lines. To ensure proper correspon-
dence of the normal modes, it is helpful to compare not only the absorption frequencies
themselves but also the intensities of the absorptions. For a typical experimental spectrum,
such intensities are usually reported simply as strong, medium, or weak, although in careful
experiments absorption cross-sections can be measured accurately. From a computational
standpoint, the prediction of IR intensities can be accomplished using the mixed second
derivatives of the energy with respect to geometric motion and an external electric field
(thereby permitting estimation of the changes in the dipole moment as a function of the
vibrations, which is what IR intensities are proportional to). These mixed second derivatives
are available analytically for all levels of theory for which analytic second derivatives with
respect to the geometry are available, so it is a straightforward matter to compute IR inten-
sities. The actual computed values tend to be no better than qualitative in the absence of
using a very complete basis set and accounting for electron correlation, but insofar as most
experimental intensities are essentially qualitative, this is not typically much of a drawback.
Being able to line up strong absorptions in computed and experimental spectra is often quite
helpful for assessing the validity of the comparison.

An alternative experiment that measures the same vibrational fundamentals subject to
different selection rules is Raman spectroscopy. Raman intensities, however, are more diffi-
cult to compute than IR intensities, as a mixed third derivative is required to approximate the
change in the molecular polarizability with respect to the vibration that is measured by the
experiment. The sensitivity of Raman intensities to basis set and correlation is even larger
than it is for IR intensities. However, Halls, Velkovski, and Schlegel (2001) have reported
good results from use of the large polarized valence-triple-ζ basis set of Sadlej (1992) and
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have determined frequency scaling factors for its use in conjunction with several levels of
theory (see Table 9.3).

9.3.2.3 Vibrationally averaged expectation values

With fairly few exceptions, all discussion of computed molecular properties up to this point
has proceeded under the assumption that the value computed for the stationary equilibrium
structure is relevant in comparison to experiment. However, the experimental population
is in constant vibrational motion, even at 0 K, so the experimental measurement actually
samples structures having a distribution dictated by the molecular vibrational wave function.
Thus, for some property A, the measured value is the expectation value given by

〈A〉 =
∫

�(q)A(q)�(q)dq (9.50)

where � is the wave function for nuclear motion and q is the coordinate system.
Some general analysis of Eq. (9.50) is warranted. Note that the zeroth vibrational level

for a normal mode within the harmonic approximation is characterized by a Gaussian wave
function. The total molecular vibrational wave function is a product of the wave functions of
all of the individual modes, so if every vibration is in its ground state, � is an even function
if the origin is taken to be qeq (‘even’ meaning that the function has the same value for
equal displacements in the positive and negative directions along any axis). It is now helpful
to consider not the expectation value of A, but the expectation value for the deviation of A

from the value at the equilibrium position, i.e.,

〈A − A(qeq)〉 =
∫

�(q)
[
A(q) − A(qeq)

]
�(q)dq (9.51)

If the deviation of A from A(qeq) is coupled with only a single component of q, and if
its dependence on displacement from the equilibrium structure is linear, then �A is an odd
function of q (‘odd’ meaning now that the function takes on positive and negative values of
equal magnitude when displaced an equal distance along any axis). From elementary calculus,
we know that the product of two even functions and an odd function is an odd function, and
that the integral over all space of an odd function is zero, so under the conditions outlined
above the expectation value defined by Eq. (9.51) is zero and the value of 〈A〉 must be
A(qeq). An example of such a situation would be a harmonic oscillator having a dipole
moment. The change in dipole moment is linear in the displacement from the equilibrium
bond length, so the expectation value of the dipole moment over the first vibrational wave
function (indeed, over any of the vibrational wave functions in this case, since the system
is harmonic) is exactly equal to the dipole moment at the equilibrium bond length.

Of course, in a real system with many atoms, the coupling of the property to the individual
degrees of freedom is more complicated, and there is no guarantee that �A will be an odd
function. Nevertheless, the assumption that Eq. (9.51) is equal to zero is often sufficiently
accurate for everyday computational predictions.
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To illustrate a case where this is not true, consider the methyl radical CH3
ž. The equilibrium

structure for this system is planar, and the unpaired electron occupies the out-of-plane pz

orbital on carbon. Because this orbital has a node at the carbon atom, in the absence of
polarization the 13C isotropic hyperfine splitting should be zero (only spin polarization makes
it non-zero). However, one of the normal modes of the methyl radical is the so-called
‘umbrella’ mode that simultaneously bends all the hydrogen atoms to one side of the plane
or the other. This motion rehybridizes the singly occupied molecular orbital (SOMO) so that it
includes some s character, and thus the 13C h.f.s. value should become increasingly positive.
Moreover, this is true irrespective of the side to which the umbrella motion takes place.
That is, if we now take �A to be the change in 13C h.f.s., it is an even function about the
equilibrium structure (Figure 9.8). As such, we expect from Eq. (9.51) that the expectation
value of the h.f.s. splitting over the umbrella mode vibrational wave function should be
significantly different from the value at the equilibrium position (the other vibrational modes
of CH3

ž do not cause the molecule to deviate from planarity, so they have minimal impact
on the expectation value).

Table 9.4 compares to experiment the isotropic h.f.s. values computed for 13C and 1H in
the methyl radical at the UMP2/6-311G(d,p) level both (i) at the UHF/6-31G(d) equilibrium
geometry and (ii) as the expectation value over the umbrella mode vibrational wave function
computed at this level. Also included are data for the monofluoromethyl radical CH2Fž,
which is even more affected by vibrational averaging because it has a very shallow double-
well potential along the umbrella mode (i.e., the equilibrium structure is pyramidal, but the
barrier to inversion is less than 1 kcal mol−1), so that its vibrational wave function has large
amplitude around a planar structure with smaller 13C h.f.s. than for the equilibrium structure.
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Figure 9.8 Potential energy and zeroth vibrational level with associated wave function (reference
left ordinate) and 13C h.f.s. (reference right ordinate) as a function of umbrella angle for CH3

ž
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Table 9.4 Isotropic hyperfine splittings (G) in the methyl and fluoromethyl
radicals

Radical Nucleus A(qeq) 〈A〉, Eq. (9.41) 〈A〉, expt.

CH3
ž 13C 22.6 32.8 38.3

1H −27.6 −25.6 −25.0
CH2Fž 19F 73.7 71.7 64.3

13C 72.6 49.6 54.8
1H −15.4 −22.7 −21.1

RMS error 11.8 4.8

Considering all five h.f.s. values, the agreement with experiment improves in every case when
vibrational averaging is taken into account, and the RMS error drops from 11.8 G to 4.8 G.

9.4 NMR Spectral Properties

Nuclear magnetic resonance (NMR) is probably the most widely applied spectroscopic tech-
nique in modern chemical research. Its high sensitivity and the mild conditions required for
its application render it peerless for structure determination and kinetics measurements in
many instances. As an experimental technique, its use is extraordinarily widespread.

Until quite recently, however, theoretical prediction of NMR spectral properties signif-
icantly lagged experimental work. The ultimate factor slowing theoretical work has been
simply that it is more difficult to model the interactions of a wave function with a magnetic
field than it is to model interactions with an electric field. Nevertheless, great progress has
been made over the last decade, particularly with respect to DFT, and calculation of chemical
shifts is becoming much more routine than had previously been true.

This section begins with a very brief summary of some of the technical issues associ-
ated with NMR spectral calculations. Subsequent subsections address the various utilities of
modern methods for predicting chemical shifts and nuclear coupling constants.

9.4.1 Technical Issues

NMR measurements assess the energy difference between a system in the presence and
absence of an external magnetic field. For a chemical shift measurement on a given nucleus,
there are two magnetic fields of interest: the external field of the instrument and the internal
field of the nucleus. The chemical shift is proportional to the second derivative of the energy
with respect to these two fields, and it can be computed using second-derivative analogs
of Eqs. (9.33) or (9.34). However, the integrals in question are more complex because,
unlike the electric field, which perturbs the potential energy term of the Hamiltonian, the
magnetic field perturbs the kinetic energy term (it is the motion of the electrons that generates
electronic magnetic moments). The nature of the perturbed kinetic energy operator is such
that an origin must be specified defining a coordinate system for the calculation. This origin
is called the ‘gauge origin’.
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The magnetic field is independent of the choice of the gauge origin. So too are the
computed magnetic properties if the wave function used is exact. Regrettably, we are not
often afforded the opportunity to work with exact wave functions. For HF wave functions,
one can also achieve independence of the gauge by using an infinite basis set, but that is
hardly a practical option either.

To reduce artifacts associated with the gauge origin, two different approaches have seen
extensive use in the literature. The older method employs gauge-including atomic orbitals
(GIAOs) as a basis set (London 1937). By a clever incorporation of the gauge origin into the
basis functions themselves, all matrix elements involving the basis functions can be arranged
to be independent of it. An alternative is the ‘individual gauge for localized orbitals’ (IGLO)
method, where different gauge origins are used for each localized MO in order to minimize
error introduced by having the gauge origin far from any particular MO (Schindler and
Kutzelnigg 1982). Of the two methods, modern implementations of GIAO are probably
somewhat more robust, but it is possible to obtain good results with either.

Much of the benchmark work in the area of NMR calculations has been carried out
with very large basis sets, and recommendations have tended to call for at least triple-ζ
quality with diffuse and polarization functions aplenty. Of course, such basis sets are simply
not practical for larger molecules, even when used solely in the context of a single-point
calculation following geometry optimization with some more economical basis (note that the
single-point calculation, being a second-derivative property, has timing requirements rather
similar to the more routinely carried out calculation of vibrational frequencies). Some early
work has begun to appear aimed at identifying scale factors, or linear regressions, that may
be applied to computational results from less well-converged calculations, this work being
very similar in spirit to the scaling of IR frequencies discussed in Section 9.3.2.2.

A separate basis set issue is associated with calculations for molecules including heavy
atoms. If the core electrons of the heavy atom are represented by an ECP, then it is not
in general possible to predict the chemical shift for that nucleus, since the remaining basis
functions will have incorrect behavior at the nuclear position (note that it is mostly the ‘tails’
of the valence orbitals at the nucleus that influence the chemical shift, not the core orbitals
themselves, since they are filled shells). However, ECPs may be an efficient choice if the
only chemical shifts of interest are computed for other nuclei.

A different issue associated with NMR chemical shifts for heavy atoms is the influence
of relativistic effects. In terms of computing absolute chemical shifts, relativistic effects
can be very large in heavy elements. For relative chemical shifts, since relativistic effects
are primarily associated with core orbitals, and core orbitals do not change much from one
chemical environment to the next, the effect is typically markedly reduced. Nevertheless,
accurate calculations involving atoms beyond the first row of transition metals are still a
particular challenge.

9.4.2 Chemical Shifts and Spin–spin Coupling Constants

Experimental chemical shifts are reported in parts per million (ppm) so as to make them inde-
pendent of the external magnetic field strength. Moreover, they are usually not reported as
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absolute values, but instead as values relative to some standard compound, e.g., tetramethyl-
silane, which is often used for 1H and 13C. Comparison between computed and experimental
numbers requires some care to ensure the same convention is being used for reporting data.
To compute a relative chemical shift, obviously one must carry out a separate calculation
for the reference compound.

For molecules composed of only first-row atoms, heavy-atom chemical shifts can be
computed with a fair degree of accuracy, as indicated in Table 9.5. Happily, even HF theory
gives acceptable accuracy in most instances, although some improvements are available
in favorable instances from DFT (provided it is neither LDA nor B3LYP) and MP2. The
latter level of theory is quite accurate, but at relatively high cost in terms of demand for
computational resources. Various groups have demonstrated that errors from levels having
lower accuracy are sufficiently systematic that errors may be significantly reduced by appli-
cation of a simple linear regression equation (Sebag, Forsyth, and Plante 2001; Giesen and
Zumbulyadis 2002). Thus, for instance, scaling 13C shieldings computed at the B3LYP/MIDI!
level by −1.16 and adding 225.1 ppm provides an RMS error of only 3.6 ppm over a diverse
test set of experimental values measured in solution.

Note that the mean unsigned errors listed in Table 9.5 for absolute chemical shifts are
larger than the errors for relative chemical shifts, as expected. The errors in the rela-
tive shifts must be considered to be rather good given the range of experimental values
spanned. Note also that the high anisotropy of multiple bonds makes the chemical shifts of
the atoms involved quite sensitive to the level of theory, particularly for nitrogen and oxygen
atoms.

Table 9.5 contains a relative paucity of data for 1H. This nucleus is somewhat more
difficult to work with because it spans a fairly modest spectral range, perhaps 15 ppm
in typical chemical environments. Rablen, Pearlman, and Finkbiner (1999), however, have
carried out calculations of 1H chemical shifts for 80 organic molecules, and demonstrated
reasonable results from various DFT functionals with large basis sets; they also identified
scaling factors that improved agreement with experiment (for a similar study focusing on
aromatic proton chemical shifts, see Wang et al. 2001). Wang, Hinton, and Pulay (2002)
similarly reported good success from both HF and DFT calculations for the prediction of 1H
chemical shifts in eight cyclic amides for which experimental data in both DMSO and D2O
were available. Finally, Patchkovskii and Thiel (1999) have reported a reparameterization for
H, C, N, and O within the MNDO model with the goal of better predicting chemical shifts;
they applied their modification B with three-center terms (MB3) MNDO to 384 common
organic molecules and obtained errors consistent with those listed in Table 9.5, which must
be regarded as fairly good given the tremendous efficiency of the model (of course, making
predictions for other nuclei would require further reparameterization).

Computed and experimental data for the chemical shifts of heavy elements have been less
extensively compared. Table 9.6 lists some results for 77Se that are illustrative of the wide
range of chemical shifts typically possible for such nuclei (here more than 2000 ppm) as
well as the degree to which the chemical phase may affect the comparisons. The calculations
are gas phase, although in Chapters 11 and 12 we will discuss techniques for including
condensed-phase effects in computational predictions.
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Table 9.5 Absolute chemical shifts (ppm) from various levels of theory.a

Molecule Nucl MB3b HF MP2 LDA BLYP BP86c B3LYP PBE1PBEd B97-2e Expt.

CH4
13C 189.4 195.7 201.5 193.7 187.5 191.2 189.6 194.0 190.7 195.1
1H 29.9 31.4 30.6

C2H2
13C 100.4 113.9 123.3 100.0 105.7 110.4 106.3 114.0 113.9 117.2
1H 27.3 30.4 29.3

C2H4
13C 63.2 59.9 71.2 42.3 47.1 48.7 58.4 57.2 64.5

C2H6
13C 175.5 184.0 188.0 176.7 169.7 173.6 179.7 180.9

H2CCCH2
13C 94.4 114.0 120.9 103.2 103.0 104.5 112.5 115.2
13C −2.9 −44.3 −26.0 −53.0 −51.7 −51.7 −36.6 −28.9

C6H6
13C 58.4 55.0 64.0 41.7 43.7 50.0 45.2 55.3 57.2

N2
15N −87.7 −128.7 −44.9 −104.8 −97.1 −72.9 −105.4 −76.8 −64.0 −61.6

NH3
15N 264.7 262.6 276.2 266.1 259.2 262.0 260.3 263.1 261.3 264.5
1H 30.3 31.2c 31.6 32.4

HCN 13C 82.7 68.1 87.3 63.0 68.7 91.5 67.2 76.6 78.3 82.1
15N −55.4 −56.0 1.0 −60.2 −49.2 8.4 −53.1 −34.9 −22.2 −20.4

CH3NH2
13C 160.1 163.8 164.9 151.1 145.3 150.1 157.1 158.3
15N 253.5 250.0 261.2 244.7 233.1 238.4 244.0 249.5

CH3CN 13C 175.8 190.9 193.6 182.3 177.1 180.4 187.7 187.7
13C 79.4 60.6 76.1 54.7 57.8 57.4 68.2 73.8
15N −57.3 −46.6 −13.2 −44.7 −36.5 −40.7 −24.4 −8.1

H2O 17O 281.2 326.9 344.8 332.3 326.4 331.5 325.7 328.9 329.8 344.0
1H 29.4 31.2 30.1

CO 13C −40.0 −29.2 11.1 −23.9 −17.3 −9.3 −21.7 −7.8 −2.4 1.0
17O −74.0 −95.0 −47.4 −93.7 −82.9 −68.4 −87.8 −70.0 −45.4 −42.3

CO2
13C 76.9 47.8 63.5 47.2 47.9 56.1 46.9 56.8 58.7 58.5
17O 92.5 214.8 241.0 203.3 206.5 206.9 220.0 225.2 243.4

H2C=O 13C −4.9 −9.2 6.7 −41.0 −27.7 −15.7 −25.4 −11.1 −12.4 −8.4
17O −461.2 −341.9 −509.2 −459.7 −418.8 −469.8 −422.2 −348.3 −312.1
1H 20.7 18.3

CH3OH 13C 125.7 143.7 142.2 126.1 122.0 127.4 136.5 136.6
17O 283.5 274.7 350.6 334.5 313.9 321.6 334.7

(CH3)2C=O 13C 169.7 163.5 164.5 148.8 146.9 150.4 157.0 158.0
13C −14.1 −23.2 −5.8 −44.4 −37.4 −35.7 −11.1 −13.1
17O −172.6 −340.5 −279.8 −375.5 −351.5 −358.1 −330.2

F2
19F −310.2c −282.7 −202.7 −232.8

HF 19F 415.1c 412.5 414.4 410.0
1H 29.4c 30.0 28.7

CH3F 13C 124.5 121.8 103.2 101.2 111.4 106.6 116.5 116.8
19F 462.3 471.6
1H 27.2 26.6

CF4
13C 79.2 64.4 39.2 38.3 46.5 59.2 64.5

mueabs
f 21.7 19.4 7.9 27.2 23.1 17.1 23.5 10.3 8.8

muerel
g 17.2 16.9 3.8 24.9 14.5 13.7 16.2 7.4 4.7

aUnless otherwise indicated, a quadruple-ζ basis set with double polarization functions is used (Cheeseman et al.
1996; the quoted experimental data are mostly taken from this reference as well). bMNDO modification B including
three-center terms (Patchkovskii and Thiel 1999). cUsing a basis set of STOs triple-ζ in the valence region and
double-ζ in the core (Schreckenbach and Ziegler 1995). dUsing the 6-311++G(2d,p) basis set (Adamo, Cossi, and
Barone 1999). eUsing the IGLO IV basis set and the multiplicative Kohn–Sham (MKS; Wilson and Tozer 2001)
method to compute the chemical shifts (Wilson, Bradley, and Tozer 2001). f Mean unsigned error in heavy-atom
absolute shieldings. gMean unsigned error in heavy-atom shieldings relative to CH4 (13C), NH3 (15N), H2O (17O),
and HF (19F).
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Table 9.6 Chemical shifts for 77Se (ppm) relative to (CH3)2Se

Molecule Phase Calculateda Experiment

(CH3)2Se 0 0
H2Se gas −427 −345

neat liquid −226
CSe2 gas 225 331

liquid solution 299
SeF6 gas 678 610

neat liquid 631
Se4

+ gas 1836
liquid solution 1940

aBP86 using a basis set of STOs triple-ζ in the valence region and
double-ζ in the core (Schreckenbach et al. 1996).

Table 9.7 Spin–spin coupling constants (Hz) from LDA calculations and experiment

Molecule Coupling LDAa B3LYPb Experiment

CH4
2JHH −6.4 −10.9 −12.6
1JCH 122.4 123.5 125.3

NH3
2JHH −8.3 −8.5 −10.4
1JNH 46.5 41.9 43.4

H2O 2JHH −10.8 −6.5 −7.2
1JOH −80.5 −71.7 −78.2

HF 1JFH 388.9(494.1)c 422.8 530.3
C2H2

3JHH 2.5 10.2 9.6
2JCH 47.4 51.5 49.3
1JCH 239.0 254.4 248.7
1JCC 204.9 201.7 171.5

C2H4
3JHH cis 6.5 10.3 11.7
3JHH trans 12.1 15.2 19.1
2JCH 1.8 −3.4 −2.4
1JCH 145.3 163.1 156.4
1JCC 68.6 58.4 67.6

C2H6
3JHH gauche 6.6d 4.0 8.0d

3JHH anti 6.6d 13.8 8.0d

2JCH −1.8 −4.1 −4.5
1JCH 123.9 127.5 124.9
1JCC 30.2 23.7 34.6

CO 1JCO 27.3 18.8 16.4
CO2

1JCO 21.7 22.7 16.1
CH3F 2JHH −2.8 −7.7 −9.6

2JFH 33.2 50.8 46.4
1JCH 142.3 144.9 149.1
1JCF −262.2 −227.1 −161.9

V(CO)−6
1JVC 101.0 116.2

Fe(CO)5
1JFeC 20.9d 23.4d

Co(CO)−4
1JCoC 252.4 286.0

aUsing a basis set of STOs triple-ζ in the valence region and double-ζ in the core unless otherwise indicated
(Schreckenbach et al. 1996). bUsing a (11s7p2d/6s2p)[7s6p2d/4s2p] basis set (Sychrovsky, Gräfenstein, and Cremer
2000). cUsing a basis set with the core expanded to triple-ζ . d (Pseudo)rotationally averaged.
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The calculation of spin–spin coupling is less straightforward than the calculation of chem-
ical shift, in part because of the additional complications associated with two local magnetic
moments, as opposed to one moment and one external, uniform field. Moreover, the most
commonly reported couplings in the experimental literature are proton–proton couplings in
organic and biological molecules, and these are amongst the more difficult to predict because
they tend to be small in magnitude, so absolute errors are magnified when considered in a
relative sense. Some representative calculations are provided in Table 9.7.

Computed coupling constants show moderate to large sensitivity to basis set, and accurate
predictions require very flexible bases (see, for example, the hydrogen fluoride (HF) data in
Table 9.7). In addition, DFT is much more robust than HF theory for predicting coupling
constants, and the latter level of theory simply should not be used for this purpose.

9.5 Case Study: Matrix Isolation of Perfluorinated p-Benzyne

Synopsis of Wenk et al. (2001) ‘Matrix Isolation of Perfluorinated p-Benzyne’.
The class of antitumor-antibiotics known as enediynes undergo in vivo Bergman cycliza-

tion of the enediyne functionality to generate p-benzyne reactive intermediates that damage
genetic material. Because the damage results in double-stranded DNA cleavage, they are
extraordinarily cytotoxic, and this has sparked interest in better understanding p-benzynes
in general (this species has already been discussed at some length in Chapters 7 and 8). One
issue associated with the parent p-benzyne is that it is thermochemically unstable relative
to its enediyne precursor, making its isolation more challenging. In this case, Wenk and co-
workers sought to identify a precursor not suffering from this problem, and determined from
DFT and CASSCF calculations that perfluorinated p-benzyne was roughly 8 kcal mol−1

more stable than the enediyne that would be produced from retro-Bergman ring opening, and
moreover that the barrier to that ring opening was nearly 38 kcal mol−1, this being nearly
double the barrier in the unfluorinated case. Girded with this thermochemical armor, they
set out to synthesize the diradical by UV photolysis of 1,4-diiodo-2,3,5,6-tetrafluorobenzene
(Figure 9.9).

When this precursor is photolyzed at 3 K in a neon matrix, IR spectroscopy indicates
rapid formation of a new species A. Prolonged photolysis creates a second product B whose
IR bands are distinct from the first. And, if the matrix containing the second product is
irradiated with UV light of somewhat longer wavelength, IR analysis indicates that a third
product C is generated. All of the IR bands observed for A, B, and C are listed in Table 9.8.
These bands are compared to frequencies computed at the B3LYP/6-311G(d,p) level for
4-iodo-2,3,5,6-tetrafluorophenyl radical (ITFP) and perfluorohex-3-en-1,5-diyne (PFHED)
and to frequencies computed at the CASSCF(8,8)/cc-pVDZ level of theory and scaled by
0.91 for perfluorinated p-benzyne (PFPB). The authors do not explain their recourse to two
different levels of theory, but presumably they were not comfortable with the DFT model,
even used unrestricted, for the multiconfigurational p-benzyne.

In any event, the generally excellent agreement between the experimental and computed
spectra permits the secure assignment of the bands for A to ITFP, the bands for B to PFPB,
and the bands for C to PFHED (note that scaling of the DFT bands by the scale factor for
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Figure 9.9 Bergman cycloaromatization reactions for hex-3-en-1,5-diyne and its perfluorinated
congener, as well as a photochemical reaction scheme for generating the perfluorinated diradical
from an iodinated precursor. What spectral features would be expected to be most diagnostic
of the different intermediates? What levels of theory would be appropriate for predicting these
spectral signatures? (Note that equilibrium arrows of unequal length indicate which species
predominates at equilibrium.)

Table 9.8 Experimental and computed IR spectra (cm−1) for A, B, and
C, and ITFP, PFPB, and PFHED, respectively

A ITFP B PFPB C PFHED

693 693 677 576
834 834 690 591

942/956 954 925 911 680
1138 1145 1148 912 918
1188 1195 1117 1151 1072 1067
1259 1298 1154 1151
1352 1400 1360 1363
1428 1441 1407 1421 1398 1414
1472 1487 1502/1516 1499 1678 1707
1574 1585 1560 2337 2419

1610 2426

B3LYP/6-31G(d) in Table 9.3 would result in slightly improved agreement for A and C) as
would be suggested by the synthetic scheme in Figure 9.9. Intensity data were also used,
although those are not shown here; importantly, the ‘missing’ bands in the experimental IR
spectra are all predicted to be of very low intensity in the computed spectra. Interestingly,
both CASSCF and unrestricted B3LYP predict the singlet and triplet states of the diradical
to be essentially degenerate, leaving the question open as to which (if either) is the lower
in energy.
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The use of computed spectra to bolster structural assignments has seen heavy use in
matrix isolation experiments. This is a slightly atypical example, insofar as the species
involved actually require some careful attention to non-dynamical correlation, but represents
an excellent example of how theory can aid experiment in the identification of short-lived
reactive species.
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10
Thermodynamic Properties

10.1 Microscopic–macroscopic Connection

In the very recent past, it has become possible under certain circumstances to observe
single molecules in the laboratory. Nevertheless, the vast majority of chemical research
concerns itself not with individual molecules, but instead with macroscopic quantities of
matter that are made up of unimaginably large numbers of molecules. The behavior of such
ensembles of molecules is governed by the empirically determined laws of thermodynamics,
and most chemical reactions and many chemical properties are defined in terms of some of
the fundamental variables of thermodynamics, such as enthalpy, entropy, free energy, and
others.

Until now, we have for the most part concerned ourselves only with the potential and
kinetic energies of individual electrons and nuclei in single molecules, and one of our rare
connections to thermodynamics has been in some sense a misleading one, namely that we
have often converted atomic units into other units more typically associated with macroscopic
quantities, e.g., kcal mol−1 or kJ mol−1. This sometimes leads newcomers to the field to
think of the atomic unit of energy, the hartree, as being enormously large, since 1 Eh is
equal to 627.51 kcal mol−1. In reality, however, the hartree is a tremendously tiny unit,
since ‘kcal mol−1’, as its name makes clear, refers to the energy associated with one mole
(i.e., 6.0221 × 1023) of molecules, not with the single molecule that is the typical subject
of an electronic-structure calculation. Moreover, when we make comparisons between two
different calculations, say to determine the relative energies of two isomers, and we carry
out such simple unit conversions, we tacitly (and often incorrectly) assume that the potential
energy difference determined from the calculation is all that matters when comparing to
a measured energy difference, that is almost always in the form of some thermodynamic
quantity, most typically enthalpy or free energy.

In this chapter, the most common procedures for augmenting electronic-structure calcu-
lations in order to convert single-molecule potential energies to ensemble thermodynamic
variables will be detailed, and key potential ambiguities and pitfalls described. Within the
context of certain assumptions, this connection can be established in a rigorous way.

Note that the situation is less clear-cut for molecular mechanics calculations. As already
discussed in Chapter 2, the ‘strain energy’ from a typical MM calculation must be thought

Essentials of Computational Chemistry, 2nd Edition Christopher J. Cramer
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of as a potential energy with a rather particular zero of energy, namely, one uniquely defined
by all of the atom types found in the molecule. To make a connection with thermodynamics,
the most common approach is to associate with each atom type a heat of formation, and
then assume that the strain energies may be thought of as enthalpies (see Figure 2.8). In
this instance, the connection between the microscopic and macroscopic regimes is hidden in
the fitting procedure by which the heats of formation of the atomic types are assigned, and
thermodynamic aspects must be considered to be wholly empirical. As such, we will not
consider this point further.

10.2 Zero-point Vibrational Energy

The first step in moving from the microscopic regime to the macroscopic is to recognize
that the Born–Oppenheimer potential energy surface is fundamentally a classical construct
(although the energies of various points whose coordinates are defined by the fixed nuclear
positions are determined from quantum mechanical calculations of the electronic energy).
As already discussed in Chapter 9, when the motion of the nuclei on this surface is also
accounted for in a quantum mechanical way, energy is ‘tied up’ in molecular vibrations. This
is true even at a temperature arbitrarily close to absolute zero, since the lowest vibrational
energy level for any bound vibration is not zero.

Within the harmonic oscillator approximation, the energy of the lowest vibrational level can
be determined from Eq. (9.47) as hω/2 where h is Planck’s constant (6.6261 × 10−34 J s)
and ω is the vibrational frequency. The sum of all of these energies over all molecular
vibrations defines the zero-point vibrational energy (ZPVE). We may then define the internal
energy at 0 K for a molecule as

U0 = Eelec +
modes∑

i

1
2hωi, (10.1)

where Eelec is the energy for the stationary point on the Born–Oppenheimer PES. Note that
U0 is also often written as E0 in thermochemical literature.

One may legitimately ask what errors may be implicit in Eq. (10.1), introduced by invo-
cation of the harmonic oscillator approximation. To answer that question it is instructive
to consider which modes will be likely to be least harmonic in character. In general, we
expect these modes to be the softest ones, e.g., weakly hindered torsions. However, such
weak modes will also tend to have very small vibrational frequencies associated with them,
and thus they will not contribute much to the ZPVE in any case (since ZPVE is linear in
the frequencies). As a rule, then, the harmonic approximation does fairly well in computing
ZPVE. Note, of course, that the frequencies themselves must be computed at a level of
electronic-structure theory that ensures their acceptable accuracy. Thus, if one uses HF
theory with some basis set that is known in general to require a scaling factor of 0.9 to
bring computed frequencies into line with experiment, that same scaling factor should be
used to compute the ZPVE (or, equivalently, the ZPVE should be computed using the scaled
frequencies).
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One can generalize the concept of ZPVE to non-stationary points on the PES (although
some convention must be adopted for dealing with the non-zero first derivatives of the energy
at such points). The new surface that is generated by summing the Born–Oppenheimer
surface with this generalized ZPVE is called the zero-point-including energy surface. This
surface thus includes the quantum mechanical character of the nuclear motion at 0 K, and can
be very useful in reaction dynamics simulations, as described in more detail in Chapter 14.

A key feature of the ZPVE is that it is isotope dependent, since the vibrational frequencies
themselves are isotope dependent (see Eq. (9.48) and recall that the reduced mass µ for any
mode is a function of the atomic masses for the nuclei involved in the motion). Thus, if one
is considering a large ensemble of molecules, it must be kept in mind that the computed
ZPVE refers to an ensemble of isotopically pure molecules, not to an ensemble composed
from isotopes at natural abundance. Most electronic structure programs default to using
the atomic isotopes of highest natural abundance, and permit use of other isotopes in some
keyword-driven way. Older versions of some semiempirical programs originally used atomic
masses derived from natural-abundance averaging over isotopes, but this is a fundamentally
flawed approach, since the influence of the atomic masses on the frequencies is not linear.
Typically, in part because many elements have a single dominant isotope, one does not
need to worry about the rather small inaccuracies introduced by assuming isotopically pure
samples (Jensen 2003). In those rare instances where true natural abundance results are
desired, it is a straightforward if somewhat tedious task to construct multiple ensembles
differing in isotopic composition and weight them appropriately in an overall mixture.

10.3 Ensemble Properties and Basic Statistical Mechanics

Statistical mechanics is, obviously, a course unto itself in the standard chemistry/physics
curriculum, and no attempt will be made here to introduce concepts in a formal and rigorous
fashion. Instead, some prior exposure to the field is assumed, or at least to its thermodynam-
ical consequences, and the fundamental equations describing the relationships between key
thermodynamic variables are presented without derivation. From a computational-chemistry
standpoint, many simplifying assumptions make most of the details fairly easy to follow, so
readers who have had minimal experience in this area should not be adversely affected.

In order to deal with collections of molecules in statistical mechanics, one typically requires
that certain macroscopic conditions be held constant by external influence. The enumeration
of these conditions defines an ‘ensemble’. We will confine ourselves in this chapter to the
so-called ‘canonical ensemble’, where the constants are the total number of particles N

(molecules, and, for our purposes, identical molecules), the volume V , and the temperature
T . This ensemble is also sometimes referred to as the (N , V , T ) ensemble.

Just as there is a fundamental function that characterizes the microscopic system in
quantum mechanics, i.e., the wave function, so too in statistical mechanics there is a funda-
mental function having equivalent status, and this is called the partition function. For the
canonical ensemble, it is written as

Q(N, V, T ) =
∑

i

e−Ei(N,V )/kBT (10.2)



358 10 THERMODYNAMIC PROPERTIES

where i runs over all possible energy states of the system having energy Ei and kB is
Boltzmann’s constant (1.3806 × 10−23 J K−1).

Within the canonical ensemble, and using established thermodynamic definitions, all of
the following are true

U = kBT 2
(

∂ ln Q

∂T

)
N,V

(10.3)

H = U + PV (10.4)

S = kB ln Q + kBT

(
∂ ln Q

∂T

)
N,V

(10.5)

G = H − T S (10.6)

where the notation associated with the partial derivatives in Eqs. (10.3) and (10.5) implies N

and V held constant during differentiation with respect to T , H is enthalpy, P is pressure,
S is entropy, and G is (Gibbs) free energy.

Of course, the elegance of Eqs. (10.3)–(10.6) is somewhat muted by the daunting prospect
of finding an explicit representation of Q that permits the necessary partial differentiations in
Eqs. (10.3) and (10.5) to be carried out. For a true ensemble, Q must be some fantastically
complex many-body function involving a staggeringly enormous number of energy levels.
So, in order to make progress, we indulge in a number of simplifying assumptions.

10.3.1 Ideal Gas Assumption

We begin by assuming that our ensemble is an ideal gas. The first consequence of this
assumption, since ideal gas molecules do not interact with one another, is that we may
rewrite the partition function as

Q(N, V, T ) = 1

N !

∑
i

e−[ε1(V )+ε2(V )+···+εN (V )]i /kBT

= 1

N !


∑

j (1)

e−εj(1)(V )/kBT




∑

j (2)

e−εj(2)(V )/kBT


 · · ·


∑

j (N)

e−εj(N)(V )/kBT




= 1

N !

[
levels∑

k

gke
−εk(V )/kBT

]N

= [q(V, T )]N

N !
(10.7)

where the factor of 1/N ! derives from the quantum mechanical indistinguishability of the
particles, ε is the total energy of an individual molecule, and the change on going from
the first to the second line derives from expressing the exponential of all possible sums of
energies as a product of all possible sums of exponentials of individual energies. On going
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from the second to the third line, the sum has been changed so that it goes over discrete
energy levels, rather than individual states, and gk is the degeneracy of level k. The quantity
in brackets on the third line defines the molecular partition function q.

A second consequence of the ideal gas assumption is that PV in Eq. (10.4) may be
replaced by NkBT . In the special case where we are working with one mole of molecules,
in which case N = NA (Avogadro’s number), we may replace PV with RT , where R is the
universal gas constant (8.3145 J mol−1 K−1).

10.3.2 Separability of Energy Components

We have thus reduced the problem from finding the ensemble partition function Q to finding
the molecular partition function q. In order to make further progress, we assume that the
molecular energy ε can be expressed as a separable sum of electronic, translational, rotational,
and vibrational terms, i.e.,

q(V, T ) =
levels∑

k

gke
−εk(V )/kBT

=
levels∑

k

gke
−[εelec+εtrans(V )+εrot+εvib]k/kBT

=
[

elec∑
i

gie
−εi/kBT

]trans∑
j

gj e
−εj (V )/kBT


[ rot∑

k

gke
−εk/kBT

][
vib∑
l

gle
−εl/kBT

]

= qelec(T )qtrans(V, T )qrot(T )qvib(T ) (10.8)

where again advantage is taken of the ability to express an exponential of sums as a product
of sums of exponentials, and the separate lines make clear that the degeneracy of a total
molecular energy level is simply the product of the degeneracies of each of its contributing
components.

Note in Eqs. (10.3) and (10.5), Q always appears as the argument of the natural logarithm
function. Using Eqs. (10.7) and (10.8), our assumptions to this point allow us to write

ln[Q(N, V, T )] = ln
{

[qelec(T )qtrans(V, T )qrot(T )qvib(T )]N

N !

}
= N{ln[qelec(T )] + ln[qtrans(V, T )] + ln[qelec(T )]

+ ln[qvib(T )]} − ln(N !)

≈ N{ln[qelec(T )] + ln[qtrans(V, T )]

+ ln[qelec(T )] + ln[qvib(T )]} − N ln N + N (10.9)

where going from the second to the third equality makes use of Stirling’s approximation for
ln(N !) when N is large. This separation of terms by the logarithm function makes evident
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that we may speak of individual components – electronic, translational, rotational, and vibra-
tional – of thermodynamic functions within our approximate treatment. All that remains is to
express the various components of the molecular partition function in some useful, preferably
analytic, form.

10.3.3 Molecular Electronic Partition Function

The electronic partition function is usually the simplest to compute. For a typical, closed-
shell singlet molecule, the degeneracy of the ground state is unity, and the various excited
states are so high in energy that, at least at temperatures below thousands of degrees, they
make no significant contribution to the partition function, so that we might effectively take

qelec = e−Eelec/kBT (10.10)

If we evaluate the electronic component of U using Eq. (10.3), we determine that it is,
independent of temperature, simply Eelec.

In practice, it proves more convenient to work within a convention where we define the
ground state for each energy component to have an energy of zero. Thus, we view Uelec as the
internal energy that must be added to U0, which already includes Eelec (see Eq. (10.1)), as
the result of additional available electronic levels. One obvious simplification deriving from
this convention is that the electronic partition function for the case just described is simply
qelec = 1. Inspection of Eq. (10.5) then reveals that the electronic component of the entropy
will be zero (ln of 1 is zero, and the constant 1 obviously has no temperature dependence,
so both terms involving qelec are individually zero).

Another commonly encountered situation involves a ground state of higher spin multi-
plicity than singlet, but with excited states still sufficiently high in energy that they play
no role in the electronic partition function. In that case, the definition of Eelec as the zero
of energy continues to make the exponential part of the partition function equal to 1, but
the degeneracy is now 2S + 1, where S is the spin multiplicity ( 1

2 for doublet, 1 for triplet,
etc.) Thus, the partition function is also 2S + 1. This still has no temperature dependence,
so it makes no contribution to the internal energy, but it is no longer unity, so it makes a
contribution to the entropy. In general, then, for the electronic components of U and S we
simply use

Uelec = 0 (10.11)

and
Selec = NkB ln(2S + 1) (10.12)

where it should be emphasized to avoid confusion that the S on the l.h.s. of Eq. (10.12)
refers to entropy, while that on the r.h.s. refers to spin. The usual choice that is made is to
compute molar quantities of the thermodynamic functions, so that N is NA, in which case
Eq. (10.12) becomes

Selec = R ln(2S + 1) (10.13)

We will assume molar quantities from this point forward.
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In particular instances, the above approximation is insufficiently accurate because one or
more excited electronic states lie close in energy to the ground state. A typical example
occurs for heavy halogen atoms, where spin–orbit coupling creates 2P1/2 and 2P3/2 states
having only a narrow energy separation. In such cases, explicit formation of the partition
function cannot be avoided, but even then one typically need only include a small number
of terms in the total sum, and evaluation is not unduly taxing.

10.3.4 Molecular Translational Partition Function

To evaluate qtrans, we assume that the molecule acts as a particle in a three-dimensional cubic
box of dimension a3 where a is the length of one side of the cube. The energy levels for
this elementary quantum mechanical system are given by

εtrans(nx, ny, nz) = h2

8Ma2
(n2

x + n2
y + n2

z) (10.14)

where M is the molecular mass, and each energy level has associated with it the three
unique quantum numbers nx , ny , and nz. Because the energy levels for the particle in a box
are very, very closely spaced (at least for a box of macroscopic dimensions), the partition
function sum may be replaced by an indefinite integral, and this integral can be evaluated
analytically as

qtrans(V, T ) =
(

2πMkBT

h2

)3/2

V (10.15)

where the volume of the box is now written V as opposed to a3. Note that it is only the
translational partition function that depends on volume, and it does so because particle-in-
a-box wave functions cannot be normalized without choice of a specific, finite, non-zero
volume (it can be shown that it is only the volume that matters, and not the shape of the
box). It is this term, then, that dictates the necessity of choosing a ‘standard state’ volume
to ensure comparison of thermodynamic values in a consistent fashion. We will have more
to say about standard states below, but here we simply note that, because we have chosen to
model our substance as an ideal gas, we may replace V by RT/P and specify a standard-
state pressure instead. This is typically the language that is used in electronic structure
calculations, and the usual choice for standard state is 1 atm pressure (corresponding to a
standard-state molar volume of 24.5 L at 298 K).

Evaluating Eqs. (10.3) and (10.5) for a molar quantity of particles using Eq. (10.15) for
the translational partition function gives

Utrans = 3
2RT (10.16)

and

So
trans = R

{
ln

[(
2πMkBT

h2

)3/2

V o

]
+ 3

2

}
(10.17)
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(The superscript ‘o’ indicates that a ‘standard state’ is being referred to (see below).) Conven-
tionally, however, the last two terms in the final line of Eq. (10.9), i.e., those deriving from
Stirling’s approximation, are typically assigned to the translational partition function as well.
As they have no temperature dependence, this has no impact on Utrans; however, the entropy
of translation becomes

So
trans = R

{
ln

[(
2πMkBT

h2

)3/2
V o

NA

]
+ 5

2

}
(10.18)

Note that, because we are working under the assumption of an ideal gas, V o/NA in the term
in brackets can be replaced by kBT /P o.

A noteworthy aspect of Eqs. (10.16) and (10.18) is that they are altogether free of any
requirement to carry out an electronic structure calculation. Equation (10.16) is well known
for an ideal gas and is entirely independent of the molecule in question, and Eq. (10.18) can
be computed trivially as soon as the molecular weight is specified. Note, however, that the
units chosen for the various quantities must be such that the argument of the logarithm in
Eq. (10.18) (i.e., the partition function), is unitless.

The translational partition function is a function of both temperature and volume. However,
none of the other partition functions have a volume dependence. It is thus convenient to
eliminate the volume dependence of Strans by agreeing to report values that use exclusively
some volume that has been agreed upon by convention. The choices of the numerical value
of V and its associated units define a ‘standard state’ (or, more accurately, they contribute
to an overall definition that may be considerably more detailed, as described further below).
The most typical standard state used in theoretical calculations of entropies of translation
is the volume occupied by one mole of ideal gas at 298 K and 1 atm pressure, namely,
V o = 24.5 L.

10.3.5 Molecular Rotational Partition Function

In Section 9.3.1, the approach that is taken to solving the rigid-rotor nuclear Schrödinger
equation in order to compute rotational wave functions and energy levels was outlined,
and the particular cases of diatomic molecules and polyatomic prolate tops were explicitly
presented. The solution for the diatomic case is general for any linear molecule, so long as the
molecular moment of inertia I is computed in the appropriate fashion for more than 2 atoms
[Eq. (9.40)]. When the energy levels from Eq. (9.39) are used in the rotational partition
function with their appropriate degeneracies, as usual taking the lowest energy rotational
eigenvalue as the zero of energy, the sum can again be well approximated as an indefinite
integral at ‘normal’ temperatures, and solving that integral we find for a linear molecule that

q linear
rot (T ) = 8π2IkBT

σh2
(10.19)

where σ is 1 for asymmetric linear molecules and 2 for symmetric linear molecules (i.e.,
belonging to the C∞v and D∞h point groups, respectively). To be more precise, the validity
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of Eq. (10.19) requires that the temperature be such that qrot � 1, but this is almost always
the case unless one is dealing with very low temperatures (say, 10 K and below) or very
light molecules (like diatomics) or both.

Evaluation of the rotational components of the internal energy and entropy using the
partition function of Eq. (10.19) gives

U linear
rot = RT (10.20)

and

Slinear
rot = R

[
ln
(

8π2IkBT

σh2

)
+ 1
]

(10.21)

As was also previously noted in Section 9.3.1, the completely general rigid-rotor
Schrödinger equation for a molecule characterized by three unique axes and associated
moments of inertia does not lend itself to easy solution. However, by pursuing a
generalization of the classical mechanical rigid-rotor problem, one can derive a quantum
mechanical approximation that is typically quite good. Within that approximation, the
rotational partition function becomes

qrot(T ) =
√

πIAIBIC

σ

(
8π2kBT

h2

)3/2

(10.22)

where IA, IB, and IC are the principal moments of inertia, and σ is again a symmetry number.
In this case, σ is the number of pure rotations that carry the molecule into itself. Table 10.1
lists the specific values of σ for all chemically relevant symmetry point groups. Note that

Table 10.1 Rotational symmetry numbers for
molecular point groups

Point Groupa σ

C1 1
Ci 1
Cs 1
C∞v 1
D∞h 2
Sn, n = 2, 4, 6, . . . n/2
Cn, n = 2, 3, 4, . . . n

Cnh, n = 2, 3, 4, . . . n

Cnv, n = 2, 3, 4, . . . n

Dn, n = 2, 3, 4, . . . 2n

Dnh, n = 2, 3, 4, . . . 2n

Dnd , n = 2, 3, 4, . . . 2n

T 12
Td 12
Oh 24
Ih 60

aSee Appendix B for explanations of point groups.
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the presence of symmetry in a molecule may also require a structural degeneracy correction
to the molecular partition function for certain conformers, as described in more detail in
Appendix B.

Evaluation of the rotational components of the internal energy and entropy using the
partition function of Eq. (10.22) for more typically encountered non-linear molecules gives

Urot = 3
2RT (10.23)

and

Srot = R

{
ln

[√
πIAIBIC

σ

(
8π2kBT

h2

)3/2
]

+ 3

2

}
(10.24)

Again, it must be noted that evaluating the rotational components of U and S requires
relatively little in the way of molecular information. All that is required is the principal
moments of inertia, which derive only from the molecular structure. Thus, any methodology
capable of predicting accurate geometries should be useful in the construction of rotational
partition functions and the thermodynamic variables computed therefrom. Also again, the
units chosen for quantities appearing in the partition function must be consistent so as to
render q dimensionless.

10.3.6 Molecular Vibrational Partition Function

In a polyatomic molecule with many vibrations, we simplify the vibrational partition function
much as the original molecular partition function was simplified: we assume that the total
vibrational energy can be expressed as a sum of individual energies associated with each
mode, in which case, for a non-linear molecule, we have

qvib(T ) =
∑

i

e−[ε1+ε2+···+ε3N−6]i /kBT

=

∑

j (1)

e−εj(1)/kBT




∑

j (2)

e−εj(2)/kBT


 · · ·


 ∑

j (3N−6)

e−εj(3N−6)/kBT


 (10.25)

where the energies εk are the vibrational energy levels associated with each mode k, and
there are 3N − 6 such modes in a non-linear molecule (3N − 5 in a linear molecule) where
N is the number of atoms.

To evaluate the sums associated with each mode, we assume that the modes can be
approximated as quantum mechanical harmonic oscillators (QMHOs), in which case the
energy levels are given by Eqs. (9.47) and (9.48). In this case, we are offered a choice with
respect to convention. We may either take the zero of energy as the bottom of the potential
energy well on the PES, in which case the zeroth vibrational level has energy 1

2hω, or we
may take the zero of energy as the energy of the equilibrium structure plus the ZPVE, in
which case the energy of the zeroth vibrational energy level is zero for every mode. Both
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conventions are used routinely, and one must simply be careful to ensure consistency – the
entropy is independent of the choice of convention, and the internal energy varies by the
ZPVE as a function of which convention is chosen.

Here, we will adopt the convention of including the ZPVE in the zero of energy
[Eq. (10.1)], so that each zeroth vibrational level has an energy of zero. In that case, any
individual mode’s partition function can be written as

q
QMHO
vib (T ) =

∞∑
k=0

e−khω/kBT (10.26)

The sum in Eq. (10.26) is well known as a convergent geometric series, so that we may
write

q
QMHO
vib (T ) = 1

1 − e−hω/kBT
(10.27)

This is a serendipitous result, insofar as the energy level spacing for most molecular vibra-
tions is sufficiently large that significant errors would be introduced by replacing the sum
by the corresponding indefinite integral as we did successfully for translation and rotation
(such a replacement actually would amount to assuming a classical harmonic oscillator,
for which qvib = kBT /hω; by expanding the exponential in Eq. (10.27) as its corresponding
power series, one can see that the classical and quantum partition functions agree only
when kBT � hω).

Using Eq. (10.27) for each mode, the full vibrational partition function of Eq. (10.25) can
be expressed as

qvib(T ) =
3N−6∏
i=1

(
1

1 − e−hωi/kBT

)
(10.28)

where � implies a product series (the multiplicative analogy of a sum), and the upper limit
would be 3N − 5 for a linear molecule. Evaluation of the vibrational components of the
internal energy and entropy using the partition function of Eq. (10.28) provides

Uvib = R

3N−6∑
i=1

hωi

kB(ehωi/kBT − 1)
(10.29)

and

Svib = R

3N−6∑
i=1

[
hωi

kBT (ehωi/kBT − 1)
− ln(1 − e−hωi/kBT )

]
(10.30)

Note that Eqs. (10.29) and (10.30) take the vibrational frequencies as independent vari-
ables, and as such cannot be calculated ab initio without first optimizing a structure at some
level of theory and then computing the second derivatives in order to obtain the frequencies
within the harmonic oscillator approximation. (Of course, one could avoid the harmonic
oscillator approximation (see, for example, Barone 2004), but the necessary calculations and
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the less tractable vibrational partition functions restrict this choice to only the most ambitious
of calculations.)

In practice, then, it is fairly straightforward to convert the potential energy determined from
an electronic structure calculation into a wealth of thermodynamic data – all that is required
is an optimized structure with its associated vibrational frequencies. Given the many levels
of electronic structure theory for which analytic second derivatives are available, it is usually
worth the effort required to compute the frequencies and then the thermodynamic variables,
especially since experimental data are typically measured in this form. For one such quantity,
the absolute entropy So, which is computed as the sum of Eqs. (10.13), (10.18), (10.24) (for
non-linear molecules), and (10.30), theory and experiment are directly comparable. Hout,
Levi, and Hehre (1982) computed absolute entropies at 300 K for a large number of small
molecules at the MP2/6-31G(d) level and obtained agreement with experiment within 0.1 e.u.
for many cases. Absolute heat capacities at constant volume can also be computed using the
thermodynamic definition

CV =
(

∂U

∂T

)
V

(10.31)

and the various equations for components of U above.
Absolute internal energies, enthalpies, and free energies, on the other hand, are somewhat

less straightforward. From a theoretical standpoint, using the electronic energy as something
to which thermodynamic components are added is equivalent to setting the absolute zero
of energy as corresponding to all nuclei and electrons infinitely separated one from another
and at rest. In the laboratory, this is a very inconvenient zero, since the relevant elementary
particles are not easily handled. The alternative conventions in common use for reporting
H and G as determined from experiment, and the steps which must be taken so that theory
and experiment may be consistently compared, are addressed next.

10.4 Standard-state Heats and Free Energies of Formation
and Reaction

The experimental convention for assigning a zero to an enthalpy or free-energy scale is
that this is the value that corresponds to the heat or free energy of formation associated
with every element in its most stable, pure form under standard conditions (273 K, 1 atm).
Thus, for instance, the elemental standard states for the first few elements are hydrogen
gas (diatomic), helium gas (monatomic), solid lithium, solid beryllium, solid boron, solid
carbon as its graphite allostere, nitrogen gas (diatomic), oxygen gas (diatomic), fluorine
gas (diatomic), and neon gas (monatomic). Following this convention, the meaning of an
experimental heat of formation for a molecule is that it is the (molar) enthalpy change
associated with removing each of the atoms in the molecule from its elemental standard
state and assembling them into the molecule.

Put in this manner, it is easy to imagine this as a two-step procedure. There is first an
enthalpy cost to pull each atom out of its elemental standard state – always a non-negative
quantity, since the elemental standard states are chosen to be the most stable forms. This
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is followed by the enthalpy change for combining them into the molecular structure, which
is the negative of the enthalpy of atomization. As an example, the 0 K heat of forma-
tion of 2-butanone (methyl ethyl ketone, a widely used industrial solvent) is tabulated as
−51.9 kcal mol−1. The molecule is composed of eight atoms of hydrogen, four of carbon,
and one of oxygen. The enthalpy cost to split 4 moles of hydrogen gas to create 8 moles
of hydrogen atoms at 0 K is 413.5 kcal, the cost to strip 4 moles of carbon atoms from an
infinite graphite block at 0 K is 1066.8 kcal, and the cost to split one-half mole of oxygen
gas to create 1 mole of oxygen atoms at 0 K is 59.0 kcal. The 0 K atomization enthalpy of
1 mole of 2-butanone is 1591.2 kcal. Thus, the tabulated 0 K heat of formation cited above
is determined as (413.5 + 1066.8 + 59.0 − 1591.2).

An important technical point that must be mentioned here is that some attention must be
paid to the states of the atoms to ensure that the difference between the molecular atomization
enthalpy and the enthalpies of formation of the atoms is carried out consistently. When one
atomizes a species like 2-butanone experimentally, each resulting atom will typically contain
a number of spin-unpaired electrons equal to its number of formal bonds in the molecule
(because each bond is being ruptured into two unpaired electrons, one on each atom formerly
involved in the bond). Thus, for instance, each carbon atom will have four unpaired electrons,
corresponding to the quintet S (5S) term of the atom. However, this is not the ground state
of the carbon atom (the ground state is 3P), so the value of 1066.8 kcal noted above for the
enthalpy change associated with stripping 4 moles of carbon atoms from a graphite block
may, under some experimental conditions, be measured as 680.6 kcal, the cost to generate
the 4 moles of C atoms in their 3P ground state, plus 4 × 96.5 kcal mol−1, where the latter
energy is the molar enthalpy cost to excite an atom of C from 3P to 5S.

When one speaks of a computational atomization energy for a molecule, it should be
carefully specified whether the energies of the product atoms are being computed in their
ground states or in excited states that may be more convenient to work with for one reason
or another. This specification is also critical to determining a computed heat or free energy
of formation, as described next.

10.4.1 Direct Computation

Direct computation of a molecular heat or free energy of formation is something of a
misnomer, since it would imply computing the difference in H or G for some molecule
compared to the reference elemental standard states. Such a calculation might readily be
imagined for a molecule like HF, because the standard states of H and F are gaseous
diatomics. However, carrying out a high-level quantum mechanical calculation on an infi-
nite block of graphite is another matter altogether. As a result, almost all so-called direct
computations of heats of formation are carried out as illustrated in Figure 10.1. All quan-
tities in the large inset region are computed relative to the theoretical zero of energy (all
nuclei and electrons infinitely separated and at rest). To determine a standard-state molecular
thermodynamic quantity, the computed energy difference between the molecule and its
constituent atoms is added to the experimental thermodynamic value determined for the
identical atoms. For instance, if we wanted to predict the 298 K heat of formation above
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Figure 10.1 Graphical illustration of the procedure for predicting enthalpies and free energies of
formation from computation

we would slide the entire inset region down until the computed H298 and experimental
�H o

f,298 bars for the atoms overlapped; then, the position of the molecular H298 would be
the predicted value for the molecular �H o

f,298. (Note that, for ease of illustration, all molec-
ular energies are shown here as higher than the corresponding atomic energies, but this is
certainly not a requirement, and negative molecular heats and free energies of formation are
common.) Thus, a theoretical level is chosen for the computation of the electronic energies
of the molecule and its constituent atoms. Either the same or potentially a different level of
theory is chosen for the calculation of the thermal contributions to the enthalpy and entropy.
The difference between the computed quantities for the molecule and its constituent atoms
is then added to the experimental quantity associated with the atoms to determine the final
theoretical value.

The three quantities that are most routinely employed in practice are the 0 K enthalpy
of formation, the 298 K enthalpy of formation, and the 298 K free energy of formation.
Enthalpies of formation are also commonly known as heats of formation. The values of
these quantities for most of the elements in the first two rows of the periodic table are
provided in Table 10.2. Also listed in the table are the spin–orbit corrections for atoms
having P ground states. Experimental data refer to the lower energy spin–orbit state, but
calculations that do not include a (relativistic) spin–orbit operator in the Hamiltonian fail
to account for the energy lowering associated with this coupling. To make the experimental
and computational levels for the atoms consistent with one another (see Figure 10.1) the
spin–orbit correction must be added to theoretical atomic energies.

A technical point associated with Figure 10.1 bears mention. If one overlaps the computed
and experimental atomic values for any one quantity, there is no guarantee (and indeed it is
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Table 10.2 Experimental �H o
f,0,�H o

f,298, �Go
f,298 values and spin–orbit corrections

(kcal mol−1) for the atoms

Atom �H o
f,0

a �H o
f,298

a �Go
f,298

a Spin–orbitb

H (2S) 51.63 ± 0.001 52.103 43.93
Li (2S) 37.69 ± 0.20 38.074 28.19
Be (1S) 76.48 ± 1.20 77.438 67.73

75.8 ± 0.8c 76.75 ± 0.8c 66.04 ± 1.2c

B (2P) 136.2 ± 0.2 133.84 122.91 ± 0.2 −0.03
C (3P) 169.98 ± 0.10 171.29 160.03 −0.09
N (4S) 112.53 ± 0.02 112.97 102.05 ± 0.02
O (3P) 58.99 ± 0.02 59.553 48.08 −0.23
F (2P) 18.47 ± 0.07 18.97 7.66 −0.38
Na (2S) 25.69 ± 0.17 25.645 14.70
Mg (1S) 34.87 ± 0.20 35.158 24.57
Al (2P) 78.23 ± 1.00 78.800 67.08 −0.21
Si (3P) 106.6 ± 1.9 107.55 95.59 −0.43

108.1 ± 0.5c 109.0 ± 0.5c 97.1 ± 0.5c

P (4S) 75.42 ± 0.20 75.619 64.00
S (3P) 65.66 ± 0.06 66.200 54.25 −0.56
Cl (2P) 28.59 ± 0.001 28.991 17.23 −0.84

aAll data, unless otherwise noted, are from the JANAF tables, see Chase, M. W., Jr. 1998. J. Phys.
Chem. Ref. Data, Monograph 9, 1, for most recent versions.
bAmount by which lower energy spin–orbit state lies below unsplit term, see Moore, C. Natl. Bur.
Stand. (US) Circ 467, 1952.
cEstimates considered to improve on experimental values, see Ochterski, J. W.; Petersson, G. A.;
Wiberg, K. B. 1995. J. Am. Chem. Soc., 117, 11299.

unlikely) that the atomic levels will overlap for the other two quantities. As a consequence,
one cannot compute, say, �H o

f,298 for the molecule by overlapping the atomic levels for H0

and then taking the level of H298 as �H o
f,298. From inspection of Figure 10.1, this would be

equivalent to computing the 298 K heat of formation as

�H o
f,298(M) = E(M) + ZPVE(M) + [H298(M) − H0(M)] −

atoms∑
z

E(Xz) +
atoms∑

z

�H o
f,0(Xz)

(10.32)

where molecule M is composed of constituent atoms X. This is not valid. The correct proce-
dure is instead to overlap the theoretical and experimental atomic H298 values and then read
off the molecular 298 K heat of formation, as detailed in the caption to Figure 10.1. This
procedure is expressed mathematically as

�H o
f,298(M) = E(M) + ZPVE(M) + [H298(M) − H0(M)]

−
atoms∑

z

{E(Xz) + [H298(Xz) − H0(Xz)]} +
atoms∑

z

�H o
f,298(Xz) (10.33)

The reason the former procedure fails is that the theoretical reference state is taken
to be a constant temperature (0 K, by virtue of particles being taken to be at rest), but
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the elemental standard states are not, and thus the combinations of the last two terms on
the r.h.s.s of Eqs. (10.32) and (10.33) are not equal. It is probably simplest to see this
by considering the example of molecular hydrogen. Its translational enthalpy is given by
Eq. (10.16) as ( 3

2 )RT . So, at 0 K it has no translational enthalpy and at 298 K it has
roughly 0.9 kcal mol−1 of such enthalpy. Analogous changes are associated with rotation
and vibration. However, molecular hydrogen is the elemental standard state, so it is defined
experimentally to have a zero heat of formation at whatever temperature. Thus, when we
compute the 298 K thermal contributions to the enthalpy of two H atoms, we determine
from theory an absolute translational contribution of 3RT (again from Eq. (10.16) now
applied to two separate particles), but experimentally we would only obtain 3

2RT for this
term, since the reference elemental standard state also has increased absolute enthalpy
at 298 K.

Having discussed in detail how to go about computing heats and free energies of formation,
we should now consider how useful typical electronic-structure methods are for that purpose.
The somewhat disappointing answer is that most single levels of theory are disastrously
bad, with the problem lying primarily in the computation of �E between the molecule
and its constituent atoms (the leftmost vertical line in Figure 10.1). As there is vastly more
correlation energy in a molecule, with its collection of bonded pairs of electrons, than there is
in a collection of atoms, and as practically affordable correlated electronic-structure methods
capture at best perhaps 70–90% of the correlation energy, the differential error can be very
large. Only with very, very small molecules is it possible to apply a single sufficiently high
level of theory to accurately compute heats and free energies of formation ab initio. However,
a number of different approaches employing varying degrees of semiempiricism have been
promulgated to improve on this situation.

10.4.2 Parametric Improvement

In Section 7.7, parametric methods for improving the quality of correlated electronic-
structure calculations were discussed in detail. Similarly, in Section 8.4.3, the mild
parameterization of density functional methods to give maximal accuracy was described.
Given that background, and the substantial data presented in those earlier chapters,
this section will only recapitulate in a rough categorical fashion the various approaches
whose development was motivated by a desire to compute more accurate thermochemical
quantities.

Most attention has been focused on the computation of Eelec, because even fairly modest
levels of theory can compute molecular geometries and vibrational frequencies sufficiently
accurately to give good ZPVEs and thermal contributions, particularly if the frequencies are
scaled by an appropriate factor (see Section 9.3). The simplest approach to improved Eelec

estimation is to scale it as a raw value as well, and this is the formalism implicit in the
PCI-80 and SAC methods described in Section 7.7.1.

At a higher level of complexity, correlation energies are computed assuming that effects
associated with basis-set incompleteness and, say, truncated levels of perturbation theory,
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can be corrected for in a piecewise fashion. Such extrapolation schemes are described in
Section 7.7.2, and specific recipes for extrapolation are at the heart of the G2 and G3 methods
and the various CBS methods. Of course, scaling and extrapolation need not be mutually
exclusive, and the combination of the two is the hallmark of the multicoefficient methods
described in Section 7.7.3.

The G2 and G3 methods go beyond extrapolation to include small and entirely general
empirical corrections associated with the total numbers of paired and unpaired electrons.
When sufficient experimental data are available to permit more constrained parameterizations,
such empirical corrections can be associated with more specific properties, e.g., with
individual bonds. Such bond-specific corrections are employed by the BAC method described
in Section 7.7.3. Note that this approach is different from those above insofar as the
fundamentally modified quantity is not Eelec, but rather �H . That is, the goal of the method
is to predict improved heats of formation, not to compute more accurate electronic energies,
per se. Irikura (2002) has expanded upon this idea by proposing correction schemes that
depend not only on types of bonds, but also on their lengths and their electron densities at
their midpoints. Such detailed correction schemes can offer very high accuracy, but require
extensive sets of high quality experimental data for their formulation.

Finally, hybrid DFT methods have a somewhat murky status with respect to their
parameters, with some being founded on theoretical arguments while others are unabashedly
empirical in their design to give improved agreement with experiment. From a practical
standpoint, the hybrid DFT methods tend to offer the lowest overhead with respect to
bookkeeping: all computed quantities in Figure 10.1 can usually be determined conveniently
from a single level of theory. As noted in Chapter 8, however, the best DFT results are
still somewhat less reliably accurate than the best multilevel models, although it must be
borne in mind that the latter tend to be considerably more expensive than the former. As
might be expected given their success in the context of MO theoretical methods, the use of
bond additivity correction schemes to improve DFT performance has begun to be explored
(see, for instance, Cloud and Schwartz 2003 and Winget and Clark 2004), as has the use of
multicoefficient models (Zhao, Lynch, and Truhlar 2004).

One point meriting additional discussion concerns dispersion. Most of the databases used
to validate the predictive ability of different theoretical models for heats of formation have
been restricted to fairly small molecules. As such, there are few examples of molecules
having different portions that interact with one another through London dispersion forces
(as might be expected for a coiled long-chain alkane in the gas-phase, for instance). While
the highly correlated MO-theory based models should perform acceptably for such cases
(if cost is not prohibitive), DFT models would be expected to do less well, since they
do poorly in general in predicting weak non-bonded interaction energies. This is also true
for NDDO models, but these are already sufficiently inaccurate on average that failure to
account for dispersion may not necessarily lead to substantially increased error. In any case,
the magnitude of the error for DFT and NDDO models would be expected to increase with
molecular size, so this is a source of some concern. Resolution of this issue will require
greater attention to large molecules for which accurate data are available (see, for example,
Winget and Clark 2004).
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10.4.3 Isodesmic Equations

An alternative method for computing heats (or free energies) of formation involves
consideration of a balanced chemical equation, e.g.,

mA + nB −−−→ rC + sD (10.34)

where A, B, C, and D are molecules and m, n, r , and s indicate the number of moles of
each in the balanced equation. The heat of reaction for a chemical transformation is defined
as the difference between the heats of formation of the products and those of the reactants
when these are defined relative to consistent standard states. For the reaction of Eq. (10.34),
we would have

�H o
rxn,298 = [r�H o

f,298(C) + s�H o
f,298(D)] − [m�H o

f,298(A) + n�H o
f,298(B)] (10.35)

where we have arbitrarily selected 298 K as the temperature of interest. Note that the
standard-state symbol on the heat of reaction (as opposed to the heats of formation) does not
imply the use of elemental standard states to assign a zero of enthalpy. Because the reaction
is balanced, the standards used to define the zeroes for the heats of formation must cancel
out on the two sides of the equation. So it is equally valid to write

�H o
rxn,298 = [rH298(C) + sH298(D)] − [mH298(A) + nH298(B)] (10.36)

where H298 is the quantity typically addressed theoretically, i.e., the enthalpy relative to all
nuclei and electrons infinitely separated and at rest.

Insofar as the r.h.s. of Eq. (10.35) must then be equal to the r.h.s. of Eq. (10.36), if the
experimental heats of formation for all but one of the species in Eq. (10.34) are known (say
B), we may rearrange our equality to determine this quantity as

�H o
f,298(B) = −1

n
{[rH298(C) + sH298(D)] − [mH298(A) + nH298(B)]

− [r�H o
f,298(C) + s�H o

f,298(D)] + m�H o
f,298(A)} (10.37)

This technique at first seems rather cumbersome, since we must perforce compute H298 for
four different species in this example, but it has one great advantage over the apparently
simpler a priori calculation of a single heat of formation, and that is that the difficulty
in computing heats of atomization can be avoided. As noted above, computed heats of
atomization tend to be highly inaccurate unless heroic levels of theory are employed, because
the correlation energies for the electrons in the atoms and in the molecule are so enormously
different. However, assuming experimental data are available, we may select our balanced
chemical Eq. (10.34) in such a way that the various bonds on the left- and right-hand
sides are essentially identical. That being the case, we would expect bond-by-bond errors
in correlation energy to largely cancel in the computed heat of reaction (the top line on the
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r.h.s. of Eq. (10.37)) so that any error might be no larger than the errors associated with the
experimentally measured heats. Such a reaction is called ‘isodesmic’.

As a specific example, we might seek the heat of formation of 6-methylquinoline, the size
of which is such that application of a methodology like G3 would be computationally rather
intensive. However, consider the isodesmic reaction

+

N

CH3

+

CH3

N

(10.38)

where 6-methylquinoline is now molecule ‘B’ of Eq. (10.34). So long as heats of formation
for the common molecules naphthalene, quinoline, and 2-methylnaphthalene are known,
we may then compute enthalpies for all four species and predict the heat of formation of
6-methylquinoline using Eq. (10.37). Note that, by construction, all of the bonds on the l.h.s.
of Eq. (10.38) are essentially identical to those on the r.h.s. (they are only non-identical once
one starts to define them not only according to the two atoms which are bonded, but based
on their distant neighbor atoms as well). As such, we might expect a much more affordable
level of theory, say a DFT calculation, to be useful in the evaluation of Eq. (10.37).

Note that the construction of an isodesmic equation is something of an art, depending on
chemical intuition and available experimental data. In the above situation, if an experimental
heat of formation for quinoline were not available, we might decide to resort to a reaction like

+

N

CH3

N

+

CH3

(10.39)

While this reaction is still balanced, it is less ideal than Eq. (10.38). For instance, on the
r.h.s. of Eq. (10.39), there are two aromatic C–H bonds where the carbon atom is bonded
to a nitrogen, but on the l.h.s. there is only one. As a result, we might be forced to go to
higher levels of theory to ameliorate any error this might introduce. In the extreme, one can
imagine balanced reactions like

+

N

CH3

17 H2 10 CH4 +   NH3 (10.40)

The necessary experimental heats of formation are known to exquisite accuracy (or defined
as zero, in the case of H2), and the calculations will be trivial for such small molecules,
but accurately accounting for the enormous differences in the natures of the bonds on the
two sides of Eq. (10.40) will require levels of electronic-structure theory nearly as high as
those that would be necessary for a direct or parametric computation on 6-methylquinoline
alone. The one virtue of Eq. (10.40), which is an example of a ‘bond separation reaction’, is
that the total amount of unpaired electron spin on the two sides of the reaction is the same
(in this case, zero); such a reaction is called ‘isogyric’. Note that atomization processes are
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generally not isogyric, and this is an important factor in the large change in correlation
energy associated with atomization.

Note that the above discussion can be rephrased in a very transparent way: a good
isodesmic equation should predict a near-zero heat of reaction. The larger the predicted
change in enthalpy, the greater the chance that lower levels of theory will fail to accurately
account for energetic differences between dissimilar bonds. Note that just because a reaction
does predict an overall enthalpy change near zero does not necessarily imply that the bonds
on both sides are similar – large changes in one type may be offset by similarly large
changes in another type – thus a near-zero heat of reaction is a necessary but not sufficient
condition for an ideal isodesmic equation (for a mathematically more sophisticated approach
to employing various isodesmic reactions, see Fishtik, Datta, and Liebman 2003).

These points are illustrated in more detail for the case of singlet p-benzyne, which has
already been the subject of some discussion in preceding chapters. Consider the following
three isodesmic reactions that might be used to determine its heat of formation:

+

H

H H

H•

•

H

H H

H

H

H

H

H

H

H
H H + (10.41)

2 CH4 +

H

H H

H•

•

2 CH3 +

H

H H

H
•

H

H

(10.42)

+

H

H H

H•

•

H

H H

H

H

H

H

H H

H•

H

2 (10.43)

The issue of isogyricity is a bit tricky in this instance, since p-benzyne is a ground-state
singlet, but the coupling between the highest energy pair of electrons is very small. Table 10.3
indicates the heats of reaction computed for each of Eqs. (10.41)–(10.43) and the heats of
formation determined for p-benzyne (using Eq. (10.37) and the experimentally available data
for the methyl radical, methane, acetylene, ethylene, the phenyl radical, and benzene) at the
CASPT2 and CCSD(T) levels; in each case, the equivalent of a basis set roughly triple-ζ
in quality was used. Note that Eq. (10.43) is predicted to be the most nearly thermoneutral
(which seems intuitively reasonable) and using it both levels of theory make predictions
within the experimental error for �H o

f,298(p-benzyne). Equation (10.41) is predicted to be
highly exothermic, because the r.h.s. has an extra π bond in acetylene compared to ethylene,
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Table 10.3 Predicted heats of reaction and p-benzyne heats of formation
(kcal mol−1) using isodesmic Eqs. (10.41)–(10.43)

Isodesmic equation

Theory Quantity (10.41) (10.42) (10.43) Experiment

CASPT2 �H o
rxn,298 −68.1 −10.8 4.4

�H o
f,298 129.6 136.1 138.2 138.0 ± 1.0

CCSD(T) �H o
rxn,298 −76.0 −15.1 5.4

�H o
f,298 137.5 140.5 137.2 138.0 ± 1.0

and this degrades the performance of CASPT2. The CCSD(T) level, on the other hand,
captures enough correlation energy (or enjoys some fortuitous cancellation of errors) that
this equation gives an accurate heat of formation as well. Finally, Eq. (10.42), which involves
exchanging aromatic C–H bonds for sp3 C–H bonds causes both levels of theory to fall
outside the experimental error bars by about 1 kcal mol−1.

10.5 Technical Caveats

10.5.1 Semiempirical Heats of Formation

Recall that semiempirical methods were parameterized in such a way that the computed
electronic energies were equated with heats of formation, not computed enthalpies. Thus,
when a semiempirical electronic structure program reports a 298 K heat of formation for
AM1, for instance, the reported value derives from adding the atomization energy �E to
the experimental 298 K heats of formation of the atoms. Inspection of Figure 10.1 indicates
that this will differ from the rigid-rotor-harmonic-oscillator computed result by ZPVE and
the differential thermal contributions to the enthalpy of the molecule compared to the atoms.

As a result, the ‘correct’ way to compute a heat of formation with a semiempirical
Hamiltonian is somewhat ambiguous. Since experimental data were used to optimize the
parameters, the ZPVE and differential thermal contributions have been absorbed into the
semiempirical parameters, so one is not necessarily improving things by adding these
quantities post facto. On the other hand, to the extent ZPVE and thermal contributions
are included in the parameters, it is in a very average way, and by no means consistent
with rigorous statistical mechanics. In the end, individual investigators must decide for
themselves, on the basis of what they are studying, whether to compute thermodynamic
variables at the semiempirical level or simply to accept the electronic energies as having the
status of enthalpies.

10.5.2 Low-frequency Motions

In the limit of a particular vibration going to zero, we see from Eq. (10.1) that it ceases to
contribute to the zero-point vibrational energy. However, it is less obvious what happens to
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the molar internal energy, since in Eq. (10.29), both the numerator and the denominator of
the term associated with the vanishing frequency go to zero. However, if we examine this
behavior using a power series expansion for the exponential, we see that

lim
ω→0

[
R

hω

kB(ehω/kBT − 1)

]
= lim

ω→0




Rhω

kB

[
1 + hω

kBT
+ 1

2!

(
hω

kBT

)2

+ · · · − 1

]



= lim
ω→0


 Rhω

kB

(
hω

kBT

)



= RT (10.44)

Thus, each vanishing frequency contributes a factor of RT to the molar internal energy (and
thus the enthalpy).

Equation (10.44) can also be used to indicate that the first term in brackets on the r.h.s. of
Eq. (10.30) goes to 1 as the frequency vanishes. However, if we examine the second term
in brackets on the r.h.s. of Eq. (10.30), we discover

lim
ω→0

[−R ln(1 − e−hωi/kBT )] = lim
ω→0

{
−R ln

[
1 − 1 + hω

kBT
− 1

2!

(
hω

kBT

)2

+ · · ·
]}

= lim
ω→0

[
−R ln

(
hω

kBT

)]
= ∞ (10.45)

which is certainly not a very pleasant result, since free energies will become infinitely
negative with infinitely positive entropies. A careful analysis of Eq. (10.45) also indicates
that small errors in very small non-zero frequencies can lead to very large errors in entropies.
Unfortunately, it is precisely for low-frequency motions that we typically expect the harmonic
oscillator approximation to be most poor. Thus, when a molecule is characterized by one
or more very low-frequency vibrations, it is usually best not to discuss the molecular free
energy, but instead restrict oneself to enthalpy or internal energy.

Note that there is nothing ‘wrong’ with Eq. (10.45). The entropy of a quantum mechanical
harmonic oscillator really does go to infinity as the frequency goes to zero. What is wrong
is that one usually should not apply the harmonic oscillator approximation to describe those
modes exhibiting the smallest frequencies. More typically than not, such modes are torsions
about single bonds characterized by very small or vanishing barriers. Such situations are
known as hindered and free rotors, respectively.

More accurately, ‘free rotor’ is used to imply any torsion having a barrier substantially
below kBT . In such a situation, the contribution of the free rotor to the molar internal
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energy is
Ufree rotor = 1

2RT (10.46)

i.e., only half that computed for a harmonic oscillator using Eq. (10.44). The contribution
of a free rotor to the entropy is given by

Sfree rotor = R

{
ln
[
(8π3IintkBT )1/2

σinth

]
+ 1

2

}
(10.47)

where σint and Iint are the reduced symmetry numbers and moments of inertia associated
with the free rotor. The definitions for these quantities may be found in the definitive work
of Pitzer and Gwinn (1942) on this subject.

Pitzer and Gwinn have also provided tables to determine the thermodynamic contributions
of hindered rotors (those having torsional barriers on the order of kBT ) when such rotors
are well described by the torsional potential

Ehindered rotor = 1
2V (1 − cos σintθ) (10.48)

where V is the torsional barrier height and θ is the torsion angle. For the most careful work,
this is the appropriate treatment to employ.

Note that if the torsional barrier is considerably greater than kBT , then the harmonic
oscillator approximation is as valid as for any vibration, and no special precautions need
be taken.

10.5.3 Equilibrium Populations over Multiple Minima

It is not uncommon for a single molecule to have multiple populations. At non-zero
temperatures, the population of different conformations will be dictated by Boltzmann
statistics. If we make the approximation that we may neglect the continuous character of
conformational space and simply work with discrete potential energy minima, we can replace
a statistical mechanical probability integral with a discrete sum, and the equilibrium fraction
F of any given conformer A at temperature T may be computed as

F(A) = e−Go
A/RT∑

i

e−Go
i
/RT

(10.49)

where i runs over all possible conformers, each characterized by its own free energy Go. In
measurements on systems at equilibrium, it is rarely possible to determine the free energies
of individual components of the equilibrium. Rather, one refers to the free energy of the
whole equilibrium population, which may be written

Go
{A} = −RT ln

∑
i∈{A}

e−Go
i
/RT (10.50)



378 10 THERMODYNAMIC PROPERTIES

where {A} emphasizes computation over the population of all conformers of A (where this
set can include structures differing only by atom labeling, as detailed further in Appendix
B). Free-energy changes, then, between two species each of which exist as populations over
multiple conformers, must be computed as the difference between their averages. Note that
the formalism of Eq. (10.50) may also be applied to determine averaged transition state free
energies provided multiple transition state structures exist all of which lead to the same
product; the difference between an averaged reactant free energy and an averaged transition
state free energy defines a free energy of activation.

In fortunate instances, one conformer in a population has a free energy that is much lower
than that of any of the other possibilities. Inspection of Eq. (10.50) makes clear that in that
instance, only the low-energy term contributes significantly to the sum, in which case that
free energy may be taken as the population free energy.

10.5.4 Standard-state Conversions

Two issues associated with thermodynamic standard states bear some further attention. The
first is associated with the enthalpy of ions. Ion heats of formation may be defined based on
the heats of ionization of neutral molecules (or electron attachments thereto). For example,
one might consider a reaction like

A −−−→ A+ž + e− (10.51)

and define the heat of formation of the radical cation A+ž as the sum of the heat of formation
of A and the enthalpy change for Eq. (10.51). In that case, however, one needs to assign a
heat of formation to the free electron. The thermal electron convention takes the free electron
as the ‘electron standard state’, i.e., its enthalpy of formation is always zero. The so-called
ion convention, on the other hand, takes the electron at rest to be the standard state (this is
the usual theoretical convention as well, recall), and predominates in the mass spectrometric
literature. The conversion between the two is straightforward, namely

�H o
f,T (Xq) = �H o′

f,T (Xq) + 5
2qRT (10.52)

where superscript ‘o’ represents the thermal electron standard state, superscript ‘o′’ represents
the ion convention standard state, and q is the signed charge on X.

A separate issue arises in the discussion of standard-state free energies. Recall that the
entropy of translation requires a concentration specification to be included as part of the
standard-state conditions. Different tabulations of data often adopt different concentration
conventions, and it is very important that care be taken to ensure consistent comparisons.
To convert from one convention to another, we write

�Go′ = �Go + RT ln

(
Qo′

Qo

)
(10.53)
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where Q is the reaction quotient (i.e., the ratio of concentrations that appear in the equilibrium
constant) evaluated with all species at their standard-state concentrations, expressed so that
the logarithm is dimensionless. As an example, consider the gas-phase condensation reaction

A + B −−−→ C (10.54)

where we will define the ‘o’ standard state to imply all species at 1 atm pressure and the ‘o′’
standard state to imply all species in the gas phase at 1 mol L−1. If A, B, and C are ideal
gases, their concentration at 1 atm may be derived from the ideal gas law as 1

24.5 mol L−1

at 298 K. Since the reaction quotient Q is [C]/[A][B], Eq. (10.53) becomes

�Go′ = �Go + RT ln




1

1 · 1
24.5 · 24.5

24.5




= �Go − RT ln(24.5) (10.55)

Additional standard-state issues can arise in condensed phases, and these will be dealt with
in subsequent chapters.

10.5.5 Standard-state Free Energies, Equilibrium Constants,
and Concentrations

While our focus has been primarily on thermodynamic quantities, like free energy, it should
be borne in mind that the ultimate motivation for computing free energy differences is usually
to permit calculation of chemical concentrations in actual systems. To accomplish this for a
generic equilibrium is straightforward. For example, consider the following reaction (chosen
in a completely arbitrary fashion)

A + B + C ⇀↽ 2D + E (10.56)

From the relationship between the equilibrium constant and the free energies of the reactants
and the products we may write

[D]2[E]

[A][B][C]
= e−�Go/RT (10.57)

where the standard-state symbol on the free energy change dictates the units used for the
concentrations of the species. Thus, if we were carrying out all free energy calculations
for gas-phase species at 1 atm pressure, we would express the reactant and product
concentrations in those units. Stoichiometry then permits Eq. (10.57) to be rewritten as

(2x)2x

(p0,A − x)(p0,B − x)(p0,C − x)
= e−�Go/RT (10.58)
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where x is the concentration of E (and half the concentration of D) in units of partial pressure
at equilibrium, and the initial partial pressures of reactants A, B, and C appear as constants
in the denominator on the l.h.s. of Eq. (10.58). Note that the sign of the free energy change
for Eq. (10.56) is only predictive of the side to which the equilibrium shifts when all species
are initially present at their unit standard-state concentrations. All other situations require
explicit evaluation of equations like Eq. (10.58) in order to determine the final concentrations
predicted at equilibrium.

One variation on this theme that should be borne in mind when analyzing actual chemical
situations is that certain species in the real system may be ‘buffered’. That is, their
concentrations may be held constant by external means. A good example of this occurs
in condensed phases, where solvent molecules may play explicit roles in chemical equilibria
but the concentration of the free solvent is so much larger than that for any other species that
it may be considered to be effectively constant. Modeling solvation phenomena in general is
covered in detail in the next two chapters, but it is instructive to consider here a particular
case as it relates to computing equilibria. Consider such a reaction as

3(AžS) ⇀↽ Bž2S + S (10.59)

That is, three monosolvates of A are in equilibrium with a disolvate of trimeric B (i.e.,
B = A3) and a liberated solvent molecule. A rather typical protocol for evaluating the ratio
of monomer to trimer in solution would be the following: (i) compute the gas-phase free
energies of A·S, B·2S, and S at the appropriate temperature and a partial pressure of 1 atm
(the default in most electronic structure programs), (ii) add to these gas-phase free energies
the appropriate solvation free energies (usually computed assuming no change in standard-
state concentration, as described in Chapters 11 and 12), and (iii) convert the free-energy
change on going from reactants to products to standard-state units of 1 M concentration
following the protocol of Eq. (10.55) because this is the more conventional standard state in
solution. Having accomplished this, we would then be able to write

(x/3)[S]0

(x0,AžS − x)3
= e−�Go′

/RT (10.60)

where x is the moles of A monosolvate converted at equilibrium to x/3 moles of trimeric
B disolvate and [S]0 is the concentration of the solvent (determined from its density and
molecular weight). To cement this example with actual values, imagine the solvent to be
water ([S]0 = 55.56 M) and, for a particular choice of A and B, the free energy change
in solution (i.e., for the ‘o′’ standard state) to be −3.0 kcal mol−1. If we take the starting
concentration of A monosolvate (x0,AžS) to be 0.2 M, we determine from solving the cubic Eq.
(10.60) that at equilibrium x is 0.037 M, which is to say that there is about one molecule of
Bž2S for every 16 molecules of AžS. The failure of the reasonably large negative free-energy
change to lead to substantial trimerization seems paradoxical only if one forgets that that
negative number refers specifically to all species being at their standard-state concentrations
(1 M)–actual systems may be quite far from that reference point.
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10.6 Case Study: Heat of Formation of H2NOH

Synopsis of Saraf et al. (2003) ‘Theoretical Thermochemistry: ab initio Heat of Formation
for Hydroxylamine’.

Hydroxylamine (H2NOH) is a highly reactive molecule. As such, handling bulk quantities
poses significant safety concerns, and indeed serious accidents occurred in 1999 and 2000
with this molecule in industrial settings. A direct measurement of the 298 K gas-phase
enthalpy of formation of hydroxylamine is not available. Data from the solid phase have
been interpreted to suggest a value of −12.0 ± 2.4 kcal mol−1, but so large an uncertainty
suggests that theory might prove useful in providing an improved estimate of this quantity,
and this in turn might aid in the design of reaction conditions for reactors containing
hydroxylamine. With that goal in mind, Saraf et al. surveyed a very large number of
different levels of theory, including composite levels, to assess their likely utility for
this task.

We consider here three different reaction protocols for predicting the enthalpy of
formation of H2NOH:

H2NOH ⇀↽ 3H + N + O (10.61)

H2 + H2NOH ⇀↽ NH3 + H2O (10.62)

H2O + H2NOH ⇀↽ NH3 + H2O2 (10.63)

The latter two equations were used by Saraf et al. since the 298 K gas-phase enthalpies of
formation of hydrogen, water, and ammonia are all known to very high accuracy. Thus, the
procedures outlined in Section 10.4.3 may be used to compute the unknown hydroxylamine
enthalpy of formation. As isodesmic equations go, Eq. (10.62) is not particularly good. The
H−H and N−O bonds appearing on the l.h.s. are replaced by new N−H and O−H bonds
on the r.h.s., and there is not much reason to expect these bonds to have similar errors in
computed correlation energies. Eq. (10.63) is an improvement to the extent that the only
major difference in bonding from the l.h.s. to the r.h.s. is the change of an N−O bond to an
O−O bond. As both bonds are heteroatom to heteroatom for first-row atoms, we may expect
a much more favorable cancellation of errors. Saraf et al. did not discuss the atomization
energy, Eq. (10.61), which is in some sense the worst possible isodesmic reaction (perhaps
one should call it the nihildesmic reaction) However, in the limit of perfect accuracy there
is no need for the systematic cancellation of errors that isodesmic reactions are designed
to provide, so we will consider Eq. (10.61) here for comparison.

As can be seen in Table 10.4, AM1 semiempirical theory is poorly suited for this
application. With a polarized valence-double-ζ basis set, HF theory provides surprisingly
good agreement with much higher levels of theory, but this is a case of fortuitous
cancellation of errors, since use of a polarized valence-quadruple-ζ basis set decreases
that agreement. The B3LYP model with a good basis set provides predictions that are not
overall particularly much of an improvement over HF theory. The MP2 level with a large
basis set does better for the more balanced isodesmic equation (10.63), but fares poorly
with Eq. (10.62). Some improvement can be had with CCSD(T), but the cost of such a
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Table 10.4 Predicted 298 K enthalpies of formation (kcal mol−1) for hydroxylamine

From

Level of theory Eq. (10.61) Eq. (10.62) Eq. (10.63)

AM1 −32.34 −31.31
HF/cc-pVDZ −12.14 −12.02
HF/cc-pVQZ −8.83 −13.06
B3LYP/aug-cc-pVTZ −12.18 −9.69
MP2/cc-pVQZ −8.61 −12.09
CCSD(T)/cc-pVQZ// −11.56 −10.61
CCSD(T)/cc-pVDZ
BAC-MP4 −12.98 −11.09
G2 −10.60 −11.78 −11.53
G2MP2 −11.46 −11.69 −11.67
G3B3 −10.02 −11.51 −11.53
G3 −9.36 −11.15 −11.28
CBS-Q −10.03 −12.18 −11.16
Statisticala −10.29 ± 0.70 −11.66 ± 0.34 −11.43 ± 0.19
aAverage ± standard deviation from G2, G2MP2, G3B3, G3, and CBS-Q.

calculation far exceeds every other entry in the table. Since the G2, G2MP2, G3B3, G3,
and CBS-Q models (all discussed in Chapter 7) are cheaper than CCSD(T)/cc-pVQZ and
moreover designed specifically for the purpose of computing enthalpies of formation, there
is ample reason to focus more closely on their performance.

Rather than attempting to rationalize why any one of these composite levels might
be more or less good than another, let us examine their joint performance. The final
row of Table 10.4 provides the means and standard deviations of the predicted �H o

f,298
(H2NOH) values from these levels for Eqs. (10.61) to (10.63). The largest standard
deviation is associated with Eq. (10.61), the next largest with Eq. (10.62), and the smallest,
only 0.19 kcal mol−1, with Eq. (10.63). This trend is entirely consistent with the above
discussion of the relative quality of the three isodesmic equations, and provides some
quantitative feel for how difficult the accurate computation of an atomization energy really
is. Given this analysis, it appears reasonable to take the average value from the last five
methods and Eq. (10.63) as a best estimate: −11.4 kcal mol−1. Further support for this
choice comes from considering a different reaction, namely

H2 + H2O2 ⇀↽ 2H2O (10.64)

Note that this is the analog to Eq. (10.62) with hydrogen peroxide replacing hydroxylamine.
In this case, all enthalpies of formation are known experimentally to high accuracy, so the
performance of the various theoretical models may be directly assessed. Applying the same
averaging procedure, one finds that the models predict an enthalpy of formation for H2O2

that is too negative by 0.3 kcal mol−1. Note that if one assumes that this correction may be
applied to the results from Eq. (10.62) for hydroxylamine, one predicts −11.4 kcal mol−1,
in perfect agreement with the uncorrected results from Eq. (10.63).

Note that the average atomization energy prediction differs from −11.4 kcal mol−1 by
only 1.1 kcal mol−1, which is about the range of accuracy typically quoted for the models
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involved. However, some of the individual models are off by still more (e.g., G3), which
illustrates the utility of exploring multiple methods to ensure that one is not victimized by
an otherwise unusual failure in accuracy.

Finally, although not discussed by Saraf et al., it is noteworthy that H2NOH has two
local minima, one with the O−H bond anti to the N lone pair and one with the O−H
bond eclipsing it. The latter is computed to be 4.38 kcal mol−1 lower in free energy than
the former at 298 K, a result that is entirely in concert with intuition. All of the results
discussed here are indeed for the correct local (global) minimum, but one should always
be aware that as systems become more complex more effort may need to be expended in
order to ensure that one is indeed working with the global minimum in one’s computations.
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11
Implicit Models for Condensed
Phases

11.1 Condensed-phase Effects on Structure and Reactivity

The gas phase is delightful in its simplicity. At low to moderate pressures, molecules may
be treated as isolated, non-interacting species, and this facilitates theoretical modeling enor-
mously, insofar as the system of interest is entirely defined by the molecule itself. Were
theory to restrict itself to the gas phase, however, it would be inapplicable to vast tracts of
chemistry, to include essentially all of biochemistry.

Of course, one can carry out accurate gas-phase calculations and then make broad gener-
alizations about how one might expect a surrounding condensed phase to affect the results.
Indeed, this modus operandi was much employed well into the 1980s and still sees modest
use today. Provided one can be reasonably confident that condensed-phase effects are small
for the particular properties being studied (either in an absolute sense or through cancellation
by judicious comparisons), such an approach can still be useful, particularly in a qualita-
tive sense. However, significant developmental efforts over the last two decades combined
with growth in the computational power required to implement them have resulted in the
widespread availability of condensed-phase models designed to more accurately describe the
physical nature of condensed-phase systems. This chapter considers one such class of these
models, namely, implicit solvation models, which are also often called continuum solvation
models.

At first thought, of course, it might seem that the modeling of a condensed-phase system
should be trivial. Take for example a liquid solution (which we will take as our ‘default’
condensed phase in this and the next chapter, although others will be discussed). If our
solution is dilute, then the ‘obvious’ way to construct a model is to surround our solute
with a number of solvent molecules. But a critical question is, how many? If we want to
consider glucose in water, for instance, it seems clear that we would want at least the entire
surface of the glucose molecule to be covered. This might take, say, 14 water molecules,
which we could place approximately at the corners and faces of an imaginary cube about
our solute. However, it would be something of a stretch of faith to imagine this as true
aqueous solvation – none of the water molecules is interacting with a second solvation
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shell, making many otherwise plausible hydrogen bonding arrangements inaccessible. So,
we might add another solvation shell. Since the surface area of a sphere increases as the
square of the radius, it is clear that we will need many more than 14 waters this time.
Will two solvation shells be enough? Almost certainly not – to eliminate spurious ‘edge’
effects associated with the water molecules on the outside, we really should add hundreds
or thousands of waters. But if we do so, our system size becomes enormous – a quantum
mechanical calculation on a single geometry will be staggeringly expensive. Worse still, that
single geometry is of very limited value. As noted in Chapter 3 and discussed further in
Chapter 12, with so many molecules and so many possible minima we need to compute
statistical mechanical averages in order to determine equilibrium properties. Thus, we need
to carry out possibly millions of these staggeringly expensive quantum calculations, and such
a situation is simply not practical within the confines of present resources.

The assumption underlying continuum solvation models, which are the subject of this
chapter, is that one may remove the huge number of individual solvent molecules from the
model, as long as one modifies the space those molecules used to occupy so that, modeled
as a continuous medium, it has properties consistent with those of the solvent itself. To
determine how to define such a medium, one must consider the solvation process itself.

11.1.1 Free Energy of Transfer and Its Physical Components

The most important fundamental quantity describing the interaction of a solute with a
surrounding solvent is the free energy of solvation �Go

S. This quantity is sometimes also
called the free energy of transfer, and refers to the change in free energy for a molecule
A leaving the gas phase and entering a condensed phase. This free energy may be deter-
mined from the equilibrium constant describing the partitioning of A between the gas and
condensed phases according to

�Go
S(A) = lim[

A
]

sol
→0

{
−RT ln

[A]sol

[A]gas

∣∣∣∣
eq

}
(11.1)

where the limit is applied to ensure ‘ideal solution’ behavior. As with all free-energy quanti-
ties, attention must be paid to the standard-state concentrations. Most theoretical work makes
use of standard-state concentrations of 1 M in both the gas phase and the condensed phase.
In that case, there is no intrinsic change in the entropy of translation of the solute associ-
ated with a change in standard-state volume. Common experimental conventions, however,
include expressing the gas-phase concentration as a partial pressure, with 1 atm defining
the standard state, and/or expressing the solution concentration as mole fraction, with unit
mole fraction defining the standard state (conversion between different concentration stan-
dard states for free energies of solvation can be accomplished using Eq. (10.53) in the same
fashion already described for reaction equilibrium constants).

Experimental free energies of solvation span a wide range of values, from positive tens
to negative hundreds of kilocalories per mole (for those values where the solution/gas equi-
librium constants fall outside the range of about 10−6 to 106, experimental techniques other
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than simply measuring the concentrations in the two distinct phases are typically required).
Different physical effects contribute to the overall solvation process; of these, the most
important components are electrostatic interactions, cavitation, changes in dispersion, and
changes in bulk solvent structure.

Equilibrium electrostatic interactions between a solute and a solvent are always non-
positive – they are zero if the solute is characterized by no electrical moments (e.g., a noble
gas atom) and negative otherwise, i.e., attractive. It is easiest to visualize the electrostatic
interactions as developing in a stepwise fashion. Consider a solute A characterized by elec-
trical moments; for simplicity, consider only the dipole moment. When A passes from the
gas phase into a solvent, the solvent molecules, if they have permanent moments of their
own, reorient so that, averaged over thermal fluctuations, their own dipole moments oppose
that of the solute. In an isotropic liquid with solvent molecules undergoing random thermal
motion, the average electric field at any point will be zero; however, the net orientation
induced by the solute changes this, and the field induced by introduction of the solute is
sometimes called the ‘reaction field’.

Of course, the presence of an electric field means that a term accounting for the interactions
of charged particles with this field should be included in the solute Hamiltonian. When it is
included, the effect is to increase the solute polarity in a fashion proportional to the solute
polarizability and the strength of the external field. Thus, the dipole moment of A increases.
The solvent, seeing this increase, itself polarizes and moreover increases its own orientation
to oppose A’s dipole, and so on.

However, neither the orientation/polarization of the solvent nor the electronic polarization
of A is without cost. In the first instance, since solvent molecules are oriented to oppose
the dipole moment of A, they each interact in an unfavorable sense with the reaction field
they create. Moreover, to the extent they have lost some configurational freedom, there is an
associated free-energy cost. As for the cost of electronic polarization, this may be viewed as
the gas-phase cost (as computed with the gas-phase Hamiltonian) associated with distortion
of the wave function away from the gas-phase minimum. As a result of these opposing
energetics, the polarization of the solute/solvent system stops at that point where any energy
gain from additional polarization is exactly balanced by the energy cost to achieve that
polarization. Under some fairly mild assumptions from so-called linear response theory, one
can show that this occurs when the energy cost up to a certain point becomes equal to one
half of the total interaction energy between the solute and the solvent.

It cannot be overemphasized that solvation changes the solute electronic structure. As
noted above, dipole moments in solution are larger than the corresponding dipole moments
in the gas phase. Indeed, any property that depends on the electronic structure will tend
to have a different expectation value in solution than in the gas phase. How large will the
difference be? That depends on the strength of the solute–solvent interactions. Table 11.1
lists dipole moments computed in the gas phase, chloroform, and water for six nucleic
acid bases at the HF/6-31G(d) level using the SM5.42R continuum solvation model that is
described in more detail below. Note that the increases in dipole moments on going from
the gas phase to water range from about 25 to 33 percent for these molecules; a smaller but
still substantial increase is predicted in chloroform solution.
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Table 11.1 Nucleic acid base dipole moments (D) at
the SM5.42R/HF/6-31G(d) level

Molecule Dipole moment

Gas Chloroform Water

Adenine 2.4 2.9 3.1
Cytosine 6.5 8.0 8.5
Guanine 5.3 6.7 7.1
Hypoxanthine 6.4 7.8 8.2
Thymine 4.4 5.6 6.0
Uracil 4.5 5.6 6.0

Another physical effect associated with solvation is cavitation. It is again helpful to
visualize the solvation process as a stepwise procedure. Here, we imagine the first step
as being creation of a cavity of vacuum within the solvent into which the solute will be
inserted as a second step. The energy cost of the cavity creation is the cavitation energy.
Note that energy is always required to create the cavity – if it were favorable to create
‘bubbles’ of vacuum in the liquid, the solvent would not remain in the liquid phase.

As for what holds liquids together in the first place, the majority of the interaction energy in
uncharged fluids derives from dispersion forces between solvent molecules that are in contact
with one another. This is true even for liquids composed of very polar molecules: disper-
sion accounts for 70–90 percent of the total cohesion energy in liquid HCl or 2-butanone.
Recalling the discussion in Section 2.2.4, dispersion refers to the always favorable interac-
tion between the simultaneous induced dipoles in adjacent molecules that are a consequence
of the correlated motion of electrons. When a solute is inserted into a pre-existing cavity into
which it exactly fits, it will experience favorable dispersion interactions with the surrounding
solvent. Note that while formally dispersion is an electrostatic interaction, it is usually
discussed separately from the solute–solvent polarization described above in deference to
its short-range character and its non-classical origin. Note also that it is dispersion alone that
can account for a favorable transfer free energy of a solute into a solvent when neither of
the two is characterized by any permanent electrical moments.

Finally, under certain conditions, the introduction of a solute molecule may significantly
alter the equilibrium structure/dynamics of a solvent in the near vicinity of the solute, and this
phenomenon will have associated with it a free-energy change. The most widely documented
example is the hydrophobic effect, where loss of orientational freedom for water molecules
in the first solvation shell about hydrocarbon fragments of solutes carries with it a free-energy
cost that is responsible for the increasingly positive aqueous free energies of solvation of
alkanes as they increase in chain length.

Having enumerated the various processes involved in the transfer of a solute molecule from
the gas phase to solution, it must be emphasized that it is not possible to separately measure
their contributions to the fundamental observable, �Go

S. One can, of course, attempt to design
systems where one expects only a single contribution to dominate, in the hopes of learning
more about the nature of that contribution from experimental measurements, but inferences
drawn therefrom become less certain as they are applied to systems less like those originally
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measured. This point is made insofar as we will discuss below, for example, theoretical
predictions for the electrostatic component of the free energy of solvation. However, insofar
as this quantity is not an experimental observable, absolute judgments of quality comparing
one level of theory to another are necessarily model-dependent.

11.1.2 Solvation as It Affects Potential Energy Surfaces

In order to visualize the effects of solvation on structure and reactivity, it is helpful to
consider the potential energy surface created by adding the free energy of solvation point
by point to the gas-phase PES, as illustrated in Figure 11.1. (To be rigorous, one really
should use a gas-phase free-energy surface so as not to be haphazardly mixing potential and
free energies, but for qualitative purposes, we may ignore this technical point.) Processes
in solution may be regarded as occurring on the lower surface, and all of the phase-space
dimensions associated with solvent molecules have been averaged over in computing its
energies.

Figure 11.1 illustrates several critical concepts associated with solvation. First, note that
the reaction process depicted on the gas-phase surface joins two minima of roughly equal
energy, while that on the lower surface is quite exergonic in the left-to-right direction.
This derives from the minimum-energy structure at the larger x coordinate having a more
negative free energy of solvation. Differential solvation of two (or more) minima implies
a different equilibrium constant in solution than in the gas phase. Many examples of this

E

gas-phase
surface

solvated
surface

∆G o
S(x,y)

(x,y)

Figure 11.1 A two-dimensional gas-phase PES and the corresponding PES derived from adding the
free energy of solvation to every point. This process is illustrated for point (x,y). Thick lines on the two
surfaces indicate some chemical reaction proceeding from one minimum-energy structure to another.
Note that there is no requirement for the x and y coordinates of equivalent stationary points on the
two surfaces to be the same



390 11 IMPLICIT MODELS FOR CONDENSED PHASES
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Figure 11.2 4-Pyridone is considerably more polar than its hydroxypyridine tautomer, and its
extended π system also renders it highly polarizable. As a result, polar solvents shift the equilibrium
between the two strongly to the right in comparison to the gas phase

phenomenon are known; one of the most striking is for the tautomeric equilibrium between
4-hydroxypyridine and 4-pyridone, where aqueous solvation changes the 298 K equilibrium
constant by some six orders of magnitude (Figure 11.2; see Beak 1977).

Figure 11.1 also indicates that the free energy of activation for the left-to-right reaction
is lower on the solvated surface than on the gas-phase surface, so that the rate will be
increased in solution compared to the gas phase. Thus, differential solvation of minima and
connected TS structures can affect relative rates. Again, many examples are known. One
of the most carefully studied is the effect of solvation on the SN2 reaction of chloride ion
with chloromethane: While the gas-phase activation free energy is around 3 kcal mol−1,
the diffuse negative charge associated with the SN2 transition state structure compared to a
chloride ion makes the TS structure much less well solvated than the reactants, and aqueous
solvation decreases the 298 K rate by more than 15 orders of magnitude (Chandresekhar,
Smith, and Jorgensen 1985).

Given our picture of the free energy surface in solution deriving from addition of solvation
free energy to the gas-phase PES, and noting that equilibria and kinetics can be well estimated
based only on knowledge of the relative energies of appropriate stationary points, we may
represent a protocol for computing these relative energies from the thermodynamic cycle
in Figure 11.3. In order to compute the lower horizontal leg of the cycle, corresponding to

A(gas) B(gas) + ...+ W(gas) X(gas) + ...+

A(sol) B(sol) + ...+ W(sol) X(sol) + ...+

∆Go
(gas)

∆Go
(sol)

∆Go
S(A) ∆Go

S(W)

∆Go
S(X)

∆Go
S(...)

∆Go
S(B)

∆Go
S(...)

Figure 11.3 Cycle for computation of a free-energy change in solution
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the process in solution, one need only take appropriate sums and differences of the upper
horizontal leg and the vertical legs, viz.

�Go
(sol) = �Go

(gas) + [
�Go

S (W) + �Go
S (X) + · · ·] − [

�Go
S (A) + �Go

S (B) + · · ·] (11.2)

As the upper leg is a gas-phase quantity, it can be computed taking advantage of all of the
technology discussed in earlier chapters. The two vertical legs, on the other hand, consist
exclusively of free energies of solvation. Thus, the development of models to efficiently
compute molecular solvation free energies has been a high priority.

A compromise representation of our discussion thus far is to consider the effects of solva-
tion on a one-dimensional slice through the energy surface–what we normally call the
reaction coordinate–as illustrated in Figure 11.4. This representation is more informative
than the free-energy cycle in showing how the structures of the stationary points differ in
the gas phase and solution, in addition to their relative energies. A change in structure is
indicated by a movement of the stationary point along the coordinate axis. Particularly for
TS structures, which may be characterized by one or more soft normal modes and/or a soft
reaction coordinate, changes in structure induced by solvation may be important.

Note, however, that this one-dimensional representation can be somewhat misleading if
it is taken to be a computational protocol. The trouble is that the one-dimensional slice of

E

∆GS
o(‡)

∆GS
o(P)∆GS

o(R)

R ‡

Arbitrary coordinate

P

∆Go,‡
gas

∆Go,‡
sol

∆Go,rxn
gas

∆Go,rxn
sol

Figure 11.4 Gas-phase (upper) and solution (lower) reaction coordinates, and the thermodynamic
cycles that connect them via free energies of solvation of the various stationary points (vertical lines).
Note the significant left to right movement of all stationary points, and particularly the TS structure,
on going from the gas phase to solution
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the energy surface that generates the gas-phase reaction coordinate may be quite different
from the one-dimensional slice that generates the reaction coordinate on the solvated surface.
Put differently, solvation can move a stationary point not only along the gas-phase reaction
coordinate but in other directions as well. Thus, if one constructs a solution coordinate by
computing solvation free energies point-by-point for the gas-phase coordinate, one may miss
important effects associated with movement off the gas-phase reaction coordinate. This is
illustrated by the example of the Claisen rearrangement of allyl vinyl ether in Figure 11.5.
Here the reaction coordinate may be thought of as the difference in distance between the
initially bonded O3 and C4 atoms and the ultimately bonded C1 and C6 atoms. In water,
aldehydes are better solvated than ethers, and this differential solvation is felt by the TS
structure, so that it shifts to the right along the reaction coordinate (new TS location not
shown). However, it also moves along an orthogonal coordinate best described by the distance
between the C1C2O3 and C4C5C6 fragments. Polar solvents interact more strongly with a
TS structure having greater interfragment separation because of the zwitterionic character
associated with this structure. This move off the reaction coordinate can significantly lower
the activation free energy.

Another situation that can complicate the interpretation of a reaction in solution by compar-
ison to the gas phase involves a reaction that fails to have corresponding stationary points in
the gas phase. If there is no stationary point in the gas phase, there is no real sense in talking
about the free energy of solvation of the structure that exists in solution. A good example

O
O

O

O

O

E

Reaction coordinate

+

−

Figure 11.5 Gas-phase reaction coordinate for the Claisen rearrangement of allyl vinyl ether
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H H
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gas
phase

Reaction coordinate

aqueous
solution

NH3 + CH3Cl

H3NCH3
+ + Cl−

d+ d−

Figure 11.6 Menschutkin reaction of ammonia and chloromethane. In the gas phase nucleophilic
displacement fails to take place, while in water solvation of the anions allows the reaction to proceed

of this situation is the organic Menschutkin reaction, where nucleophilic displacement of a
halide by an amine generates a halide anion and an alkylammonium cation, as shown in
Figure 11.6. In the gas phase, such separation of opposite charges is so unfavorable that no
stationary point exists for the separated ions. In highly polar solvents, on the other hand, the
solvation free energy of the ions is sufficiently high that not only are the products stationary
points, but the reaction is exergonic. This is a situation where invoking a free-energy cycle
is not particularly useful, although the direct computation of the lower leg (i.e., the solvated
process) by one or another solvation model is a perfectly valid option.

Besides affecting equilibria and kinetics on single energy surfaces, differential solva-
tion effects on distinct electronic states can cause significant changes in UV-Vis absorption
spectra. Such so-called solvatochromic effects are discussed in more detail in Chapter 14.

The various effects of solvation discussed above may in principle be modeled in different
ways. For the remainder of this chapter, we will focus on the utility of continuum solva-
tion models in this regard. Having identified the importance and utility of the free energy
of solvation, we will pay special attention to prediction of this quantity as a measure of
quantitative accuracy.

11.2 Electrostatic Interactions with a Continuum

When a solute is immersed in a solvent, its charge distribution interacts with that of the
solvent. In a continuum model, rather than representing the charge distribution of the solvent
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explicitly, we replace it by a continuous electric field that represents a statistical average
over all solvent degrees of freedom at thermal equilibrium. This field is usually called the
‘reaction field’ in the regions of space occupied by the solute, since it derives from reaction
of the solvent to the presence of the solute. The electric field at a given point in space is
the gradient of the electrostatic potential φ at that point, and the work required to create the
charge distribution may be determined from the interaction of the solute charge density ρ

with the electrostatic potential according to

G = −1

2

∫
ρ (r)φ (r) dr (11.3)

The charge density ρ of the solute may be expressed either as some continuous function
of r or as discrete point charges, depending on the theoretical model used to represent the
solute. The polarization energy, GP, discussed above, is simply the difference in the work
of charging the system in the gas phase and in solution. Thus, in order to compute the
polarization free energy, all that is needed is the electrostatic potential in solution and in the
gas phase (the latter may be regarded as a dielectric medium characterized by a dielectric
constant of 1).

11.2.1 The Poisson Equation

At the heart of all continuum solvent models is a reliance on the Poisson equation of classical
electrostatics to express the electrostatic potential as a function of the charge density and the
dielectric constant. The Poisson equation, valid for situations where a surrounding dielectric
medium responds in a linear fashion to the embedding of charge, is written

∇2φ (r) = −4πρ (r)
ε

(11.4)

where ε is the dielectric constant of the medium. Insofar as continuum solvation involves
representing the solute explicitly and the solvent implicitly, the charge distribution of the
solute is thought of as being inside a cavity that displaces an otherwise homogeneous dielec-
tric medium. Thus, there are really two regions, one inside and one outside the cavity, in
which case the Poisson equation is properly written as

∇ε (r) · ∇φ (r) = −4πρ (r) (11.5)

The Poisson equation is valid under conditions of zero ionic strength. If dissolved, mobile
electrolytes are present in the solvent, the Poisson–Boltzmann (PB) equation applies instead

∇ε (r) · ∇φ (r) − ε (r) λ (r) κ2 kBT

q
sinh

[
qφ (r)
kBT

]
= −4πρ (r) (11.6)

where q is the magnitude of the charge of the electrolyte ions, λ is a simple switching
function which is zero in regions inaccessible to the electrolyte and one otherwise, and κ2
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is the Debye–Hückel parameter given by

κ2 = 8πq2I

εkBT
(11.7)

where I is the ionic strength of the electrolyte solution. The inverse of κ is also called the
Debye length.

Thus, in order to determine the electrostatic potential in solvents containing either non-
electrolytes or electrolytes, we need only solve Eqs. (11.5) or (11.6), respectively, using the
known charge density of the solute and some cavity defining how the dielectric constant
varies about the solute. As differential equations go, Eq. (11.5) is straightforward, but
Eq. (11.6) is fairly unpleasant. As a result, it is often simplified at low ionic strength by
using a truncated power expansion for the hyperbolic sine, giving the so-called linearized
PB equation

∇ε (r) · ∇φ (r) − ε (r) λ (r) κ2φ (r) = −4πρ (r) (11.8)

Note that it is fairly common in the literature for continuum solvation calculations to be
reported as having been carried out using Poisson–Boltzmann electrostatics even when no
electrolyte concentration is being considered, i.e., the Poisson equation is considered a special
case of the PB equation and not named separately.

For certain ideal cavity shapes, the relevant PB equations have particularly simple analytic
solutions. While such ideal cavities are not typically to be expected for arbitrary solute
molecules, consideration of some examples is instructive in illustrating how more sophisti-
cated modeling may be undertaken by generalization therefrom.

11.2.1.1 Ideal cavities

Consider a conducting sphere bearing charge q, which may be taken as an approximation to
a monatomic ion. The charge on such an object spreads out uniformly on the surface, and
the charge density at any point on the surface may thus be expressed as

ρ (s) = q

4πa2
(11.9)

where s is a surface point and a is the radius of the sphere. So, in order to evaluate Eq. (11.3),
we will need to integrate only on the surface of the sphere (since the charge density is zero
everywhere else). To determine the electrostatic potential at the surface we must approach
from the outside (the dielectric constant of a conductor is infinite and the electrostatic poten-
tial everywhere inside is zero, so there is a formal discontinuity in the potential at the
surface). From the outside, the electrostatic potential is well known to be equivalent to that
for a point charge q at the origin, giving the central field result

φ (r) = − q

ε |r| (11.10)
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where ε is the exterior dielectric constant. Taking r on the surface of the sphere, i.e., |r| = a,
Eq. (11.3) becomes

G = −1

2

∫ ( q

4πa2

) (
− q

εa

)
ds = q2

2εa
(11.11)

As the square of the charge, the dielectric constant, and the ionic radius must all be positive,
work must be expended to charge the sphere, but the work is less for higher exterior dielectric
constants, as expected. Recalling that the polarization energy is the difference in the required
work in the gas phase and solution, we may write

GP = −1

2

(
1 − 1

ε

)
q2

a
(11.12)

which is the so-called Born equation for the polarization energy of a monatomic ion in
atomic units.

If instead of carrying a charge, our sphere appears to be characterized by a perfectly
dipolar distribution having dipole moment µ, an analogous analysis provides

GP = −1

2

[
2 (ε − 1)

(2ε + 1)

]
µ2

a3
(11.13)

which is the so-called Kirkwood–Onsager equation in atomic units.
An important difference between the Born and Kirkwood–Onsager formulae is that the

former depends on the charge, which is a property of the system restricted to integral values,
while the latter depends on the dipole moment, which can potentially vary in different
environments. In the context of quantum mechanical calculations, let us define the Kirk-
wood–Onsager polarization energy operator by invoking µ as the dipole moment operator
in Eq. (11.13). In that case, the Schrödinger equation in solution becomes

{
H − 1

2

[
2(ε − 1)

(2ε + 1)

] 〈�|µ|�〉
a3

µ

}
� = E� (11.14)

where H is the usual gas-phase Hamiltonian. Written in this fashion, the components of the
second term on the l.h.s. that precede the final dipole moment operator may be regarded as
the reaction field.

Equation (11.14) is an example of a non-linear Schrödinger equation. It can be solved in
the usual HF fashion by construction of a Slater determinant formed from MOs ψ that are
optimized using a modified Fock operator according to

{
Fi −

[
2(ε − 1)

(2ε + 1)

]
1

a3
〈�|µ|�〉2

}
ψi = eiψi (11.15)

where Fi is the usual gas-phase Fock operator for MO i (Ángyán 1992). A critical feature
of Eq. (11.15) is that it involves an additional level of iteration compared to the standard
HF approach. Not only must the final wave function render the density matrix and Fock
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operator stationary, but it must also lead to a stationary dipole moment. Solution of the HF
equations (or the equivalent Kohn–Sham DFT equations) in such a fashion, where accounting
for solvation leads to a non-linear Schrödinger equation, is referred to as a self-consistent
reaction field (SCRF) calculation.

Inspection of Eq. (11.14) should make it clear that the manner in which the dipole-
dependence enters into the equations will lead to an increase in dipole moments in increas-
ingly polar solvents. As noted in Section 11.1, the increase in the dipole moment in such
an SCRF formalism provides an energy lowering that is counterbalanced by an increase in
the energy computed from the ‘usual’ Hamiltonian H (the first operator on the l.h.s.) so that
a stationary solution is reached when additional distortion costs associated with H exactly
balance additional energy lowering associated with further increasing the dipole moment.

In describing the results from SCRF calculations, it is useful to keep careful track of the
various components of the energy. The electrostatic component of the solvation free energy
is the difference between the energy in the gas phase and the energy in solution. This may
be written

�GENP = [〈�(sol) |H |�(sol)〉 + 〈�(sol) |GP|�(sol)〉] − 〈�(gas) |H |�(gas)〉
= �EEN + GP (11.16)

where the difference between the first and third expectation values on the r.h.s. in the first
line of Eq. 11.16 defines the distortion energy �EEN, which must be positive since �(gas)

minimizes H . The ‘EN’ subscript on this term emphasizes it is associated with the electronic
and nuclear components of the total energy; in the absence of any geometry reoptimization,
the N subscript is superfluous. As written, Eq. (11.16) mixes potential and free energies, but
we will ignore this issue for now.

The Kirkwood–Onsager equations can be generalized to include multipole moments higher
than the dipole, leading to the expression

GP = −1

2

L∑
l=0

l∑
m=−l

L∑
l′=0

l′∑
m′=−l′

Mm
l f mm′

ll′ Mm′
l′ (11.17)

where each component m of every molecular multipole M of order l interacts with the
reaction field, which is itself expressed as a multipole expansion equal and opposite to the
molecular multipoles, through the reaction field factors f that carry the dependence on
dielectric constant and cavity radius. In principle, the multipole expansion may be carried
out to infinite order, but in practice, some judicious choice of l is made in Eq. (11.17) to
keep things tractable. A fairly typical choice is l = 6 (note that l = 0 and l = 1 define the
Born and Born–Kirkwood–Onsager (BKO) approaches, respectively).

The simplicity of the BKO approach to computing polarization free energies led to its
widespread use for the qualitative analysis of solvation effects on various properties for
many years (including in the absence of any explicit theoretical calculations). For quantitative
purposes, however, it suffers from a number of undesirable features. One such feature is the
slow nature of the convergence of Eq. (11.17) with respect to l. Table 11.2 lists �GEP
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Table 11.2 �GEP values (kcal mol−1)
for trans 1,2-dichloroethane as a func-
tion of the truncation point in the multi-
pole moment expansiona

l �GEP

1 0.00
2 −0.93
5 −1.14
8 −1.70

10 −1.79
20 −1.82

aFrom Christiansen and Mikkelsen 1999

values for trans 1,2-dichloroethane computed at the MCSCF level for various choices of
l. Note that, since the trans conformation has no dipole moment by symmetry, a simple
BKO calculation must predict a polarization free energy of zero, which represents a very
large error. Including the quadrupole moment captures 50 percent of the total, but further
convergence initially proceeds slowly (note that there is no requirement for convergence
to proceed in a monotonic fashion), and it is not until l = 8 that the result is converged
to within about 5 percent. Since 1,2-dichloroethane overall has a rather simple electronic
distribution, it is disturbing to consider how much larger l may have to be to accurately treat
more complex molecules.

Worse still, however, is that even well-converged values are unlikely to be meaningful
in the absence of the solutes in question being well described as spherical. When they are
not, and very few molecules are, the value that should be chosen for the radius a is highly
ambiguous. Since the dipole term has an inverse cubic dependence on this parameter, small
variations can have large effects on solvation free energies, and the literature is replete with
examples where obviously non-physical values have been chosen, rendering interpretation
of subsequent results highly suspect.

This situation can be somewhat ameliorated by choosing a regular ellipsoid instead of a
sphere for the solute cavity. In that case, Eq. (11.17) can still be solved in a simple fashion,
with the reaction field factors depending on the ellipsoidal semiaxes (Rinaldi, Rivail, and
Rguini 1992). However, while this is clearly an improvement on a spherical cavity, the small
number of solutes that may be well described as ellipsoidal does not make this a particularly
satisfactory solution.

So, while derivations of SCRF theory using ideal cavities are very useful for conceptual
purposes, they are insufficiently accurate for all but the most crude analyses. Modern applica-
tions of continuum models almost invariably use arbitrary cavity shapes, typically constructed
from overlapping atomic spheres, and we turn to examples of these models next.

11.2.1.2 Arbitrary cavities

The concept of molecular shape with which most chemists are comfortable is almost certainly
that represented by space-filling models constructed from the overlap of atomic spheres
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having appropriate van der Waals radii. For such arbitrary, lumpy cavities, analytic solutions
of the PB equation are no longer possible, and the reaction field must be determined numer-
ically. The approach taken by most classical PB software – classical implying the charge
distribution is not allowed to change – is formally to

1. Divide space according to a three-dimensional grid.

2. Define the molecular cavity and assign gridpoints the appropriate dielectric constant – in
classical calculations, the interior is often assigned a dielectric constant between two and
four to mimic solute polarizability.

3. ‘Discretize’ the solute charge distribution onto interior grid points using some algo-
rithm – e.g., divide every atomic partial charge equally over the nearest grid point and
its 14 nearest neighbors.

4. Determine the electrostatic potential at each grid point by numerical solution of the PB
equation; this process is typically iterative.

5. Once the potential is available, evaluate Eq. (11.3) as a pointwise sum over points
carrying non-zero charge.

There are many technical challenges associated with this process that are worth keeping in
mind. Like any numerical method, it is most successful when the density of discrete points is
very high. However, as we are working with three-dimensional space, an order of magnitude
decrease in the spacing between adjacent points increases the total number of points by three
orders of magnitude, making the solution of the PB equation much more computationally
demanding. So-called ‘focusing’ methods have been developed to try to move from coarse
grids to finer grids in an efficient manner. With most grid densities in everyday use, the
density remains sufficiently coarse that different orientations of the solute in space can give
rise to non-trivially different values for GP. Reported values are sometimes averaged over
several random orientations.

A related issue is that the potential can be very sensitive to grid points very near the
cavity surface, where the dielectric constant is changing instantaneously. By construction,
the cavity is actually defined only to within the grid-point spacing. The van der Waals radii
defining the cavity surface that determines whether a given gridpoint is inside or outside the
solute may either be chosen arbitrarily or optimized for a particular computational model
(see, for example, Banavali and Roux 2002).

The primary area where classical PB equations find application is to biomolecules, whose
size for the most part precludes application of quantum chemical methods. The dynamics of
such macromolecules in solution is often of particular interest, and considerable work has
gone into including PB solvation effects in the dynamics equations (see, for instance, Lu
and Luo 2003). Typically, force-field atomic partial charges are used for the primary solute
charge distribution.

It is noteworthy that with biomolecules it is often the electrostatic potential itself that is
of primary interest, not its use to compute solvation free energies. Since the PB potential
is presumably a more accurate picture of the potential in solution than one that would be
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derived from a vacuum calculation, as described in Chapter 9, the method is often employed
for this purpose. When potentials are visualized on the molecular van der Waals surface,
many enzymes, for instance, show large regions of uniformly positive or negative poten-
tial, suggesting preferred binding sites for ligands having opposite charge, or channels for
directing in substrates having opposite charge, etc.

Rather than solving the PB equation on a three-dimensional grid, the differential equation
can be recast into a boundary element problem by representing the potential using a charge
density spread over the molecular surface (see, for instance, Zauhar and Varnek, 1996).
To make the calculation more convenient, the surface is usually tesselated into spherical
triangles, and the charge density on each element is collapsed into a point charge in the
center of the triangle. The charge–potential integral of Eq. (11.3) is thus replaced by a sum
over charge–charge interactions. As a solution of what amounts to a surface integral instead
of a volume integral, this procedure is somewhat less sensitive to numerical noise, but still
requires some care to ensure sufficiently small surface tesserae are employed. A problem
of some concern can arise when the centroids of spherical triangles associated with two
different atoms are very near one another in space. In that case, the short-range charge–
charge interaction can be so large as to introduce significant instabilities. As a result, some
procedures delete regions of the surface near where atomic spheres overlap and accept a
reduced accuracy in being able to represent the potential as a consequence.

Coming back to quantum mechanical continuum models, in the most general sense we
now seek to solve the non-linear Schrödinger equation(

H − 1

2
V

)
� = E� (11.18)

where V is a general reaction field inside the cavity that depends upon �. As shown for
the special case of the Kirkwood–Onsager model above, when � is expressed as a Slater
determinant, the orbitals minimizing Eq. (11.18) can be determined from

(Fi − V ) ψi = eiψi (11.19)

where F is the Fock operator. Entirely analogous expressions exist for DFT.
In formalism, this is really no different than the classical situation just described, except that

the electronic-charge distribution is continuous, as opposed to discretized, and the non-linear
character of the equations introduces an iterative component to the SCRF procedure that goes
hand in hand with permitting relaxation of the charge distribution. That being the case, the
methods used to represent the reaction field are essentially the same as those used in the classical
situation. For example, SCRF schemes solving for the reaction field on a three-dimensional
grid have been described by both Chen et al. (1994) and Tannor et al. (1994).

Perhaps the most widely used scheme for SCRF implementations of the Poisson equation
is the surface area boundary element approach. This was first formalized by Miertus, Scrocco,
and Tomasi (1981), and these authors referred to their construction as the polarized continuum
model (PCM). While that name continues to find ample use in the literature, MST (the initials
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of the authors’ last names) finds roughly equal usage, and some authors use PCM to refer
generically to any continuum SCRF scheme.

A number of variations on the PCM formalism have appeared since its first publication.
Some are purely technical in nature, designed to improve the computational performance of
the method, e.g., an integral equation formalism for solving the relevant SCRF equations
which facilitates computation of gradients and molecular response properties (IEF-PCM;
Cossi et al. 2002), an extension to permit application to infinite periodic systems in one and
two dimensions (Cossi 2004), and an extension to liquid/liquid and liquid/vapor interfaces
(Frediani et al. 2004). Others reflect differences in how the molecular cavity is defined.
For the most part, Tomasi and co-workers have maintained a strategy where the cavity is
constructed from overlapping atomic spheres having radii 20% larger than their tabulated
van der Waals radii, with a special distinction being made between ‘polar’ and ‘non-polar’
hydrogen atoms. As an alternative, Foresman et al. (1996) suggested defining the cavity
as that region of space surrounded by an arbitrary isodensity surface, i.e., a surface char-
acterized by a constant value of the electron density. That surface can either be located
from the gas-phase density, and held fixed (IPCM) or determined self-consistently, adding
yet another iterative level to the SCRF process (SCIPCM). Part of the motivation for these
latter two modifications was to decrease the number of cavity parameters from one per atom
to one total. However, insofar as the modeling of a molecular solvent by a continuum is
by nature a fictional construct, it is not obvious that such a decrease in parameters can be
regarded as a virtue. A further discussion of cavity definitions is deferred to Section 11.4.1,
and it suffices to note here that the IPCM and SCIPCM methods tend to be consider-
ably less stable in implementation than the original PCM process, and can be subject to
erratic behavior in charged systems, so their use cannot be recommended (Cossi et al.
1996).

A third possibility that has received extensive study in the SCRF regime is one that has
seen less use at the classical level, at least within the context of general cavities, and that
is representation of the reaction field by a multipole expansion. Rinaldi and Rivail (1973)
presented this methodology in what is arguably the first paper to have clearly defined the
SCRF procedure. While the original work focused on ideal cavities, this group later extended
the method to cavities of arbitrary shape. In formalism, Eq. (11.17) is used for any choice of
cavity shape, but the reaction field factors f must be evaluated numerically when the cavity
is not a sphere or ellipsoid (Dillet et al. 1993). Analytic derivatives for this approach have
been derived and implemented (Rinaldi et al. 2004).

Most of the models described above have also been implemented at correlated levels of
theory, including perturbation theory, CI, and coupled-cluster theory (of course, the DFT
SCRF process is correlated by construction of the functional). Unsurprisingly, if a molecule
is subject to large correlation effects, so too is the electrostatic component of its solvation
free energy.

Note that, insofar as all of the above models simply represent alternative mathematical
approaches to solving the Poisson equation, in the limit of converging them with respect
to grid density, tesserae density, multipole expansion, etc., they should all give identical
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answers for identical molecules in identical cavities. Thus, any choice between them should
largely be predicated on computational convenience and efficiency of implementation.

11.2.2 Generalized Born

In order to solve the Poisson equation for an arbitrary cavity, recourse to numerical methods is
required. An alternative approach that has seen considerable development involves computing
the polarization free energy using an approximation to the Poisson equation that can be solved
analytically, and this is the Generalized Born (GB) approach. As its name implies, the GB
method extends the Born Eq. (11.12) to polyatomic molecules. The fundamental equation
of the GB method expresses the polarization energy as

GP = −1

2

(
1 − 1

ε

) atoms∑
k,k′

qkqk′γkk′ (11.20)

where k and k′ run over atoms, each of which is characterized by a partial charge q, and
γ has units of inverse length, i.e., it is an effective Coulomb integral. In order for the GB
equation to be an accurate approximation to the PB equation, a suitable functional form for
γ must be chosen. A very good functional form is given by

γkk′ =
(
r2
kk′ + αkαk′e−r2

kk′ /dkk′ αkαk′
)−1/2

(11.21)

where rkk′ is the interatomic distance, αk is the effective Born radius of atom k, and d is a
parameter that may in principle vary from one atom pair to the next, but which is typically
taken to have a universal value of 4 (Still et al. 1990).

While the full form of γ is not necessarily intuitively obvious, it is noteworthy that it has
appropriate limiting behavior. Thus, for large interatomic distance, γ becomes simply r−1,
which is the expected result from Coulomb’s law. For diagonal terms in the summation (i.e.,
k = k′ so rkk′ = 0), γ is simply α−1, so the Born equation is recovered. However, there is a
distinction between the effective Born radius of an atom in a molecule and its Born radius as
a monatomic ion. Clearly, the ‘self’ solvation free energy of an atom in a molecule should
be less than for the isolated atom, since the rest of the molecule displaces (‘descreens’) the
dielectric medium in certain regions of space. As depicted in Figure 11.7, the manner in
which α is typically determined is to solve the Poisson equation and Eq. (11.3) for each
atom in the molecule using the full molecular cavity but with all partial charges other than
that for the particular atom in question set to zero. With that value of GP in hand for partial
charge q, one solves Eq. (11.12) for α; once each effective Born radius has been determined
in this fashion, Eq. (11.21) may be used to determine γ for any pair of k and k′.

So, the steps in a GB calculation to determine the polarization free energy given a particular
molecular geometry are essentially:

1. Assign atomic radii to all atoms for purposes of defining the cavity.
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Figure 11.7 To determine α for atom k in the GB approach, the interaction of the charge q on
atom k with the surrounding continuum is determined by the radial integration shown, where ρk is
the cavity radius (sometimes called the Coulomb radius) of atom k and A is the area of expanding
spherical shells used in the integration which depend on all other atomic radii ρk′ . (Note that, once the
outermost shell encompasses the entire molecule, the remaining integral may be solved analytically
using the Born formula, since the system is simply a sphere having charge qk .) The effective Born
radius α is then determined by requiring the equality of the first and second lines on the r.h.s. of the
indicated equation

2. Compute effective Born radii α for all atoms using the procedure outlined above.

3. Using those effective Born radii, compute all values of γkk′ .

4. Compute or arbitrarily assign the atomic partial charges.

5. Evaluate Eq. (11.20).

Insofar as both GB and PB depend parametrically on the atomic radii used to define the
cavity, direct comparisons between the two methodologies must be made using identical
choices. Comparisons under such conditions have been made, and the agreement between
the two models has been found to be excellent for small to medium-sized molecules (see, for
instance, Edinger et al. 1997; Onufriev, Bashford, and Case 2000), so for practical purposes
they may be taken as essentially equivalent in terms of predictive utility, and choice of model
will usually be dictated by matters of computational convenience. For larger molecules, like
biopolymers, agreement is still generally good but some technical care is required to ensure
that the GB protocol does not assign empty volume inside the biomolecule to be characterized
erroneously by the dielectric constant of the solvent (Feig et al. 2004). Some additional issues
associated with comparison of the two approaches are discussed further in Section 11.4.

A modification of GB that includes the effects of dissolved electrolytes in the formalism,
i.e., an extension analogous to the Poisson–Boltzmann extension of the Poisson equation,
has been proposed by Srinivasan et al. (1999). In this model, the dielectric constant is a
function of the interatomic distance and the Debye–Huckel parameter (Eq. (11.7)).
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It may seem that using the Poisson equation to determine the effective Born radii, as
described above, defeats the purpose of developing GB as an alternative to PB. Actu-
ally, the solution of the Poisson equation for a single charge is vastly simpler than for a
complete charge distribution, but the procedure is still computationally intensive, and subject
to possible numerical noise. An analytical approximation to this procedure, known as pair-
wise descreening (PD), has been described by Hawkins, Cramer, and Truhlar (1995), and has
been shown to increase computational efficiency with very little cost in accuracy. Gallicchio
and Levy (2004) have described a modified PD algorithm that has improved sensitivity to
conformational changes in biological macromolecules and emphasized its potential utility in
docking calculations. A procedure that is similar in spirit to the PD approach but also takes
advantage of the molecular connectivity that must be defined in a force-field calculation (and
is thus limited to such applications) has also been described (Qiu et al. 1997).

Note that the GB approach describes the charge distribution of the solute using atom-
centered atomic partial charges. In that sense it may be called a distributed monopole
representation. A key issue, obviously, is how those partial charges are computed. In force-
field GB implementations, all models to date simply use the partial charges already defined
for the atom types for use in solving the charge–charge interaction term in the molecular
mechanics energy, and parameters in the GB model, like the Coulomb radius, are optimized
with respect to this choice (see, for example, Cheng et al. 2000, Onufriev, Case, and Bash-
ford 2002, and Zhang et al. 2003). For quantum mechanical calculations, the charges may
in principle be determined from any one of the many methods described in Section 9.3.
However, it must be kept in mind that at the QM level, the calculation is of the SCRF
variety. That is, the atomic partial charges will be free to change as the wave function
polarizes in response to the surrounding dielectric medium.

In order to implement the reaction field conveniently into the SCF equations, it is helpful
if the partial charges have a relatively simply dependence on elements of the density matrix.
Thus, for instance, early versions of the QM SCRF GB solvation models of Cramer and
Truhlar (so-called SMx models, where x is essentially a version number) used Mulliken
charges. As noted in Section 9.3, however, Mulliken charges provide a rather poor approx-
imation of the molecular charge distribution. Later generations of these models, to include
the most modern versions SM5.42 and SM5.43, use the CM2 and CM3 Class IV charge
models, respectively, to assign the atomic partial charges (hence the ‘.42’ and ‘.43’ suffixes
in the model names). As the charge models are designed to predict ‘good’ partial atomic
charges irrespective of the underlying wave function, there is a leveling of the electrostatics
across methods and SMx models for different levels of theory tend to have very similar
parameters. The parameters themselves are primarily the Coulomb radii ρk , as defined in
Fig 11.7. A GB SCRF implementation has also been reported for an SCC-DFTB model (Xie
and Liu 2002).

11.2.3 Conductor-like Screening Model

When the Poisson equation is solved using a boundary element approach, the charges on the
tesselated molecular surface are determined so that they provide an equivalent representation
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to the electrostatic potential that is distributed throughout space when the Poisson equation
is solved using a volume element approach. However, if the surrounding space were to be
characterized by an infinite dielectric constant, i.e., if the medium were conducting, then
no potential exists in the medium, and instead image charge develops on the conductor
surface in contact with the solute. Such a situation considerably simplifies the necessary
electrostatic equations for the calculation of polarization free energy (and also associated
energy derivatives) and this approximation is made in the so-called conductor-like screening
model (COSMO), first described in detail at the semiempirical SCRF level by Klamt and
Schüürmann (1993).

Of course, the response of a conductor to a solute charge distribution is ‘complete’,
while that of a dielectric medium is not. So, in COSMO models, the more simply evalu-
ated conductor-polarization free energy is scaled by a factor of 2(ε − 1)/(2ε + 1) after its
computation (i.e., by the Onsager factor; in the case of the SM5C model, however, the
scaling factor is (ε − 1)/ε – see Section 11.3.3).

Since its original description at the semiempirical level, COSMO has also been generalized
to the ab initio and density functional levels of theory as well (Klamt et al. 1998). In
addition, conductor-like modifications of the PCM formalism have also been described, and
to distinguish between the conductor-like version and the original (dielectric) version, the
acronyms C-PCM and D-PCM have been adopted for the two, respectively (Barone and
Cossi 1998).

From a chemical perspective, dielectric- and conductor-like continuum models give suffi-
ciently similar electrostatic results that the differences in their underlying assumptions appear
to have no impact. Conductor-like models seem to be slightly more computationally robust
in some instances, which may make them a better choice if instability is manifest in an
SCRF calculation. Some concerns were raised initially that the post facto correction for
dielectric behavior might render the models appropriate only for media having reasonably
high dielectric constants, but a systematic study by Dolney et al. (2000) indicated non-polar
solvents to be equally amenable to treatment by a COSMO model.

Moving beyond computation of the electrostatic component of the solvation free energy,
Klamt (1995) has also described using the results of COSMO calculations to model ‘real
solvents’ (COSMO-RS). In this model, a molecule in solution is considered to be entirely
defined by the screening charge density on its cavity surface, which is called its σ profile.
That surface is then shattered into a discrete number of fragments (each carrying its own
characteristic charge density σ ) and a chemical potential is defined in a statistical mechanical
formalism by considering the optimal matching of all fragments with partners having charge
densities of opposite sign for the collection of all fragments in the liquid. In spite of the
loss of structural information associated with breaking the molecular surface into completely
independent fragments, this model has proven to be particularly effective for describing the
thermodynamic properties of mixtures of molecules that are not too dissimilar, for example,
vapor–liquid equilibria in binary solvent systems (Spuhl and Arlt 2004). Extending this idea
to charged solutes, however, has proven more challenging.

It is important to re-emphasize that the electrostatic component of the solvation free
energy is not a physical observable. Thus, it is impossible to assert on any basis other
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than intuition that one continuum modeling algorithm is more or less accurate than another
in the computation of this quantity (Curutchet et al. 2003a). One may take as a standard
for comparison numerically converged solutions of the Poisson equation, but the Poisson
equation is itself a model, and not necessarily the optimal one. In order to make comparisons
against experiment, it is necessary to supplement the polarization (and distortion) energies
with terms corresponding to cavitation, dispersion, structural rearrangement, etc. Models that
purport to compute the full free energy of solvation may then be compared one to another
using experimental free energies of transfer as a common yardstick.

11.3 Continuum Models for Non-electrostatic Interactions

Just as the electrostatic component of the free energy of solvation cannot be measured, neither
can the non-electrostatic components. That being said, various experimental systems may
be biased so as to make one component or another likely to heavily dominate the solvation
free energy. For example, the solvation free energies of charged species would be expected
to be dominated by the electrostatic component, and solvation free energies for ions can
be helpful in the assignment of parametric Born radii to atoms. To assess the free-energy
changes associated with cavitation, dispersion, and other physical effects, different neutral
model systems have been studied, and we examine some of these next.

11.3.1 Specific Component Models

Noble gas atoms have no permanent electrical moments, and the lighter ones are amongst the
least polarizable of chemical systems. Thus, their transfer into a solvent may be regarded as
a process reasonably cleanly associated with cavitation, i.e., the introduction of the noble gas
atom is like introducing a vacuum of equivalent size into the solvent. By examining solvation
data for the noble gases and certain other systems, Pierotti (1976) developed a formula for
the cavitation free energy, associated with a spherical cavity volume, that depends on the
radius of the sphere to the first, second, and third powers. Simulation data have been used
to supplement noble-gas experimental data and refine constants appearing in the Pierotti
formula (Höfinger and Zerbetto 2003). By viewing a non-spherical solute as a collection of
atomic spheres where overlapping volumes are only accounted for once, Pierotti’s formula
has been generalized to molecular cavities (Claverie 1978; Colominas et al. 1999).

Dispersion is a considerably more difficult modeling task. As first noted in Section 2.2.4,
dispersion is a purely quantum mechanical effect associated with the interactions between
instantaneous local moments favorably arranged owing to correlation in electronic motions.
In order to compute dispersion at the QM level, it is necessary to include electron correlation
between interacting fragments, which immediately sets a potentially rather high price on
direct computation. More difficult still, however, is that the continuum model by construction
does not include the solvent molecules in the first place.

As a result, some approaches to computing dispersion energy have involved using either
experimental or theoretical data for gas-phase clusters to estimate the strength of disper-
sion interactions between different possible solute and solvent functional groups. However,
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when the cluster interaction involves molecules with permanent electrical moments, it can
be quite difficult to separate out the dispersion interaction from the overall interaction. In
any case, the typical approach deriving from this work is to develop a set of atomic (or
group) polarizabilities that will be used together with bulk solvent polarizabilities to esti-
mate dispersion interactions; usually, these are combined with other methods for estimating
exchange-repulsion, i.e., repulsive van der Waals effects, to come up with a complete short-
range term (see, for example, Floris, Tomasi, and Pascual-Ahuir 1991).

In practice, models that directly calculate cavitation and dispersion/repulsion tend to predict
that both effects are quite large in magnitude, but with opposite sign so that there is a large
degree of cancellation. This suggests the unfortunate possibility that errors in the individual
models may be larger than the net result.

Other energetic components associated with the solvation process include non-electrostatic
aspects of hydrogen bonding and solvent-structural rearrangements like the hydrophobic
effect. Despite many years of study, the fundamental physics associated with both of these
processes remains fairly controversial, and physically based models have not been applied
with any regularity in the context of continuum solvation models.

11.3.2 Atomic Surface Tensions

Given the somewhat ad hoc nature of most specific schemes for evaluating the non-electro-
static components of the solvation free energy, a reliance on a simpler, if somewhat more
empirical, scheme has become widely accepted within available continuum models. In
essence, the more empirical approach assumes that the free energy associated with the
non-electrostatic solvation of any atom will be characteristic for that atom (or group) and
proportional to its solvent-exposed surface area. Thus, the molecular GCDS may be computed
simply as

GCDS =
∑

k

Akσk (11.22)

where k runs over atoms or groups, A is the exposed surface area, and σ is the characteristic
‘surface tension’ associated with the atom or group. Note that here the use of the term surface
tension refers to the unit dimensionality of energy per area, and the atomic terms should not
be confused with the surface tension of the solvent, which is a macroscopic property.

Part of the motivation behind so straightforward an approach derives from its ready appli-
cation to certain simple systems, such as the solvation of alkanes in water. Figure 11.8
illustrates the remarkably good linear relationship between alkane solvation free energies
and their exposed surface area. Insofar as the alkane data reflect cavitation, dispersion, and
the hydrophobic effect, this seems to provide some support for the notion that these various
terms, or at least their sum, can indeed be assumed to contribute in a manner proportional
to solvent-accessible surface area (SASA).

It should be noted that SASA itself can be defined in many ways (see, for instance, Pascual-
Ahuir, Silla, and Tuñon 1994). In the simplest approach, one imagines solvent molecules to
be spheres having some characteristic radius. The SASA is then generated by the center of
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Figure 11.8 Approximately linear relationship between solvation free energy and solvent-accessible
surface area for linear and branched alkanes. A best fit line passing through zero has a slope of
8.6 cal mol−1 Å−2, which may be taken as the σ value for alkane surface area in Eq. (11.22) (Giesen,
Cramer, and Truhlar 1994)

a solvent sphere rolling over the van der Waals surface of the solute, which is equivalent to
constructing the SASA as the surface of solute atomic spheres having radii equal to the atomic
van der Waals radius plus the solvent radius. Such a surface has sharp concave intersections
between atoms, which is sometimes considered undesirable, in which case one can take
instead of the surface mapped out by the sphere center the surface actually accessible to the
surface of the solvent sphere. Other variations have also been presented, but in practice the
utilities of the various surfaces are comparable once optimized surface tensions have been
developed specifically for them.

In the majority of continuum solvation models incorporating a surface-tension approach to
estimating the non-electrostatic solvation components, the index k in Eq. (11.22) runs over
a list of atom types, and the user assigns the appropriate type to each atom of the solute.
This is particularly straightforward for MM models, like the Generalized Born/Surface Area
(GB/SA) model (Still et al. 1990; see also Best, Merz, and Reynolds 1997), since atom types
are already intrinsic to the force field approach. This same formalism has been combined
with the CHARMM and Cornell et al. force fields (see Table 2.1) to define GB models for
proteins and nucleic acids (Dominy and Brooks 1999; Jayaram, Sprous, and Beveridge 1998).
Considering this approach applied within the QM arena, the MST-ST models of Orozco and
Luque have been the most extensively developed (see, for instance, Curutchet, Orozco, and
Luque 2001).
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The surface tensions themselves in the GB/SA and MST-ST models were developed by
taking collections of experimental data for the free energy of solvation in a specific solvent,
removing the electrostatic component as calculated by the GB or MST model, and fitting
the surface tensions to best reproduce the residual free energy given the known SASA of the
solute atoms. Such a multilinear regression procedure requires a reasonably sized collection
of data to be statistically robust, and limitations in data have thus restricted these models to
water, carbon tetrachloride, chloroform, and octanol as solvents.

In order to be more generally applicable, the SMx models of Cramer and Truhlar address
the issue of data scarcity by making the atomic surface tensions a function of quantifiable
solvent properties, i.e.,

σk =
∑
j

jη
j

k (11.23)

where j runs over the property list,  is the value of a particular property in convenient units,
and the quantities η

j

k become the parameters needing to be fit by multilinear regression.
Although this introduces multiple parameters per atom type k, it permits regression over a
single data set containing solvation free energies into any solvent, so long as its required
solvent properties are known. In the SM5 versions of the models, the macroscopic solvent
properties include surface tension, index of refraction, hydrogen bonding acidity and basicity,
and percent composition of aromatic carbon atoms and electronegative halogen atoms, and
the parameterization set involves more than 2500 data in 91 different solvents (Li et al.
1999).

A separate flexibility built into the SMx models compared to most other QM continuum
models augmented with surface tensions is that no assignment of atom type need be made.
Instead, the SMx surface tensions are functions of local geometry, so that, for instance, a
carbon-bound hydrogen atom is distinguished from an oxygen-bound hydrogen atom and
assigned a different surface tension to reflect its different character. The surface tension
functions are smooth and differentiable, which facilitates their use in modeling situations
where an atom may change from one type to another along a reaction coordinate, for instance.

Surface-tension augmented continuum models permit the computation of full free energies
of solvation and may thus be used to construct solvated potential energy surfaces in the spirit
of Figure 11.1. Insofar as the solvation free energy itself and any equilibrium or kinetic
quantities computed for the solvated PES are physical observables, the accuracy of the
solvation models may be assessed by comparison to experimental data. We consider several
such comparisons in the next section in addition to addressing certain important technical
details. Prior to doing so, however, it must be mentioned that the use of atomic surface
tensions has been carried to the extreme of assuming that they can account for the entire
solvation free energy, i.e., the electrostatics are completely implicit and the parameters in
Eq. (11.23) are fit to the full solvation free energy (recent examples include Hawkins et al.
1998, Wang et al. 2001, and Hou et al. 2002). Such models are typically designed for use
with biopolymers, where there is a need for extreme efficiency and the range of atom types
is rather limited. An approach that is similar in its conceptual simplicity, albeit not entirely
devoid of electrostatics, is the solvation free energy density (SFED) approach of No et al.
(1999) where the full free energy of solvation is computed from the accessible volume (as
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opposed to surface area) of a finite shell surrounding each atom. This model, too, is primarily
designed for use with biomolecular simulations, although its performance for more general
small neutral solutes is perfectly acceptable.

11.4 Strengths and Weaknesses of Continuum Solvation Models

11.4.1 General Performance for Solvation Free Energies

For neutral solutes experimental free energies of solvation between the range of
+5 and −15 kcal mol−1 are typically amenable to measurement with an accuracy of
±0.1 kcal mol−1. Carefully parameterized surface-tension-augmented continuum models
typically exhibit average errors over large data sets on the order of 0.5 kcal mol−1.
Ionic solutes pose more difficulties experimentally, since measurement of a gas/solution
equilibrium is no longer a viable methodology. However, for singly charged species, solvation
free energies ranging from −40 to −110 kcal mol−1 can be obtained with accuracies of
±2–5 kcal mol−1, depending on the experimental technique. Well parameterized continuum
models achieve mean absolute errors at the high end of the experimental error range, which
is perhaps the best that can be expected. Reliable data for more highly charged species are
extremely scarce, so no legitimate comparison can be made.

It is worth noting that the solvation free energy of the proton is a somewhat special case.
Determining the solvation free energy of the proton is equivalent to determining the absolute
potential of the normal hydrogen electrode (NHE), which is a tricky issue in electrochemistry
(Trasatti 1986). In 1986, the International Union of Pure and Applied Chemistry (IUPAC)
recommended an absolute value of 4.44 V for the NHE which corresponds to a 1 M gas phase
to 1 M solution standard-state aqueous proton solvation free energy of −261.7 kcal mol−1.
In the 1990s, however, Tissandier et al. (1998) used ion-cluster measurements to establish
a value of −264.0 kcal mol−1 for the same standard-state process, which corresponds to
an NHE potential of 4.36 V (Lewis et al. 2004). Subsequent experimental and theoretical
work has been supportive of the greater accuracy of the newer value and its use can
be recommended. Note that most methods for determining ionic solvation free energies
experimentally rely on having a benchmark value for the proton solvation free energy, so
a change in the benchmark changes all ionic solvation free energies. Thus, care should
be employed in comparing tabulations of such values in the literature to ensure common
standard-state conventions and proton solvation free energies.

One of the reasons that it is hard to predict accurate solvation free energies for charged
species is that such predictions tend to be very sensitive to the size of the solute cavity,
leading to many proposals in the literature for how to go about choosing the ‘best’
electrostatic cavity. However, insofar as the electrostatic component of the solvation free
energy is not an observable, there is not much weight to these arguments. The essentially
equivalent performances of surface-tension augmented models like MST-ST and SMx for
full free energies of solvation, even though they use very different cavity radii in some cases
and therefore determine very different electrostatic free energies of solvation (Curutchet et al.
2003a), speak to the ability of the parameterization process to mask any lack of physicality
in the cavity definitions.
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Table 11.3 Absolute free energies of solvation (kcal mol−1) and chloroform/water partition
coefficients (log10 units) for nucleic acid bases at the SM5.4/AM1 levela

Frozen Relaxed logKCHCl3/H2O

Solute H2O CHCl3 H2O CHCl3 Frozen Relaxed Experiment

9-Methyladenine −12.8 −11.9 −15.8 −13.6 −0.7 −1.6 −0.8
9-Methylguanine −13.1 −11.8 −22.3 −16.7 −0.9 −4.1 −3.5
9-Methylhypoxanthine −15.0 −13.1 −19.5 −14.6 −1.4 −3.5 −2.5
1-Methylcytosine −12.2 −11.1 −22.6 −16.8 −0.8 −4.3 −3.0
1-Methylthymine −6.9 −7.7 −9.6 −9.2 0.6 −0.3 −0.5
1-Methyluracil −7.6 −7.3 −10.5 −8.9 −0.3 −1.2 −1.2
Mean unsigned error 1.3 0.6

aComputational results from Giesen et al. (1997); experimental results from Cullis and Wolfenden (1981)

In the future, analysis of this problem at the SCRF level will necessarily have to focus
on molecular properties other than the solvation free energy to assess the greater accuracy
of one cavity compared to another. Thus, differences in the gas-phase and solvated wave
functions, and their corresponding effects on such properties as NMR, IR, and UV spectral
transitions, may prove useful in identifying optimal methods for handling the electrostatics.

Such differences may in principle be quite large, as already illustrated in Table 11.1.
Even the solvation free energies themselves may be strongly influenced by the relaxation
of the wave function in solution. In Table 11.3 are listed the SM5.4/AM1 solvation free
energies of six methylated nucleic acid bases, both in chloroform and in water, computed
using either the charge distribution from the gas-phase wave function or from the relaxed
wave function. As discussed further in Section 11.4.2, the difference between the two may
be expressed as a partition coefficient, and the two sets of partition coefficients (frozen and
relaxed) are compared to experimental values. Agreement is significantly better using the
relaxed solvation free energies rather than the so-called ‘no solute polarization’ solvation
free energies.

Note that one implication of the importance of solute polarization is that intrinsically
non-SCRF methods, like continuum solvation models associated with force fields or other
fixed-charge-density representations of the solute, must somehow include the energetic effect
of polarization by other means. For instance, often atomic partial charges are chosen from
calculations at the HF/6-31G(d) level. This level overestimates charge separation (as judged
by a consistent roughly 10% overestimation of dipole moments), but this may be regarded
as a virtue, not a failing, when used with non-SCRF continuum models, because the solute
polarization is ‘built-in’ through the gas-phase wave function errors. Alternatively, fixed-
charge models can use cavity radii slightly smaller than those for SCRF models to offset the
use of unrelaxed charges.

11.4.1.1 pKa values

Returning to ionic solvation free energies, such quantities play important roles in the
computation of two common properties of interest, namely pKa values and relative redox
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Figure 11.9 Free energy cycle for computation of pKa values (where n is an integer). This cycle is
sometimes referred to as a Born–Haber cycle

potentials. Computation of the former is accomplished by employing the free-energy cycle
depicted in Figure 11.9. Thus, gas-phase free energies of AHn and An−1 may be computed
at arbitrarily high levels of theory to establish as accurately as possible the deprotonation
free energy of AHn. Note that if n and/or n − 1 are negative numbers then the basis set will
need to include diffuse functions in order to obtain even modest quantitative accuracy. As
for the proton, its electronic energy is obviously zero, and its gas-phase free energy derives
entirely from a PV enthalpy term and a translational free energy that may be computed from
Eqs. (10.16) and (10.17). At 298 K in the usual 1 atm standard state the free energy of the
proton is −0.00999 a.u.

To compute the deprotonation free energy in solution, we take the gas-phase free energy
change, add the free energies of solvation of An−1 and H+ (see above for the latter), and
subtract the free energy of solvation of AHn. However, note that most continuum solvation
models compute the free energy of solvation assuming the same standard-state concentration
in the gas phase as in solution. As most pKa values adopt a standard-state concentration
of 1 M, we need then to compute the free energy change associated with adjusting the
concentrations of all of the gas-phase species from 1 mol per 24.5 L (the concentration of
an ideal gas at 1 atm pressure and 298 K) to 1 mol per 1 L. As described in Section 10.5.4,
this change is RT ln(24.5) for every species. As there are two products and only one reactant
in the deprotonation reaction, the net effect is to make deprotonation less favorable by
1.9 kcal mol−1 in the 1 M standard state compared to the 1 atm standard state at 298 K.

Having computed the free-energy change in solution by this protocol, we may then
compute Ka as

Ka = e
−�Go

(sol)/RT
(11.24)

and pKa as

pKa = − log
(
e
−�Go

(sol)/RT
)

(11.25)

As errors in ionic solvation free energies are often on the order of 5 kcal mol−1, and as
errors in the gas-phase deprotonation free energies may be of similar magnitude even with
reasonably good levels of theory, errors in predicted absolute pKa values of 5 or more pK

units are not terribly unusual, which is not particularly satisfying insofar as experimental
measurements can be accurate to 0.01 pK units.
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One approach for reducing the errors associated with the prediction of pKa values is to
employ an isodesmic reaction. To illustrate with a specific example, it may be very hard to
correctly predict the free energy change for the aqueous reaction

NH3

+

F

NH2

F

+
+

H

(11.26)

However, if the theoretical target is instead the free energy change for the isodesmic equation

NH3

+

F

NH2

F

+

NH2

+

NH3

+

(11.27)

one may well expect this to be computed far more accurately, since errors in levels of theory
should largely cancel from left to right. Provided experimental data are available for the
unsubstituted case

NH2

+

NH3

+

+ H

(11.28)

then the free energy change for Eq. (11.26) may be estimated from the difference between
the computed value for Eq. (11.27) and the experimental value for Eq. (11.28). Chen and
MacKerell (2000) have provided a more detailed demonstration of the utility of this approach
for a series of substituted pyridines using a variety of different levels of theory for the gas
phase and computed solvation free energies.

An alternative approach for improving predicted pKa values has been suggested by Klicic
et al. (2002), who developed functional-group-specific linear regression corrections for pKa

values computed from a particular DFT SCRF PB formalism. Correction of the raw computed
pKas increases the model’s accuracy to about 0.5 pK units for those acidic functional groups
well represented in their parameterization set.

11.4.1.2 Redox potentials

Oxidation and reduction potentials in solution are also computed via reference to
particular thermodynamic cycles as illustrated in Figure 11.10. In this case, however, the
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Figure 11.10 Thermodynamic cycles for one-electron oxidation (left) and reduction (right) potentials
in solution

thermodynamic cycles perforce involve open-shell species and free electrons. Note that
the oxidation and reduction cycles in the gas phase correspond conceptually to ionization
potentials and electron affinities, respectively, except that IPs and EAs are enthalpies, not
free energies, so thermal and entropic terms must be included therein. For the free electron,
like the free proton, the electronic energy is zero, but the sum of the PV and translational
terms leads to a total gas-phase free energy at 298 K and 1 atm of −0.00001 a.u. (it is
a coincidence that for this standard state the free energy associated with the translational
entropy almost exactly cancels the enthalpy).

Another key feature of redox thermodynamic cycles is that the free energy change in
solution is still defined to involve a gas-phase electron, that is, the solvation free energy of
the electron is happily not an issue. And, once again, redox potentials in solution typically
assume 1 M standard states for all species (but not always; in this chapter’s case study, for
instance, all redox potentials were measured and computed for chloride ion concentrations
buffered to 0.001 M). So, free energy changes associated with concentration adjustments
must also be properly taken into account.

Once the free energy change in solution has been computed, the absolute redox potential
Eo may be computed as

Eo = −�Go

nF
(11.29)

where n is the number of electrons transferred and F is the Faraday constant equal to
23.061 kcal mol−1 V−1. Note that while Figure 11.10 presents thermodynamic cycles for
one-electron processes, analogous cycles involving multiple electrons are readily constructed
and may sometimes be more amenable to experimental determination.

In practice, experimental redox potentials are reported relative to a standard electrode. If
the standard is the NHE, one subtracts 4.36 V from the absolute reduction potential (the ‘cost’
of the free electron) or adds 4.36 V to the absolute oxidation potential (the ‘return’ from the
removed electron) in order to determine the relative potential. Adjustment to other standard
electrodes is straightforward, since their potentials relative to the NHE are well known.

With respect to accuracy, it is again important to employ basis sets including diffuse
functions when anions are present as either reactants or products. With large well balanced
basis sets, B3LYP for gas-phase energetics, and a PB SCRF solvation model, Baik and
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Friesner (2002) have reported average errors of about 150 mV for various organometallic
species in different organic solutions. As already discussed for pKas, still better accuracy in
redox potentials can often be achieved through the use of isodesmic equations or functional-
group-specific correction schemes (see, for example, Winget et al. 2000).

11.4.1.3 Supermolecular solutes

Some final technical points merit attention. In SCRF models that use the full electronic
distribution as part of the representation of the density, a problem arises in that the wave
function has non-zero amplitude in the space outside the cavity. Thus, the construction of the
cavity truncates the charge distribution, so that, for instance, neutral molecules have a small
net positive charge inside the cavity. To return to integral charge values, the charge inside
the cavity must somehow be renormalized. There are many different approaches to rectifying
this problem; early methods tended to introduce considerable instability into the solvation
computation, although more modern approaches seem reasonably robust (see, for example,
Curutchet et al. 2004). Methods that do not suffer from the charge-penetration problem
include all those that represent the density as either a single- or multi-center multipole or
monopole expansion (this then includes GB methods). In addition, approaches have been
developed that specifically handle, as a separate physical component, the polarization energy
associated with penetration of charge into the solvent, and these models too seem to be well
balanced (Chipman 2002).

The charge-penetration problem is in some sense related to a specific drawback of current
continuum models, namely, that they have no mechanism to account for possible charge
transfer between the solute and the surrounding solvent. It is not yet clear to what extent
such solute/solvent charge transfer is important.

Of course, the simplest way to account for charge transfer would be to ‘materialize’ one or
more solvent molecules around the solute and to treat the resulting cluster as a supermolecule
embedded in the continuum. Pliego and Riveros (2002) and Fu et al. (2004) have recently
suggested that such an approach provides a more robust protocol for the computation of
accurate pKa values, for instance. However, while this model has conceptual merits, it
can introduce significant computational overhead. First, the supermolecule is obviously
bigger than the solute, and depending on the level of theory employed the difference in
computational time for a single SCRF calculation may be large. Second, clusters tend to
generate fairly complex PESs, with many minima, and any attempt to compute free energy
must sample over all of the minima in a statistically correct fashion. Since part of the
motivation for using a continuum model is to avoid the sampling issues associated with
explicit models, the representation of specific solvent molecules is usually not undertaken in
the absence of compelling need.

One case, however, where materialization of a specific solvent molecule out of the
continuum is indeed critical is when that solvent molecule loses its ‘solvent’ character.
For instance, a water molecule tightly bound as both a hydrogen-bond donor and acceptor
in a chain involving two solute functional groups clearly should be regarded as a unique
fragment in what is fundamentally a two-piece supermolecule. Unfortunately, it is not always
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clear when such situations will arise, and modeling must simply be carried out with great
care to ensure that the possibility is not overlooked.

11.4.2 Partitioning

The free energy of solvation may be regarded as the quantity describing the partitioning of
a solute between the gas phase and a particular solvent. However, one is often interested in
the free energy associated with the partitioning of a solute between two different condensed
phases. Continuum solvent models may still conveniently be used to predict such partitioning
behavior, based on the procedure outlined in Figure 11.11. The validity of the thermodynamic
cycle is secure as drawn; however, under certain experimental conditions, the cycle is not
representative of the experiment and the performance of the model may thus be degraded.
For instance, the two solvents may be immiscible in a bulk sense, so the experiment may
be carried out simply by dissolving a solute into a container holding both solvents, shaking
the system until equilibrium is reached, and then measuring the solute concentration in the
two phases. However, in spite of the phases being immiscible in bulk, the small percentages
of each solvent that dissolve into the other may significantly affect the bulk’s ability to
solvate the solute in question. The continuum model, on the other hand, necessarily assumes
a homogeneous ‘pure’ medium.

One major motivation for studying partitioning behavior has been a desire to understand
the fashion in which drug molecules pass through largely non-polar (lipid) biomembranes
that separate largely aqueous biocompartments. Historically, the octanol/water partition
coefficient has been useful in this regard, as have some others. Such partition coefficients
are usually not expressed as free energies of transfer, but as the logarithm of the associated
equilibrium constant P . From a modeling perspective, using the formalism embodied in
Figure 11.11, one computes

log PA/B = −�Go
SA

− �Go
SB

2.303RT
(11.30)

where A and B are the solvents of interest and the two terms in the numerator are the free
energies of transfer from the gas phase into solvent A and solvent B, respectively.

The similar accuracies of different well-parameterized continuum models implies that they
will also perform similarly for the computation of partition coefficients, and that has proven
to be the case in most studies to date (see, for example, Bordner, Cavasotto, and Abagyan
2002 and Curutchet et al. 2003b). In Table 11.4 the previously presented SMx results for the
chloroform/water partitioning of the methylated canonical nucleic acid bases are compared to
results from the MST-ST/HF/6-31G* method, and also to purely electrostatic results obtained
using a multipole expansion SCRF method. As the latter does not include any accounting for
non-electrostatic effects, its performance is significantly degraded compared to the other two.

11.4.3 Non-isotropic Media

All of the continua discussed thus far have been isotropic in nature. An interesting question
arises as to the ability of the continuum approximation to model non-isotropic media. In
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Figure 11.11 Thermodynamic relationship between partitioning free energies and free energies of
solvation. Knowledge of any two free energies permits prediction of the third since any cycle around
the free-energy triangle must sum to zero

Table 11.4 Chloroform/water partition coefficients (log10 units) for nucleic acid
bases at different SCRF levels

Solute logKCHCl3/H2O

SM5.4a MST-STb SCRFc Experimenta

9-Methyladenine −1.6 −0.3 −0.6 −0.8
9-Methylguanine −4.1 −4.8 −1.3 −3.5
9-Methylhypoxanthine −3.5 −1.4 −2.5
1-Methylcytosine −4.3 −3.4 −1.1 −3.0
1-Methylthymine −0.3 −0.4 −0.8 −0.5
1-Methyluracil −1.2 −1.0 −1.2

Mean unsigned error 0.6 0.6 1.2

aSee Table 11.3.
bOrozco, Colominas, and Luque 1996.
cYoung and Hillier 1993; Young, Hillier, and Gould 1994.

certain instances, this has proven relatively straightforward. One example is the extension of
the PCM model to include handling liquid crystals as solvents. In the case of a liquid crystal,
the ordering of the solvent gives rise to a dielectric tensor as opposed to a single uniform
dielectric constant. In order to extend the continuum model, an absolute reference frame is
chosen and the x, y, and z components of the PCM equations are solved separately using
the appropriate dielectric constant values; in addition, non-isotropic effects on cavitation
energies have been considered (Mennucci, Cossi, and Tomasi 1996).

Another interesting case is a supercritical fluid. Near their critical points, supercritical fluids
can exhibit very large changes in density (and density-related properties) in response to very
small changes in conditions. By including possible density changes and their effects into the
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SCRF equations governed according to the experimentally measured solvent compressibility,
Luo and Tucker (1995) have been able to model these effects efficiently.

While both of the above examples are gas/condensed-phase solvation phenomena, there
are also many interesting cases of partitioning phenomena where one phase is non-isotropic.
Perhaps the most common is the case where one phase is a pure solid and the other a liquid
solvent, in which case the partitioning phenomenon corresponds to solubility. Within the
context of the free energy cycle of Figure 11.11, if we consider A to be the solid phase
for solute X, the free-energy change from the solid to the gas corresponds to sublimation.
To compute the free energy of sublimation rigorously, one must know the crystal packing
energy. However, even when the unit cell geometry of the crystal is known (which it often
is not), it is by no means trivial to compute the free energy of interaction of one monomer
with the full crystal. A very rough estimate can be had by assuming that organic non-
electrolytes have crystal packing energies similar to the solvation energies that the solute
would have in a solvent ‘similar’ to itself. Thus, for instance, a highly non-polar hydro-
carbon would be assumed to have a crystal packing energy equal to its solvation free energy
in n-hexadecane. In essence, this treats solid/liquid partitioning as just a typical liquid/liquid
partitioning problem (see, for instance, Reinwald and Zimmermann 1998 and Thompson,
Cramer, and Truhlar 2003). While this approach can work well for non-polar solutes, it
is less secure when more complicated functionality is present. In such instances, modern
work typically includes some combination of solvation free-energy estimates combined with
statistical analysis over data sets of molecules having similar functionality for which solu-
bilities have been measured in order to make predictions (generating a so-called quantitative
structure–property relationship (QSPR); see, for example, Lipinski et al. 1997).

Liquid/liquid partition constants within pharmaceutical chemistry have been of primary
interest because of their correlation with liquid/membrane partitioning behavior. A suffi-
ciently fluid membrane may, in some sense, be regarded as a solvent. With such an outlook,
the partitioning phenomenon may again be regarded as a liquid/liquid example, amenable
to treatment with standard continuum techniques. Of course, accurate continuum solvation
models typically rely on the availability of solvation free energies or bulk solvent properties
in order to develop useful parameterizations, and such data may be sparse or non-existent for
membranes. Some success, however, has been demonstrated for predicting such data either
by intuitive or statistical analysis (see, for example, Chambers et al. 1999).

Indeed, the utility of the continuum approach for modeling non-homogeneous phases has
even been extended to the modeling of soil. The partitioning behavior of organic compounds
between aqueous phases and soil is an important factor affecting the persistence of organic
contaminants in the environment. Thus, environmental chemists define POC as the partition
constant of a solute between water and soil, where the mass of the soil is normalized by
organic carbon content (such normalization has the effect of making the partition coefficient
remarkably constant over wide ranges of soil types). Using Eq. (11.30), then, one can deter-
mine a free energy of transfer into the organic carbon component of soil. An SMx model
trained on a data set of a few hundred molecules in order to determine the necessary bulk
‘solvent’ properties to define a soil phase has been shown to be capable of predicting POC

values to within about one log unit (Winget, Cramer, and Truhlar, 2000). Thus, continuum
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models may be regarded as very useful initial approximations in describing transfer free
energies into phases of arbitrary complexity, provided sufficient data are available to permit
their robust parameterization.

11.4.4 Potentials of Mean Force and Solvent Structure

Consider the association of two molecules in a solution. When association is favorable, one
may imagine generating a curve similar to that shown in Figure 11.12, where the association
is reduced to a one-dimensional ‘reaction coordinate’. The ordinate of the graph, in this
case, is not potential energy (as it would be in a similarly shaped graph for, say, a bond
dissociation) but free energy. This implies that each point on the curve reflects a proper
statistical average over all of the solvent configurations that may solvate the ‘reacting’
system. Such a curve is referred to as a potential of mean force (PMF). The generation of
accurate PMFs is one of the most significant challenges facing continuum models, in some
cases for technical reasons and also because of a lack of experimental data for paradigmatic
systems.

With respect to the technical challenges involved, continuum models that use a cavity-
based approach to solve the Poisson equation are not well suited to computing PMFs. The
problem is that it is quite difficult to solve the necessary equations when there are two
cavities. Moreover, when the two cavities first touch one another and begin to penetrate, the
narrow ‘neck’ of the joined cavities can lead to numerical instabilities.

Generalized Born models do not suffer from the multiple cavity problem, which is a
particular advantage of that methodology. However, initial studies have suggested that

G

rXY

Figure 11.12 Potential of mean force between solutes X and Y as a function of the distance between
their centers of mass. This particular PMF indicates that both tight and solvent-separated pairs exist
as distinct minima
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while GB models are very robust for the prediction of solvation free energies, they are
less successful in the generation of potentials of mean force (Rankin, Sulea, and Purisima
2003). Lack of high-quality data makes it difficult to evaluate this possibility at present,
although ongoing comparisons between different theoretical models are helping to further
illuminate the issue (see, for example, Jayaram, Liu, and Beveridge 1998 and Gohlke and
Case 2004).

Note that one feature of Figure 11.12 is a solvent-separated minimum for the X–Y pair.
Insofar as solvent-separated minima involve intervening solvent molecules that typically
differ significantly in their behavior from normal bulk solvent as a consequence of being
isolated between the two solutes, such situations are unlikely to be handled accurately by
continuum models in general.

It is sometimes the case that the structure of the first shell (or shells) of solvent is a
property of primary interest for a given modeling study. It is perhaps stating the obvious to
note that in such an instance, continuum models cannot be used, since by construction they
ignore the molecular nature of the solvent and assume a homogeneous surrounding medium.

Of course, if one is interested only in the free-energy well associated with full complex-
ation, many technical aspects of the calculation are simplified. The tremendous speed of
continuum solvent models has made them attractive tools in evaluating solvation effects on
docking, especially insofar as they permit more extensive sampling of varying target-receptor
geometries to be carried out in an efficient manner (see, for example, Gouda et al. 2003;
Taylor, Jewsbury, and Essex 2003; and Zoete, Michielin, and Karplus 2003).

11.4.5 Molecular Dynamics with Implicit Solvent

A large fraction of the expense of a typical MD simulation involving a solute in solution
(discussed in much more detail in the next chapter) is associated with the hundreds or
thousands of solvent molecules that are explicitly represented in the full simulation cell.
However, when the fine details of the solvation process are not of primary interest, it can be
about an order of magnitude more efficient to propagate a trajectory for the solute within the
context of continuum solvation. The methodology that has been most extensively explored for
this process to date has tended to involve GB solvation models developed for biomolecular
force fields (although PB models have also seen substantial use). To maximize speed, Born
radii are computed either from a PD algorithm or are set to constant values determined from
initial PB calculations (Onufriev, Case, and Bashford 2002). For truly enormous systems,
additional algorithms allowing certain portions of the solute to be held frozen while others
are dynamical have been described (Banavali, Im, and Roux 2002; Guvench et al. 2002).

A particular advantage of MD with implicit solvation is that solvent friction is not an issue
with respect to the solute being able to explore phase space. That is, no solvent molecules
need to be pushed out of the way in order for otherwise energetically accessible large-
scale motions to take place. As long as the energy landscape for the solute is as accurately
predicted with the continuum solvent as with an explicit solvent, this feature leads to much
more rapid achievement of converged sampling (Okur et al. 2003) especially when LES is
used (Cheng, Hornak, and Simmerling 2004). This behavior has been successfully exploited
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for modeling pathways associated with protein folding (see, for instance, Jang, Shin, and Pak
2002 and Chowdhury et al. 2003), the timescale for which would have made simulations
with explicit solvent prohibitively expensive. Of course, if one is interested in the kinetics
of the process in question, then removal of the solvent friction is not helpful – the implicit
solvent advantage applies only to obtaining rapid equilibrium averages.

As for the quality of the energy landscape and its effect on solute dynamics, comparisons
of PCA eigenvectors from simulations using either implicit or explicit solvation have been
carried out for proteins (Cornell et al. 2001), DNA (Tsui and Case 2000) and RNA (Sherer
and Cramer 2002) and have generally indicated high overlap between the two models. Never-
theless, some protein folding studies have identified serious deficiencies in GB landscapes
that include overestimation of salt-bridge interaction energies (Zhou 2003) and a general
tendency to overstabilize nucleation (Nymeyer and Garcia 2003). One alternative to prop-
agating a trajectory using an implicit solvent model that has also been explored has been
to take a trajectory generated with inclusion of explicit solvent and then post-process it to
compute individual or average solvation free energies for various snapshots, whose compu-
tation would otherwise require more sophisticated simulation protocols as described in the
next chapter.

Some work has also appeared describing MD with implicit solvation for solutes described
at the DFT level. Fattebert and Gygi (2002) have proposed making the external dielectric
constant a function of the electron density, thereby achieving a smooth transition from solute
to solvent instead of adopting a sudden change in dielectric constant at a particular cavity
surface. Non-electrostatic components of the solvation free energy have not been addressed
in this model.

11.4.6 Equilibrium vs. Non-equilibrium Solvation

Most continuum models are properly referred to as ‘equilibrium’ solvation models. This
appellation emphasizes that the design of the model is predicated on equilibrium properties
of the solvent, such as the bulk dielectric constant, for instance. The amount of time required
for a solvent to equilibrate to the sudden introduction of a solute (i.e., the solvent relaxation
time) varies from one solvent to another, but typically is in the range of molecular vibrational
and rotational timescales, which is to say on the order of picoseconds.

Processes that take place on longer timescales may thus be legitimately thought of as
equilibrium processes with respect to solvation. However, the question arises of how appli-
cable continuum models are to very fast processes. For instance, Figure 11.4 describes the
relationship between gas-phase and solvated reaction coordinates for a reactive process, but
the average amounts of time individual molecules spend at various positions on the reaction
coordinate vary considerably. In the regions of the minima, equilibrium solvation seems
assured, but transition state structures in principle live for only a single vibrational period.
This suggests that the solvent may not have time to fully equilibrate to the TS structure, and
a continuum model were it to be applied would overestimate the solvation free energy by
assuming equilibration. In addition, considerable progress has been made in the extension
of GB models to systems where an implicit membrane characterized by a dielectric constant
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different from the solvent is represented in both the electrostatic and non-electrostatic terms
(Spassov, Yan, and Szalma 2002).

Still faster timescales are associated with phenomena like electron transfer (i.e., redox
reactions) and photon absorption/emission and possible associated electronic excitation.
Since these processes occur on the timescale of electronic motion, the surrounding solvent
molecules may be regarded as frozen in place during the reaction, and clearly an equilibrium
view of the instantaneous solvation is incorrect.

These issues will be addressed in more detail in Chapters 14 and 15. Here, we will simply
note that successful extensions of continuum models to such ultrafast processes as electron
transfer and photoexcitation requires that the response properties of the solvent be explicitly
separated into slow and fast parts that interact with the solute over the appropriate timescales
(see, for instance, Cossi and Barone 2000). This approach can also be used for dealing with
non-equilibrium effects on transition states. However, unless there is a very sudden transfer
of charge that takes place over a significant distance failure to account for non-equilibrium
effects rarely has much consequence in estimating a free energy of activation – errors in
the gas-phase potential energy difference between minima and the TS structure are typically
larger in magnitude. Thus, unmodified continuum solvation models can still be quite useful in
constructing diagrams like that shown in Figure 11.4 for the purpose of describing reactivity
in solution.

11.5 Case Study: Aqueous Reductive Dechlorination
of Hexachloroethane

Synopsis of Patterson, Cramer, and Truhlar (2001) ‘Reductive Dechlorination of Hexa-
chloroethane in the Environment. Mechanistic Studies via Computational Electrochemistry’.

Halogenated alkanes are very useful as solvents in a variety of industrial processes (at one
time they were the solvents of choice for the dry cleaning of clothes, for example). The scale
of their use is such that their accidental or deliberate discharge into the environment can
lead to long-term contamination problems. As is true for many environmental contaminants,
the molecule originally released may not be a particular danger from an environmental
perspective, but some product into which it is transformed may be considerably more
cause for concern.

An example is hexachloroethane (C2Cl6). In environmental aqueous phases, it typically
undergoes reductive dechlorination relatively rapidly. One product of this dechlorination,
produced in small amounts, is trichloroacetic acid (Cl3CCO2H), which is a regulated
carcinogen in the United States. The authors studied the mechanistic aspects of C2Cl6
reductive dechlorination with both methodological and chemical goals. The methodolog-
ical question involved identifying appropriate levels of theory for modeling the relevant
reactions, while the chemical questions to be addressed were associated with identifying the
relevant mechanistic pathways for reduction and any possible explanation for the generation
of Cl3CCO2H as a product.

Various data were available for comparison in order to identify adequate theoretical
levels for application. Table 11.5 illustrates the performance of two different levels of
theory, CCSD(T)/aug-cc-pVDZ//BPW91/aug-cc-pVDZ and BPW91/aug-cc-pVDZ, with
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Table 11.5 Reductive dechlorination benchmarks in the gas phase (eV) and aqueous
solution (V)

Benchmark Phase Quantity Experiment CCSD(T) BPW91

C2Cl4 → C2Cl4
+ž + e− gas �H0 (IP) 9.33 (9.5)a 9.18 (9.42)a 8.81 (9.02)a

Cl
ž + e− → Cl− gas −�H0 (EA) 3.61 3.40 3.64

aqueous E∅′
1 2.54 2.37b 2.62b

C2Cl6 + 2e− + H+ → gas �Go
(g) −18.54 −18.28 −18.55

C2HCl5 + Cl− aqueous E∅′
2 0.67 0.71b 0.85b

C2HCl5 + 2e− → gas �Go
(g) −4.37 −3.90 −4.61

C2Cl4 + 2Cl− aqueous E∅′
2 1.15 1.09b 1.44b

C2HCl5 + e− → gas �Go
(g) −1.16 −0.96 −1.45

C2HCl4
ž + Cl− aqueous E∅′

1 0.11 0.02b 0.52b

aValues in parentheses are for vertical process.
bValues differ from those originally reported by Patterson, Cramer, and Truhlar (2001) by 0.08 V per
electron consumed. This difference reflects a more accurate measurement of the absolute potential of the
normal hydrogen electrode as 4.36 V instead of 4.44 V since the time of that publication. See Lewis et al.
(2004) and Section 11.4.1.

each level being supplemented by aqueous solvation energies computed from the
SM5.42R/BPW91/DZVP//BPW91/aug-cc-pVDZ level of theory when appropriate. The
reduction potentials in solution are in units of volts relative to the standard hydrogen
electrode, and the authors provide a detailed appendix showing how to convert between the
various standard states and conventions typically adopted in theoretical and experimental
work. They note that the CCSD(T) level, combined with the continuum solvent model
when needed, is a better choice than the DFT method; the mean unsigned error in predicted
reduction potentials for the CCSD(T) model is 0.09 V while for the DFT model it is 0.24 V.
As the DFT level does somewhat better for the gas-phase free energies of reaction than the
CCSD(T) level, it appears that there is some modest cancellation of errors in the solvation
free energies that improves the performance of the CCSD(T) model.

Having identified the optimal level of theory, the authors apply it to various structures,
primarily stationary points on the gas-phase PES, to characterize the energetics associated
with various postulated mechanistic pathways (Figure 11.13). They identify the first mech-
anistic step as electron transfer followed by barrierless chloride ion elimination to generate
the pentachloroethyl radical (C2Cl5•). They discount the proposed heterolysis of this radical
prior to a second electron transfer on the basis of the higher energy of the products C2Cl4+•
and Cl−. Instead, they find that following a second electron transfer, there is again a barri-
erless elimination of a second chloride anion. However, this elimination is possible either
from the same carbon as the first, in which case chloro(trichloromethyl)carbene is generated,
or from the other carbon, in which case perchloroethylene is generated. While the former
is much less exergonic than the latter, the barrierless nature of both reactions suggests that
partitioning will be controlled by complex dynamic factors.

The importance of the former reaction is that it suggests a mechanism for the creation
of Cl3CCO2H as a product. Based on analysis of the computed activation free energy
for the rearrangement of chloro(trichloromethyl)carbene to perchloroethylene, the authors
suggest that oxygen atom transfer to the carbene from some environmental source can
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Figure 11.13 Relative aqueous free energies (eV) for various species on different reductive
dechlorination paths of hexachloroethane as computed by Patterson and co-workers The relative
energies are properly balanced, although for simplicity spectator species are not shown in every
case. What is involved in achieving this balance for energy? What about free energy?

be kinetically competitive. Such a transfer would generate the acyl chloride equivalent of
Cl3CCO2H, which would hydrolyze in short order to the carboxylic acid.

This paper provides an example of how accurate continuum models can open the door
to the modeling of condensed-phase processes where solvation free energies have a very
large influence on reaction energetics. It additionally offers a case study of how to first
choose a model on the basis of experimental/theoretical comparisons over a relevant data
set, and then apply that model with a greater expectation for its utility. The generality of
this approach to other (equilibrium) electrochemical reactions seems promising.
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12
Explicit Models for Condensed
Phases

12.1 Motivation

At the heart of chemistry are atoms and molecules – they are the basis set in which chemical
events are expressed. While the continuum models described in Chapter 11 can be very
efficient and powerful in situations where the molecular nature of a surrounding condensed
phase is superfluous to the question at hand, they are unsuitable when knowledge of the
explicit behavior of the surroundings is deemed to be as important as its effect on some
system embedded therein.

As noted in Chapter 11, the explicit representation of a condensed phase leads to a
system characterized by an enormous number of degrees of freedom. This system thus
has associated with it a phase space of high dimensionality, and typically one in which
there are large volumes within a few kBT of one another in energy. Properties of such a
system must be determined as statistical averages over phase space, as already discussed
in some detail in Chapter 3. However, Chapter 3 was concerned primarily with observables
other than thermodynamic properties, e.g., radial distribution functions, electrical moments,
or vibrational frequencies. Here, the initial focus will be on carrying out simulations of
condensed-phase systems specifically to extract thermodynamic information, including the
free energy of solvation, the importance of which has already been amply discussed in
Section 11.1.

12.2 Computing Free-energy Differences

As noted previously in Chapters 3 and 10, statistical thermodynamics relates all thermody-
namic observables to the partition function Q. For ease of reference, the definition of Q and
the equations defining various thermodynamic variables as a function of Q, some of which
have appeared previously, are as follows

Q =
∫ ∫

e−E(q,p)/kBT dqdp (12.1)

Essentials of Computational Chemistry, 2nd Edition Christopher J. Cramer
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09181-9 (cased); 0-470-09182-7 (pbk)
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U = kBT 2
(

∂ ln Q

∂T

)
V

(12.2)

P = kBT

(
∂ ln Q

∂V

)
T

(12.3)

H = U + PV (12.4)

A = −kBT ln Q (12.5)

S = kBT

(
∂ ln Q

∂T

)
V

+ kB ln Q (12.6)

G = H − T S (12.7)

where U is the internal energy, P is the pressure, H is the enthalpy, A is the Helmholtz
free energy, S is the entropy, and G is the Gibbs free energy (in subsequent discussion,
the Gibbs free energy will be implied by the words ‘free energy’ unless the Helmholtz free
energy is explicitly specified). Note that we have adopted the classical expression for Q by
formulating it as a phase space integral over all spatial (q) and momentum (p) coordinates.
This assumes that the energy levels, computed as the sum of kinetic and potential energy
terms by the Hamiltonian H (not to be confused with the enthalpy), are sufficiently closely
spaced that we may convert the sum-over-states formulation of Q (see Eq. (10.2)) into an
integral.

12.2.1 Raw Differences

In chemistry, one is typically interested not in absolute values of thermodynamic functions
but in their changes over the course of a chemical process. Consider, for instance, if one
were to be interested in the difference in U for the proton shift reaction HCN → HNC in
aqueous solution. Because U is a state function, the precise path over which the reaction
occurs is not important – we need only evaluate U at the two endpoints to determine the
difference. If we make use of the relationship

∂ ln f

∂g
= 1

f

∂f

∂g
(12.8)

we may use Eqs. (12.1) and (12.2) to rewrite U as

U =
∫∫

E(q, p)e−E(q,p)/kBT dqdp∫∫
e−E(q,p)/kBT dqdp

=
∫ ∫

E(q, p)P (q, p)dqdp (12.9)

where Eq. (3.6) for the probability P of being at a particular point in phase space has been
used. To evaluate Eq. (12.9) for both the aqueous HCN and HNC systems, we might carry
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out a Monte Carlo simulation of each, and determine U as an ensemble average of E over
the probabilistically correct set of snapshots generated by the MC approach, i.e.,

〈U 〉B − 〈U 〉A = 1

MB

MB∑
i

Ei − 1

MA

MA∑
i

Ei

= 〈E〉B − 〈E〉A (12.10)

where B is aqueous HNC and A is aqueous HCN. To carry out the simulations in a rational
way, one would want to employ the same conditions in each, e.g., number of solvent
molecules, size of unit cell used within periodic boundary conditions, etc.

If one follows the procedure outlined above, the results are not very satisfying. The
problem is that the total energies E are large numbers. Thus, even after sampling millions
of configurations, the standard deviation in each ensemble average may still be on the order
of, say, 10 kcal mol−1. Taking the error in �U as the RMS of the two ensemble errors in
E would then imply an error of 14 kcal mol−1. Such a large error is not very useful in most
instances, which is disappointing, particularly given the large investment of computational
resources required to generate the ensemble averages. Note that, with ergodic trajectories,
we could have taken time averages from MD simulations instead of ensemble averages from
MC simulations, but the error problem would be the same.

Let us consider instead of �U the quantity �A. In order to engineer a probabilistic fashion
to determine A we may rewrite Eq. (12.5) as

A = kBT ln
1

Q

= kBT ln

[∫∫
eE(q,p)/kBT e−E(q,p)/kBT dqdp∫∫

e−E(q,p)/kBT dqdp

]

= kBT ln
[∫ ∫

eE(q,p)/kBT P (q, p)dqdp
]

(12.11)

in which case the Helmholtz free energy difference may be computed as

〈A〉B − 〈A〉A = kBT ln

(
1

MB

MB∑
i

eEi/kBT

)
− kBT ln

(
1

MA

MA∑
i

eEi/kBT

)

= kBT ln
〈
eE/kBT

〉
B − kBT ln

〈
eE/kBT

〉
A

= kBT ln

( 〈
eE/kBT

〉
B〈

eE/kBT
〉
A

)
(12.12)

At first glance, the situation looks if anything worse than was true for �U . Now the ensemble
averages are not over the total energies (already large numbers), but over exponentials of
the total energies expressed in multiples of kBT ! However, as long as the two systems A
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and B do not differ from one another by enormous amounts, the ratio of the two expectation
values in the last line on the r.h.s. of Eq. (12.12) (which is the inverse of the equilibrium
constant for the reaction A → B) is sufficiently close to unity that errors in the individual
ensemble averages on the order of one or two percent have a much smaller impact on the
error of the ratio than was the case for �U . Moreover, one takes the natural logarithm of
the ratio to compute �A, so the absolute magnitude of the error is reduced still more.

Nevertheless, converging the individual expectation values to the level of a few percent
error is a painfully slow task, since the reduced probabilities of high-energy points are
balanced by their exponentially larger contributions to the partition function. However, one
may take advantage of the relatively small difference between systems A and B to introduce
a further approximation that is extraordinarily useful.

12.2.2 Free-energy Perturbation

If the ensembles in Eq. (12.2), over which the property averages for systems A and B are
taken, were somehow to be the same, one would be able to take advantage of the properties
of exponentials to write

〈A〉B − 〈A〉A = kBT ln
〈
e(EB−EA)/kBT

〉
A (12.13)

where we have arbitrarily chosen to label the ensemble average as having been selected
based on system A. This formulation offers some enormous advantages over Eq. (12.12).
One of the most important is that all contributions to the energy from solvent–solvent
interactions (which are enormously dominant over solvent–solute interactions, since there
are so many more solvent molecules) cancel out in the energy difference, since the ensembles
are (somehow) identical.

What is meant by an identical ensemble for two different species? It is helpful to return
to our specific example of HCN and HNC. To determine the proper identical ensemble for
HNC based on one chosen in the usual fashion for HCN, we first stipulate that all particles
that are common to the two systems, i.e., all solvent molecules, the carbon atom, and the
nitrogen atom, have identical positions and momenta when we evaluate the energy in system
B as when we evaluate it in A. Then, the only contribution to the energy difference in
Eq. (12.13) would be the different interactions that the hydrogen atom has with all of the
other atoms, based on whether it is attached to C or N (see Figure 12.1).

So, for each snapshot of the simulation that contributes to the ensemble (by either MC
or MD evaluation), we compute the energy differential for all of the atoms interacting with
HB rather than HA. In Figure 12.1, the particular case of one of the hydrogen atoms on a
first-shell water molecule is illustrated. As this is a non-bonded interaction in each case, the
contribution from HD in a simple force field might be

�EHD =
(

aHH

r12
HBHD

− bHH

r6
HBHD

+ qHBqHD

εrHBHD

)
−

(
aHH

r12
HAHD

− bHH

r6
HAHD

+ qHAqHD

εrHAHD

)
(12.14)
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C

N
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HC

HD

HA HB

rHAHD

rHBHD

Figure 12.1 HCN(H) and one water molecule from the simulation box. In free energy perturbation,
the simulation snapshots would be generated using the HCN system, and the energy difference for
HA being present compared to HB would then be computed over that ensemble. For example, the
differential interaction of the two with HD would contribute to the full difference

where the functional forms of Eqs. (2.14) and (2.22) have been chosen to compute non-
bonded interactions. This protocol defines free energy perturbation (FEP; Zwanzig 1954).

There are, however, potentially rather large problems involved in the scheme outlined thus
far. In HCN, for instance, the nitrile lone pair is a fair hydrogen bond acceptor, and one may
imagine that a water molecule will often be found hydrogen bonded to it, say at a distance
of 2 Å. When a snapshot containing such a hydrogen bonded water is used to generate the
HCN ensemble, HB will be materialized with a normal bond distance to the nitrogen, say
1 Å, and this will create an HH non-bonded interaction of only 1 Å. Such a geometry will
be extremely high in energy, so that it should contribute in only the most paltry way to
any ensemble average. However, the nature of the HCN system is such that it might be
expected to occur with great regularity. The HCN ensemble will therefore be a very poor
source for a HNC ensemble, and the free-energy difference computed using Eq. (12.13) will
be very bad.

In order to avoid this problem, the switching between the two molecules may be broken
up into smaller steps using a coupling parameter λ that may take on values from 0 to 1. We
then write the energy of the system as a general function of λ

E (λ) = λEB + (1 − λ) EA (12.15)

which emphasizes that the endpoints are still the physically meaningful ones, but we are
willing to consider, computationally at least, chimeric systems having partial HCN and partial
HNC character. The utility of such systems is that we may now generalize Eq. (12.13) to

〈A〉B − 〈A〉A =
1∑

λ=0

kBT ln
〈
e(Eλ+dλ−Eλ)/kBT

〉
λ

(12.16)
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where λ is broken up into individual intervals of length dλ (they need not all have identical
widths, but in typical practice they do). Thus, for instance, in the HCN case we might decide
to divide λ into 20 segments having a width of 0.05 each. In the first ensemble, generated
for λ = 0, the energy difference associated with interaction with atom HD would no longer
be computed using Eq. (12.14), but instead according to

�EHD = 0.05

(
aHH

r12
HBHD

− bHH

r6
HBHD

+ qHBqHD

εrHBHD

)
+ 0.95

(
aHH

r12
HAHD

− bHH

r6
HAHD

+ qHAqHD

εrHAHD

)

−
(

aHH

r12
HAHD

− bHH

r6
HAHD

+ qHAqHD

εrHAHD

)

= 0.05

[(
aHH

r12
HBHD

− bHH

r6
HBHD

+ qHBqHD

εrHBHD

)
−

(
aHH

r12
HAHD

− bHH

r6
HAHD

+ qHAqHD

εrHAHD

)]
(12.17)

The effect is to remove 95 percent of the unfavorable consequences of materializing the
HB atom, making the ensemble hopefully more relevant for the chimeric molecule than for
‘full’ HNC. Once sufficient statistics have been collected for this window, a fresh ensemble
is generated using a simulation for the chimera with λ = 0.05, and evaluating the energy
difference between λ = 0.10 and λ = 0.05. This process is repeated, interval by interval,
until λ reaches 1, at which point all of the Helmholtz free-energy changes for each interval
are summed together to give the total for HCN to HNC.

By creating new ensembles with each increase in λ, potentially offending water molecules
in the region of the nitrogen atom like the one mentioned above are ‘eased’ out of the way,
since in each new ensemble the presence of HB becomes more manifest. The cost, however,
is that now 20 simulations need to be undertaken instead of one (assuming an interval width
of 0.05 as in the example).

When one is generating an ensemble for a fractional value of λ, it is equally easy to
evaluate the energy change for λ − dλ as it is for λ + dλ. The former is equivalent to
imagining the reaction not as HCN → HNC but rather HNC → HCN. Evaluation in this
fashion thus simultaneously determines the forward and reverse free-energy changes from
the identical ensemble. In principle the free-energy change computed for the interval [λ →
λ + dλ] should be exactly the opposite of that computed for the interval [λ + dλ → λ].
In practice, however, this is rarely true, and the variations provide some indication of the
potential error in the FEP process. For instance, in Figure 12.2 the reverse mutation predicts a
negative free-energy change slightly larger in magnitude than the positive free-energy change
for the forward mutation. This difference is sometimes reported as the error in the simulation.
Because the free-energy change should be linear in λ if Eq. (12.15) is used (dotted line), the
hysteresis of the FEP diagram is sometimes used as a more conservative estimate of the error.

An alternative procedure is known as ‘double-wide sampling’. In this case, the ensemble
is generated by MC or MD methods for the Hamiltonian corresponding to a given value of
λ, but the evaluation of the free energy change is for the interval [λ − 0.5dλ → λ + 0.5dλ].
Thus, the total interval width is still dλ, but the evaluation is over half-step changes left
and right in the Hamiltonian parameters. In principle, this may lead to improved sampling
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∆G

0 1l

Figure 12.2 A typical FEP diagram showing the free-energy change in the forward (above) and
reverse (below) directions for a λ-coupled mutation

because neither endpoint is evaluated using a Hamiltonian that is more than 0.5dλ from the
Hamiltonian used to generate the ensemble. Further discussion of technical points and error
analysis is deferred to Section 12.2.6.

12.2.3 Slow Growth and Thermodynamic Integration

In Eq. (12.16), one may imagine taking λ intervals so small that �E on any given interval
is arbitrarily close to zero. In that case, we may represent the exponential as a truncated
power series, deriving

〈A〉B − 〈A〉A = lim
dλ→0

1∑
λ=0

kBT ln
〈
1 + (Eλ+dλ − Eλ)

kBT

〉
λ

(12.18)

This expression may be further simplified by noting that ln(1 + x) is well approximated by
x for sufficiently small values of x, so that we may write

〈A〉B − 〈A〉A = lim
dλ→0

1∑
λ=0

kBT

〈
(Eλ+dλ − Eλ)

kBT

〉
λ

= lim
dλ→0

1∑
λ=0

〈(Eλ+dλ − Eλ)〉λ

= lim
dλ→0

1∑
λ=0

(Eλ+dλ − Eλ) (12.19)
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The removal of the ensemble average over the λ ensemble in the final line on the r.h.s.
reflects the protocol of this technique, the so-called slow-growth method. It is assumed that
if the Hamiltonian is infinitesimally perturbed at every step in the simulation, then the system
will constantly be at equilibrium (following some initial period of equilibration), so separate
ensemble averages need not be acquired.

In practice, then, the slow-growth technique is rather different from FEP when it comes
to evaluating �E. Since each change in λ is also a step in the simulation, all of the intra-
solvent energy terms change in addition to the solvent–solute interaction terms. With respect
to the latter terms, however, the evaluation is similar to FEP in that chimeric molecules are
involved.

A third simulation protocol for determining Helmholtz free-energy differences can be
illustrated from further manipulation of Eq. (12.19). Thus we may write

〈A〉B − 〈A〉A = lim
dλ→0

1∑
λ=0

〈(Eλ+dλ − Eλ)〉λ

= lim
�λ→0

1∑
λ=0

〈
(Eλ+�λ − Eλ)

�λ

〉
λ

�λ

=
∫ 1

0

〈
∂E

∂λ

〉
λ

dλ

≈
1∑

λ=0

〈
∂E

∂λ

〉
λ

�λ (12.20)

where we first recognize the calculus relationship between the sum appearing on the r.h.s. in
the second line and the definite integral in the third line (and simultaneously the definition
of the partial derivative), and we then approximate the definite integral as a sum over small
intervals. While the transformation from line 3 to line 4 may appear to simply reverse the
transformation from line 2 to line 3, this is not the case, because the partial derivative
remains in its analytic form; this is possible because most simulations evaluate the energy
using E(λ) functions that are trivially differentiated. Moreover, �λ in the final line is no
longer infinitesimally small, i.e., this is a standard estimation of an integral by division of the
integration range into discrete intervals with the function approximated over each interval
by a single value, in this case the value at the start of the interval. This process defines the
thermodynamic integration (TI) method. [TI can be derived in a much more rigorous and
general way, and indeed, FEP may be regarded as a special case of TI; interested readers
are referred to the bibliography at the end of the chapter.]

It is evident that TI and FEP are similar in that they involve multiple simulations over
different windows �λ, with accuracy expected to increase when more and smaller windows
are employed. However, there are key differences as well. In TI, the ensemble average for
one value of λ is not used to evaluate any energies involving a different value of λ; only
the ensemble average of the energy derivative is accumulated. Moreover, different forms
of E(λ) may be conveniently evaluated, corresponding to different mutation paths from A
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to B. For example, one may choose the generalization of Eq. (12.15)

E(λ) = λnEB + (1 − λ)nEA (12.21)

where n is an arbitrary exponent that may be freely chosen. [Note that for both FEP and TI,
one may also couple λ more intimately into individual force-field terms; the only requirement
is that the correct limits be maintained, i.e., E(λ = 0) = EA and E(λ = 1) = EB.]

12.2.4 Free-energy Cycles

The discussion thus far has ignored certain rather tricky technical issues as well as certain
very real practical difficulties that can arise in various types of simulations. Often, these
problems can be avoided by the invocation of a free-energy cycle. For instance, Jorgensen
and Ravimohan (1985) invoked such a cycle to study the difference in the free energies of
aqueous solvation for methanol and ethane (Figure 12.3). The calculation of the absolute
free energies of solvation for each of these two molecules would be subject to large errors,
because the necessary perturbation would involve growing the molecules from ‘nothing’
both in the gas phase and in a box of water. While the former is a trivial exercise, the
introduction of a solute into an equilibrated water box is a very difficult affair because no
matter how small the first dλ step is taken to be, there is a strong possibility of introducing
the solute atoms into regions that result in unphysically high energies, thereby generating a
poor sample. The difference between two solvation energies each with high associated errors
would then have a still higher error, and might not be particularly useful as a result (for recent
advances in addressing the challenge of computing absolute solvation free energies, see, for
example, Åberg et al. 2004). Shirts et al. (2003) have demonstrated that the opposite process,
i.e., disappearing a solute molecule from a water box, can be more useful for computing
absolute solvation free energies, but a substantial commitment of computational resources is
still required.

CH3OH(g) CH3CH3(g)

CH3OH(s) CH3CH3(s)

∆G o
s(CH3OH)

∆G o
aq

∆G o
g

∆G o
s(CH3CH3)

Figure 12.3 The vertical sides of this free-energy cycle correspond to free energies of aqueous
solvation, while the horizontal sides correspond to chemical mutations that are not physically realistic
but are accessible by FEP. The difference between the two vertical quantities must be equal to the
difference between the two horizontal quantities. While the former difference is easier to measure, the
latter is easier to compute
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However, if one is indeed interested primarily in the difference in the solvation free
energies, and not the absolute values, one can carry out the necessary two simulations
in a completely different fashion. Instead of growing each solute molecule from nothing,
one is transformed into the other using a chimeric approach (Jorgensen and Ravimohan
used FEP). By the state-function nature of the free energy, the difference in the trans-
mutation free energies in the gas phase and in aqueous solution must be equal to the
difference in the absolute solvation free energies. A single transmutation in water is far
simpler to carry out with good statistical accuracy than two separate ‘creations’ of solutes,
and again the gas-phase mutation is trivial. Representing the solute molecules using the
OPLS force field, Jorgensen and Ravimohan determined an aqueous solvation free-energy
difference of 6.75 ± 0.2 kcal mol−1, which is in good agreement with the experimental value
of 6.93 kcal mol−1.

Note that, in principle, one could use FEP to determine a ‘web’ of solvation free-energy
differences between many different substrates, and then carry out a single calculation of
an absolute free energy of solvation (i.e., growing one solute molecule from nothing) that
would serve as an anchor to convert all of the relative free energies of solvation into absolute
free energies of solvation (for the example of a set of substituted benzenes in water, and
a comparison to predictions from the SM2 continuum model, see Jorgensen and Nguyen
1993).

Because they used a free energy cycle, Jorgensen and Ravimohan assumed that changes in
the kinetic energy component of the mutation would cancel in the gas phase and in solution,
so they did not compute them, i.e., they reduced the size of the phase-space problem for
Monte Carlo sampling by a factor of 2 by removing all momentum degrees of freedom. This
simplifying assumption remains standard in modern calculations. This is true for constant
temperature MD simulations as well, since scaling the velocities to maintain temperature
necessarily distorts the momentum sampling – modern simulations typically evaluate only
the potential energy differences between mutated structures.

Free-energy cycles can be used to simplify simulations covering a wide variety of
processes. For example, if we were interested not in the difference in free energies of
solvation of methanol and ethane, but the difference in their partitioning between water and
octanol, we can simply rewrite Figure 12.3 so the upper leg is in octanol instead of water,
and carry out the same mutation of methanol to ethane described above, now once in octanol
and once in water, to determine the free energy difference. The alternative procedures for
analyzing the vertical legs would be very unpleasant indeed: we would either have to grow
each solute from nothing in two different solvents, or we would have to mutate one solvent
into another, which would be even worse.

A free-energy cycle finding particularly widespread use is one for evaluating differences
in interactions between enzymes (or other molecular hosts) and alternative molecules in their
active sites. By mutating one substrate into another, both in the presence of the enzyme and
isolated in solution, differences in free energies of binding may be determined (Figure 12.4).
An example is provided in Section 12.6 as a case study.
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E(s) + S(s) E•S(s)

E(s) + S′(s) E•S′(s)

0 ∆∆G°
mut(S) ∆∆G°

mut(E•S)

∆G°
aq(2)

∆G°
aq(1)

Figure 12.4 Differential binding free-energy cycle. The difference in binding free energies for two
different substrates, S and S′, is equal to the difference in mutation free energies for changing S into
S′ in solution, and EžS into EžS′ in solution. The leftmost vertical free-energy change is zero, since
the free enzyme is a constant independent of substrate

12.2.5 Potentials of Mean Force

When free energy is expressed as a function of coordinate, it is referred to as a potential of
mean force (PMF). The PMF W can be determined as

W(q) = −kBT ln π(q) (12.22)

where q is the coordinate, and π is the probability of the coordinate taking on a particular
value, i.e.,

π(q) = Q−1
∫ ∫

δ[q ′(q) − q]e−E(q,p)/kBT dqdp (12.23)

where Q is the (normalizing) full partition function, δ is the Dirac delta function, and q ′
is the value of the PMF coordinate for any arbitrary point in phase space having positional
coordinates q.

In practice, one may evaluate these probabilities following a histogram approach like
those outlined in Chapter 3. Over the course of a MC or MD simulation, the value of q ′
is collected and binned, and the probability of different ranges of values can be determined
upon completion of the simulation based on the number of points in a bin compared to
the total number of points. For example, we might be interested in the PMF for rotation
about the C−O bond in fluoromethanol (see Figure 2.3). Over the course of a simulation,
the torsional angle would be saved at every step, and with good sampling a probability
histogram would permit conversion to a PMF accurately reflecting the true potential. In the
case of fluoromethanol, the difference in energy between the lowest and highest points on
the potential energy curve is about 3 kcal mol−1. At 298 K, we would thus expect to sample
points in the highest energy region about 100 times less frequently than points in the lowest
energy region. Of course, if the width of a bin is, say, one degree, there are many other
possibilities for bins to fill, and ultimately roughly one point in every 10 000 or so would
be statistically expected to fall into the highest energy bin. To obtain reliable statistics, we
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might want this least populated bin to contain at least 100 points, so we would require a
sample of some 1 000 000 snapshots. An ensemble of this size is accessible with current
computational technology, but represents a reasonably significant investment of resources.

Now, consider if the highest energy point on the curve were to be 6 kcal mol−1 above the
lowest at 298 K. Because the probability involves the exponential of the energy difference,
doubling the difference squares the sampling ratio (i.e., the highest energy region is now
sampled 10 000 times less frequently than the lowest energy region). Obtaining a statistically
meaningful sample of low probability regions now becomes a significantly more difficult
prospect, and statistically reliable PMFs cannot be obtained in this fashion.

The problem of low probability regions is even more severe when it comes to chemical
reaction coordinates, where free energies of activation for chemically viable processes may
range well above 20 kcal mol−1. The probability of obtaining a snapshot in the region of a
transition state structure having so high an energy (assuming for the moment that we have
some Hamiltonian capable of describing bond-making/bond-breaking) is so remote that no
brute force simulation can legitimately expect to capture even one relevant point, much less
a statistically meaningful sample. This is the problem of sampling ‘rare events’.

One approach to overcoming this problem is to apply a so-called ‘umbrella potential’ or
biasing potential. This potential, a function of the coordinate of interest q, is added to the
force-field energy with the aim of forcing q to be sampled heavily within a certain range
of values that would not otherwise be statistically accessible. An ideal umbrella potential is
one that is the exact negative of the PMF, since then the probability of sampling any value
of q should be uniform. However, one rarely knows the PMF ahead of time (otherwise why
would one be trying to calculate it?), so instead one typically applies rather simple biasing
potentials (e.g., a quadratic potential) to force q to be sampled over some interval including
a particular value q0.

Consider, for instance, the SN2 reaction of Br− with CH3Br in aqueous solution, which
has an activation free energy on the order of 20 kcal mol−1. If we define our reaction
coordinate as

q = rC–BrA − rC–BrB (12.24)

where A and B are the incoming and outgoing bromide ions, respectively, we see that the
reactants correspond to large positive values of q, products to large negative values of q,
and from our knowledge of bimolecular nucleophilic substitution reactions, we know that
the transition state region will have values of q very near zero. Let us assume that we
have a force field that provides an accurate potential energy curve in the gas phase for this
SN2 process – in spite of this, in a normal MC or MD simulation in a box of water we
would be very unlikely to sample in regions anywhere near the TS because of the very
low probabilities associated with such high-energy structures. However, if we apply biasing
potentials of the form

U(q) = 1

2
k(q − q0)

2 (12.25)

where q0 is the particular value near which we want to sample, and we select the force
constant k to be suitably large, we can ensure that the simulation will sample heavily within
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some distance of q0, since structures having values of q significantly different from q0 will
be heavily penalized by addition of U .

When this procedure is followed, a different probability function π∗(q) will be obtained
over the sampled region. The correct PMF (i.e., for the unbiased potential) is related to the
new probability function according to

W(q) = −kBT ln π∗(q) − U(q) − kBT ln
〈
e−U(q)/kBT

〉
∗ (12.26)

where the ensemble average is accumulated with the biasing function added to the system
Hamiltonian. This function is quite simple to evaluate for a typical selection of U . However,
it is often the case for an unknown PMF that a single choice of functional form for U

will not lead to a statistically useful sample over the entire range of interest for q. Instead,
one carries out several simulations, with different choices for U (for instance, by varying
choice of q0 in Eq. (12.25)), and then patches together the relevant regions of the PMF to
generate a single curve. This process is illustrated in Figure 12.5. Obtaining a good overlap
of the individual pieces can be difficult in some instances, which contributes to error in the
method when overlap is required. Indeed, Figure 12.5 is somewhat misleading, since each
individual PMF fragment actually rises to infinitely positive free energy values at either end
(that is, the probability of finding the system far to the right or left becomes so small that
the corresponding free energy is very large). As these PMF walls have no physical meaning,
but are artifacts of the umbrella function, they have been left out of Figure 12.5 for clarity,
but in practice they can add to the difficulty associated with reliably overlapping different
segments of the full reaction coordinate. The weighted histogram analysis method (WHAM;

∆G

R q P

Figure 12.5 A reaction coordinate q constructed piecewise from reactants R to products P as a
series of PMFs determined using different umbrella functions. The individual PMFs determined using
Eq. (12.26), shown below the dashed line and taking each left endpoint as the relative zero, are held
within their respective regions of the reaction coordinate by the umbrella function. Their overlap on a
common energy scale generates the complete PMF shown above the dashed line



442 12 EXPLICIT MODELS FOR CONDENSED PHASES

Kumar et al. 1992) is one of the more popular approaches for accomplishing this overlap;
the details of WHAM, however, are beyond the scope of this text.

An alternative to extracting the proper PMF from one generated using a biasing potential
is to employ the so-called constraint-force method. In this model, one or more degrees of
freedom are held to a series of N fixed values (for simplicity we will continue to work with
only one dimension q ranging then from q1 to qN ). For a given fixed value qi , with this
value differing from qi+1 by a small amount �qi , the value of ∂W/∂q is evaluated. Once all
average derivative values are in hand, it is a simple matter to reconstruct W by numerical
integration, i.e.,

W(qj ) =
∫ qj

qmin

∂W

∂q
dq

≈ W(q1) +
j−1∑
i=1

∂W(qi)

∂q
�qi

(12.27)

If readers fail to find inspection of Eqs. (12.22) and (12.23) particularly enlightening with
respect to how precisely to evaluate ∂W/∂q, they may consider themselves to be in good
company. After substantial debate in the literature, the proper and rather complicated
approaches to computing this quantity for the one- (den Otter and Briels 1998) and
multidimensional (den Otter and Briels 2000) cases have been derived. In addition, Darve
and Pohorille (2001) have described a generalization of this approach in which simulations
may be run without the imposition of any constraints. In that case, a biasing potential
still needs to be applied globally so that the system samples q fully, but the numerical
integration of Eq. (12.27) avoids the problem of overlapping partial PMFs illustrated in
Figure 12.5.

Rosso et al. (2002) have proposed an alternative sampling method in which the likeli-
hood of rare event observation is enhanced by separating the reactive coordinate(s) from
the remaining degrees of freedom and propagating the former components of the trajec-
tory at high temperature with a fictitiously high mass. This combination permits the other
degrees of freedom to respond adiabatically to the reactive coordinate(s), which are them-
selves able to generate a more complete unbiased free energy profile by virtue of the high
temperature.

Irrespective of the protocol used for enhanced sampling, a key difficulty arises when the
reaction mechanism is not well understood. In that case, even the definition of the reaction
coordinate q can be problematic. This is a common problem in the simulation of enzyme
active sites, where bond-forming or bond-breaking reactions may or may not occur with
simultaneous proton transfer(s) between enzyme and substrate functional groups. In the
event of multiple bond-making/bond-breaking events occurring simultaneously, it becomes
quite difficult to construct suitable one-dimensional slices and biasing potentials through
phase space that permit generation of useful PMFs.

In sum, the generation of accurate PMFs from probability distributions for processes
with free energies of activation in excess of a few kilocalories per mole continues to be
a significant challenge for modern simulation methods. Some alternative approaches, using
both continuum and explicit solvation models, are discussed in Section 15.4.
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12.2.6 Technical Issues and Error Analysis

Free-energy simulations are extremely demanding in a technical sense, and it is well beyond
the scope of this book to fully prepare readers to apply the technology without further
instruction. Nevertheless, there are a few technical issues that arise (on top of those already
discussed for simulations in general in Section 3.6) that merit attention insofar as they
affect many published free-energy simulation results. Much more authoritative treatments
are available in the bibliography and suggested reading.

When perturbations from one molecule to another are carried out, there are two distinct
approaches that may be taken. The ‘single topology’ approach involves a single solute species
that is smoothly transformed from the first molecule to the second as a function of λ. In
the HCN/HNC example above, the single topology approach would involve not only the
steady disappearance of the carbon-bound hydrogen and the appearance of the nitrogen-
bound hydrogen, but also any change in the C–N equilibrium length and force constant as it
transforms from a nitrile to an isonitrile bond type. In addition, if the atomic partial charges
on C and N were to be different for nitriles and isonitriles, these too would change as a
function of λ. The solute molecule at intermediate values of λ is thus truly chimeric.

The ‘dual topology’ approach, on the other hand, involves having the distinct initial and
final solutes simultaneously present, but no force-field interactions between the two are ever
calculated. The interactions of both are calculated with the surrounding medium in the
normal way, but at intermediate values of λ the total energy of the system will be derived as
a λ-dependent function of the two. The dual topology approach is simpler in implementation
but problems can arise if the two topologies drift away from one another during the course
of the simulation (for instance, if one solute were to leave the active site of an enzyme
while the other stayed in it, obviously the difference in binding free energies would not be
calculable). Both single and dual topology calculations continue to see about equal use.

As already mentioned above, the sudden appearance of atoms at positions in space occu-
pied by solvent molecules as the result of a mutation can lead to severe sampling problems.
As a rule, changes in van der Waals interactions must be introduced much more slowly
than changes in charge in order to maintain good equilibrium in ensemble averages. Since a
free-energy change is independent of the mutation path (assuming perfect sampling), paths
that carry out changes in charges more quickly than changes in van der Waals interactions
are not uncommon.

The discussion in this chapter has focused almost exclusively on computing changes in
the Helmholtz free energy A. However, most experimental measurements are carried out at
constant pressure, not constant volume, so the majority of thermochemical data is in the
form of Gibbs free energies G. As long as the total number of particles in a free-energy
simulation remains constant, almost all simulations assume that �PV is zero, in which case
the Gibbs and Helmholtz free energy changes are identical (this is readily derived from
Eqs. (12.2)–(12.7)). When this is not the case, the additional contributions to G must be
explicitly accounted for.

Of the three methods discussed above, FEP, TI, and slow growth, the first two see far
more application than the third. The slow-growth condition, that the system is constantly
at, or at least very, very near equilibrium, is quite hard to maintain over the course of a
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mutation. In principle, such an equilibrium can be obtained with sufficiently small changes
in λ at each step, but in practice, numerical limitations in computing energy differences as
a function of λ place a lower limit on that increment (as, of course, does the requirement
that the total number of steps required not exceed available computational resources). Steps
that are too large, on the other hand, lead to chaos, since high-energy interactions run the
simulation into unrepresentative regions of phase space from which the system is unlikely
ever to return.

In formalism, many aspects of free-energy simulations lend themselves more to imple-
mentation within a Monte Carlo sampling scheme than within a molecular dynamics scheme.
Unfortunately, MC schemes applied to large flexible molecules (e.g., proteins) tend to be
very inefficient, since most proposed moves of the large molecule are rejected as being too
energetically unreasonable, so MD simulations remain the standard. Innovative attempts to
combine some of the best features of both have been described, as already noted in Chapter 3.

Possibly the most vexing aspect of free energy calculations is that, as with most simulations
of sufficiently complex systems, meaningful error analysis is almost impossible. The difficulty
of demonstrating a properly converged sampling of phase space for any simulation has
already been amply discussed in Section 3.6.4. Given that a free-energy simulation typically
comprises some 10 or more individual simulations, whose errors may be expected to be
highly correlated and the results from which are pieced together, uncertainty only grows.
The cost of the simulations is such that they are rarely carried out more than once (using, for
example, different starting conditions) to assess the statistical reliability of the free-energy
change.

As a result, many free-energy simulations are carried out not necessarily to predict a
specific value but rather to demonstrate agreement with experiment, after which interpreta-
tion of the simulation results can be carried out with enhanced confidence to understand why
the free-energy change is what it is. This process in itself can be quite ambiguous, however.
A typical analysis involves decomposing the free-energy change into constituent components,
i.e., changes in electrostatic interactions, van der Waals interactions, bond torsion contribu-
tions, etc. However, while the total free-energy change is path independent, the changes in
the components are not, so such a decomposition must be interpreted with caution.

12.3 Other Thermodynamic Properties
Properties other than free-energy changes are usually considerably more difficult to eval-
uate to an equivalent level of accuracy. One approach is simply to attempt a brute force
calculation for different systems analogous to that outlined for U in Eqs. (12.9) and (12.10).
However, this approach has little value in any but the simplest of systems owing to the large
uncertainties in the absolute values of the thermodynamic quantities.

Another approach is to carry out free-energy simulations at several different tempera-
tures, and then construct the equivalent of a van’t Hoff plot to separate, say, the enthalpic
and entropic contributions to the free energy. This approach is obviously extraordinarily
demanding of resources, since every temperature point requires a new free-energy simula-
tion, and unless there are many points, the error in the temperature dependence of the free
energy determined by linear regression of the latter on the former may be rather large.



12.4 SOLVENT MODELS 445

In some cases, it is possible to take advantage of various thermodynamic relationships
to write some property as a fluctuation-dependent quantity. Thus, for example, the entropy
change may be computed from

〈S〉B − 〈S〉A =
∫ 1

0

(
〈E〉λ

〈
∂E

∂λ

〉
λ

−
〈
E

∂E

∂λ

〉
λ

)
dλ (12.28)

evaluating the integral numerically, as is done for standard TI. Peter et al. (2004) have
carried out a more detailed analysis of the accuracy and convergence of various approaches
for computing entropy.

Similarly, the absolute constant-volume heat capacity may be computed as

〈CV〉 = 1

kBT 2

(〈
E2〉 − 〈E〉2) (12.29)

As a rule, fluctuations are much slower to converge statistically than are the properties that
are fluctuating, so analyses of Eqs. (12.28) and (12.29) require very long simulation times. Of
course, Eq. (12.29) is simpler to evaluate than Eq. (12.28) since the latter does not involve
a perturbation of one system into another.

12.4 Solvent Models

If a solvent is to be considered as ‘explicitly’ present in a simulation, obviously there must
be some atomistic manner in which it is represented in the energy expression – this being
the fundamental distinction from a continuum solvation model. However, since the solvent
molecules greatly outnumber the solute molecule(s), there are advantages of efficiency that
accrue from adopting as simple a representation as possible, and that is reflected in many of
the solvent models in common use.

12.4.1 Classical Models

The simplest model for a solvent molecule is clearly one that is molecular-mechanics-like.
That being said, various levels of complexity remain even within the choice of a classical
representation. Of all possible solvents of interest to chemists, water is arguably the most
important, and not surprisingly it has spawned the largest number of models. Besides differing
in parameter values, the various classical models differ in the total number of interacting
sites. Probably the simplest possible model for water is to treat it as a Lennard–Jones
sphere, inside which two charges are embedded of equal magnitude and opposite sign to
mimic water’s dipole moment. A solute molecule thus sees three interaction sites: the center
of the sphere characterized by characteristic ε and σ values (see Eqs. (2.16), (2.30), and
(2.31)), and the two point charges. (An alternative model would be to put a point dipole at
the center of the sphere, but the evaluation of dipole–dipole interactions is sufficiently more
time-consuming than that of charge–charge interactions that there is no real simplification
inherent in this approach.)
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A slightly more complex representation is to put equal positive atomic charges on the
hydrogen atoms and a negative charge on the symmetry axis, or equal negative charges
in the lone pair regions, again to mimic water’s dipole moment, but also to better repre-
sent its overall charge distribution. Such very simple models, with careful parameterization,
do remarkably well in reproducing many properties of liquid water, e.g., bulk density,
heat of vaporization, compressibility, heat capacity, etc. The most successful models along
these lines, that are widely used in modern simulations, are the transferable-intermolecular-
potentials-3- and -4-point-charge water models (TIP3P and TIP4P; Jorgensen et al. 1983).
The similarly designed SPC (simple point charge) water model also continues to see modern
use (Berendsen et al. 1981) including forms recently modified to improve its dielectric and
diffusive properties (Glattli, Daura, and van Gunsteren 2003).

For non-aqueous solvents, the approximation of the solvent as a LJ sphere is usually less
practical. However, substantial time savings can be realized by employing a united-atom
approach for carbon atoms and their attached hydrogens. The most complete parameteriza-
tion of organic solvents has been accomplished as part of the OPLS force field, including
inter alia alkanes, aromatics, carbon tetrachloride, chloroform, furan, n-octanol, and pyrrole,
many in both UA and AA representations (see Table 2.1 and also Jorgensen, Briggs, and
Contreras 1990; Kaminski et al. 1994; McDonald and Jorgensen 1998). In these cases, as for
water, solvent parameters were optimized based on comparison of bulk solvent properties to
experimental measurements.

At the next level of complexity, the polarity of solvent models, as made manifest by
their atomic partial charges, can be augmented with a polarizability. This allows the solvent
molecule to respond to its surroundings in a fashion conceptually similar to the electronic
component of the solvent polarization described in Section 11.1.1. Typically a polarizability
tensor α is assigned either to the solvent molecule as a whole or to individual atoms. Then,
the induced dipole moment at each polarizable position can be determined from

µind = αE (12.30)

where E is the total electric field arising from all of the atomic point charges and all of
the induced dipoles. Thus, µind must be determined iteratively, with convergence potentially
being problematic. Once converged, the additional contribution to the total electrostatic
energy from the charge-induced dipole interactions can be computed according to

V = 1

2

∑
i

∑
j

qiµ
ind
j · rij

r3
ij

(12.31)

where i runs over charge sites and j runs over polarizability sites and r is the intersite
distance. In addition, induced-dipole–induced-dipole interactions contribute according to
Eq. (2.23).

Owing to its particular importance, polarizable solvent models have largely been restricted
to water, for which a sizable number have been developed (see, for example, Dang 1992;
Rick, Stuart, and Berne 1994; Bernardo et al. 1994; Zhu and Wong 1994; Lefohn, Ovchin-
nikov, and Voth 2001). Because evaluating the terms deriving from solvent polarizability



12.4 SOLVENT MODELS 447

increases the amount of time required for a simulation by roughly an order of magnitude,
the use of polarizable solvents has been primarily either for technical comparisons in model
development, or for the simulation of particularly simple systems, where convergence for a
given property of interest may be expected to occur quickly. Developers tend to focus on
properties for which non-polarizable water models do poorly, e.g., the density anomaly in
water where below 4 ◦C the liquid density begins to decrease with decreasing temperature.
However, the failures of prior models to function well for such properties is not necessarily
intrinsic, but may simply reflect a failure to have considered the property in the develop-
ment of the non-polarizable model (Mahoney and Jorgensen 2000). More recent work with
polarizable acetonitrile and acetone solvent models has indicated, not surprisingly, that polar-
izability critically improves the description of solvation structures and interaction energies
associated with the solvation of monatomic ions in these solvents (Fischer et al. 2002).

A yet more complete but still formally classical solvent model has been developed for use
when the solute is represented quantum mechanically. The electrostatic interactions between
a classical solvent and a quantum mechanical solute are relatively simple to represent, and
are discussed in detail in the next chapter on mixed QM/MM methods. The non-bonded
interactions are somewhat more challenging. Gordon et al. (2001) have described an approach
that they call the effective fragment potential (EFP) method that, by analogy to ECPs, replaces
the direct computation of dispersion and exchange-repulsion interactions between solute and
solvent electrons by an interaction between solute electrons and a solvent pseudopotential.
The solvent pseudopotentials (and the representation of its electrostatic distribution and
polarizability) are determined parametrically in order to create a transferable solvent model
especially suitable for use in QM/MM calculations using HF theory as the QM component.
The EFP model has since been extended to DFT as the QM component as well (Adamovic,
Freitag, and Gordon 2003).

12.4.2 Quantal Models

When one refers to a quantum mechanical solvent model, the word ‘model’ reverts to its
usual sense in the context of QM methods: it is the level of electronic structure theory
used to describe the solvent. Thus, there is no real distinction between the solvent and
the solute in terms of computational technology – the wave function for the complete super-
system (or the DFT equivalent) is computed without resort to methodological approximations
beyond those inherent to the level of electronic structure theory. To avoid problems with
basis-set imbalances, one might expect calculations representing the solvent in a fully QM
fashion to employ a common level of theory for all particles, but this does not have to be
the case.

At several points in this book, it has been emphasized that the prevalence of classical MC
and MD simulations derives from the impracticality of carrying out fully QM dynamics.
While this is largely true, for systems of only modest size where short trajectories may
be profitably analyzed, fully QM MD simulations using the so-called Car–Parrinello tech-
nique are a viable option (Car and Parrinello 1985). In its most widely used formulation,
the Car–Parrinello method employs DFT as the electronic-structure method of choice. In
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principle, every MD step should involve taking a phase point, computing the energy and the
gradients for that point given the nuclear positions, and propagating a short time step prior
to repeating this process. This formalism is extremely time-consuming. Car and Parrinello
showed, however, that one does not need to fully converge the KS wave function at every
step. Instead, the KS MO coefficients are treated as dynamical variables. That is, they are
assigned a fictitious mass and have their ‘coordinates’ added to the usual 3N positional
dimensions of phase space. By careful choice of the masses for the electronic degrees of
freedom, and the time steps for the electronic and nuclear movements, it is possible to
obtain a relevant MD sampling of phase space in favorable systems. To further increase
speed, the method usually uses a plane-wave basis set, which is ideally suited to the periodic
boundary conditions usually imposed in a condensed-phase simulation and allows fast Fourier
transform methods to facilitate solution of the SCF equations.

The obvious advantage of a fully QM solvent representation is that intimate solvent partic-
ipation in reactions, say as a proton donor or acceptor, or simply a charge-transfer partner
with the solute, is handled entirely naturally. With improved DFT functionals and ever-
increasing computer speeds, this method holds great promise for the future, although it is
still sufficiently time-consuming that present day applications remain somewhat limited.

12.5 Relative Merits of Explicit and Implicit Solvent Models

The fundamental difference between the explicit and implicit solvent models is not that one
has solvent and the other does not. Rather, the difference is that the implicit model employs
a homogeneous medium to represent the solvent where the explicit model uses atomistically
represented molecules. While the latter choice is clearly the more physically realistic, the
practical limitations imposed by explicit representation dictate that it is not necessarily the
best choice for a given problem of interest. This section compares and contrasts the relative
strengths and weaknesses of the two models, including some illustrative applications.

12.5.1 Analysis of Solvation Shell Structure and Energetics

A reaction that has received a substantial amount of study using a variety of alternative
solvent (and solute) models is the Claisen rearrangement, a [3,3] sigmatropic shift that
converts an allyl vinyl ether into a γ ,δ-unsaturated aldehyde (Figure 11.5). The motiva-
tion for its study has been two-fold. First, the conversion of chorismate to prephenate,
which is the first committed step in the biosynthesis of aromatic amino acids in plants,
involves an enzyme-catalyzed Claisen rearrangement. Secondly, although pericyclic reac-
tions are conventionally thought of as being relatively insensitive to solvent effects, the rate
acceleration for rearrangement of the parent allyl vinyl ether comparing the gas phase to
aqueous solution has been estimated to be on the order of 1000-fold. How does aqueous
solvation effect this large rate acceleration?

Storer et al. (1994) employed a SMx GB continuum solvent model to investigate this
question. Because of the efficiency of the continuum model, they were able to examine
various levels of electronic-structure theory in assessing the influence of aqueous solvation
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on the reaction coordinate. Their key findings were that (i) the TS structure was significantly
better solvated than the reactant, primarily because of increased polarization free energy
associated with increased polarity in the rearranging fragments and (ii) the solvation effect
favored a change in the TS structure so that the rearranging fragments were separated by
a larger distance, thus enhancing its polarity (Figure 11.5). These effects, combined with a
very small hydrophobic acceleration associated with the two hydrocarbon termini coming
together in the forming C–C bond, were sufficient to account for the full range of aqueous
acceleration inferred experimentally.

By way of contrast, Severance and Jorgensen (1992) addressed the same problem using
an explicit solvent model. In particular, they first generated the intrinsic reaction coordinate
(a concept explained more fully in Chapter 15) for the Claisen rearrangement in the gas
phase. They then selected specific structures along the reaction coordinate to serve as inter-
mediates in a free-energy simulation using FEP methods. The rigid solute structures were
treated classically using OPLS non-bonded parameters and ESP charges determined from
gas-phase HF/6-31G(d) calculations, and the aqueous solvent was modeled with the TIP4P
water model. By analyzing free energy changes as λ perturbed from one structure to the next
along the reaction coordinate using MC simulations, they determined a rate acceleration in
good agreement with that inferred experimentally. An investigation of the factors causing
acceleration included an analysis of the radial distribution functions of water about the solute
oxygen atom. The simulations indicated that the average number of hydrogen bonds to the
reactant’s ether-like oxygen atom was slightly in excess of one, while the number to the TS
oxygen atom was closer to two. Moreover, the strengths of the solute–water interactions for
hydrogen bonded waters were greater in the TS structure than in the reactant.

Thus, both studies came to similar conclusions with respect to the source of acceleration:
greater polarity of the TS structure contributing to stronger aqueous solvation. However, the
‘language’ of the continuum model restricts the expression of that result to broader electro-
static terms while the explicit nature of the simulation permits a more fine-grained analysis
that illustrates how improved hydrogen bonding is a part of the electrostatic component. In
terms of describing the reaction path, the explicit model restricted itself to an analysis of the
solvation of the gas-phase reaction coordinate. The continuum model, on the other hand,
considered movement off the reaction coordinate and found that to be important in stabi-
lizing the TS structure. Furthermore, the SCRF nature of the continuum model allowed for
an analysis of the relative polarizability of the TS compared to the reactant, and the TS was
found to be considerably more polarizable, again contributing to its improved solvation. (The
use of HF/6-31G(d) ESP charges in the explicit simulation was motivated in part because the
known systematic tendency for these charges to be too large in the gas phase may be taken
as a compensating error for not including the effect of solvation on the electronic structure.)

One key issue, then, in deciding upon what type of solvation model to employ is the level
of detail in solvent structure that is of interest to the researcher. An important point to make
in this regard is that some solvent molecules really should not be thought of as solvent per
se. For instance, various inhibitors of HIV-1 protease are known to bind strongly to the
enzyme’s active site only because there is an accompanying water molecule also bound in
the site. Such a water cannot be considered simply to be a bulk region having a high dielectric
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constant; rather, it is more a component of a supermolecular solute. Such solvent molecules
are something of a technical challenge for both kinds of solvent models. A continuum model
may function perfectly well if the special solvent molecule(s) are included explicitly, but one
needs to know ahead of time to include them. Similarly, in an explicit simulation, if they are
not placed in the appropriate location, the timescale for entry from the bulk solution may
be such that no solvent molecule ever occupies the correct position throughout the length of
the simulation, in which case the results simply represent an unbalanced sampling of phase
space and are not useful.

Interestingly, Morreale et al. (2003) have shown that when solvation free energies are
decomposed into atom/group-specific contributions, there is in general good agreement
between results obtained from continuum and explicit-solvent calculations. This observa-
tion suggests that future analyses of such fragment solvation free energies may assist in
comparison of results from disparate solvation protocols.

12.5.2 Speed/Efficiency

For equivalent levels of theory used to represent the solute, continuum solvation models are
inevitably several orders of magnitude faster for the analysis of solvation free energies than
are explicit solvent models. As a rule, at the QM level the SCRF portion of a continuum
solvation calculation usually adds no more than 15 percent or so to the total time of an SCF
calculation; at the MM level a factor of 2 or so is involved. Obviously, however, there is
no particular virtue in the speed with which a wrong answer (or one that fails to answer the
question of interest) may be obtained. Thus, in those instances where an explicit model is
called for, time must be invested in the calculation. The variety of system sizes that may
be envisioned precludes generalizations about time requirements, but the current state of the
art for simulations of solvated biomolecules having molecular weights in the range 10 to
100 kDa is typically a few nanoseconds for roughly one cpu-week of time on a modern
processor. Advances in algorithms and hardware speeds are constantly improving on this.

12.5.3 Non-equilibrium Solvation

In Section 11.4.6, the limitations of continuum models in their ability to treat non-equilibrium
solvation, at least in their simplest incarnations, were noted and discussed. In principle,
explicit solvent models might be expected to be more appropriate for the study of chemical
processes characterized by non-equilibrium solvation. In practice, however, the situation is
not much better for the explicit models than for the implicit.

Consider a typical event that would be expected to exhibit non-equilibrium solvation,
e.g., a chemical reaction with significant rearrangement of charge density in the region of
the transition-state structure. The short lifetime of the TS and the corresponding ‘sudden’
change in charge distribution would be expected to limit the solvent’s ability to solvate
the reaction coordinate in a fully equilibrated fashion. In the abstract, it might seem that a
molecular dynamics trajectory of the reaction would offer a useful tool for studying the non-
equilibrium effects, since the time course of the reaction is realistically mimicked to within
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the accuracy of the employed force field. Unfortunately, the likelihood of any trajectory
spontaneously following a reactive path is unacceptably small unless the barrier is quite
low (and, if there is enough charge reorganization to give rise to significant non-equilibrium
solvation effects, a low barrier is not expected).

In the absence of being able to observe spontaneous reactive events, one can attempt to
take advantage of sampling methods like those outlined in Section 12.2.5 to force trajectories
along the reaction coordinate. However, by changing the PES through addition of a biasing
potential, or sampling over an extended period at constrained reaction coordinate values, one
changes the length of time the trajectory spends in given regions of phase space, and the
solvation is likely to become more equilibrium-like in character.

With Monte Carlo methods, the adoption of the Metropolis sampling scheme intrinsically
assumes equilibrium Boltzmann statistics, so special modifications are required to extend MC
methods to non-equilibrium solvation as well. Fortunately, for a wide variety of processes,
ignoring non-equilibrium solvation effects seems to introduce errors no larger than those
already inherent from other approximations in the model, and thus both implicit and explicit
models remain useful tools for studying chemical reactivity.

12.5.4 Mixed Explicit/Implicit Models

Having identified the strongest points of the explicit and implicit solvent models, it seems an
obvious step to try to combine them in a way that takes advantage of the strengths of each.
For instance, to the extent first-solvation-shell effects are qualitatively different from those
deriving from the bulk, one might choose to include the first solvation shell explicitly and
model the remainder of the system with a continuum (see, for instance, Chalmet, Rinaldi,
and Ruiz-López, 2001).

There are certain instances where this approach may be regarded as an attractive option.
For example, Cossi and Crescenzi (2003) found that accurate computation of 17O NMR
chemical shifts for alcohols, ethers, and carbonyls in aqueous solution required at least one
explicit solvent shell, but that beyond that shell a continuum could be used to replace what
would otherwise be a need for a much larger cluster. However, just as the strengths of
the two models are combined, so are the weaknesses. A typical first shell of solvent for
a small molecule may be expected to be composed of a dozen or so solvent molecules.
The resulting supermolecular cluster will inevitably be characterized by a large number of
accessible structures that are local minima on the cluster PES, so that statistical sampling
will have to be undertaken to obtain a proper equilibrium distribution. Thus, QM methods
require a substantial investment of computational resources. In addition, certain technical
points require attention, e.g., how does one keep the first solvent shell from ‘exchanging’
with the continuum since both, in principle, foster identical solvation interactions?

So, while there is growing interest in hybrid models of all sorts (as discussed in more detail
in the next chapter), the choice of a mixed solvent model is not necessarily intrinsically better
than a pure explicit or pure implicit model. In general, unless there is a strong suspicion that
first-solvation-shell effects are drastically different from those more typically encountered,
there is no particularly compelling reason to pursue a mixed modeling strategy. An example
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of such a situation might be the aqueous coordination sphere surrounding a highly charged
metal cation. In that case, the electrostriction of the first shell makes the water molecules more
ligand-like than solvent-like, and their explicit inclusion in the solute complex is entirely
warranted.

12.6 Case Study: Binding of Biotin Analogs to Avidin

Synopsis of Kuhn and Kollman (2000) ‘A Ligand That Is Predicted to Bind Better to Avidin
than Biotin: Insights from Computational Fluorine Scanning’.

One of the strongest known interactions between a biopolymer and a small-molecule
substrate is that between the protein avidin and D-(+)-biotin, the structure of which is
shown in Figure 12.6. The binding energy for this complex has been measured to be
−20.8 kcal mol−1. While this represents an extraordinarily strong interaction, Kuhn and
Kollman suggested that it might be possible to make it still stronger by replacing one or
more hydrogen atoms on the biotin framework with fluorine atoms. Fluorine is roughly
isosteric with hydrogen (i.e., the C–F and C–H bond lengths have roughly similar lengths
and F and H have similar covalent radii), but is considerably more hydrophobic. Thus,
if a region of the binding pocket interacts with biotin via non-polar interactions, and is
adequately shaped to accommodate the very slightly larger fluorine atom, decreased aqueous
solvation of the fluorinated analog would be expected to increase the binding free energy
(note that the lower polarizability of fluorine compared to alkyl hydrogen also suggests the
favorable dispersion interactions between the biotin analog and the protein will be reduced,
but this is generally a smaller effect than enhanced hydrophobicity in the absence of steric
constraints).

Kuhn and Kollman pursue several different algorithmic approaches to estimating the
binding free energies of different fluorobiotins. The fastest approach, which they refer to
as fluorine scanning, involves a combination of explicit and implicit solvation models to
compute the horizontal legs of the free-energy cycle in Figure 12.6. First, an MD trajectory
of the avidin–biotin complex is obtained under standard MD conditions, including explicit
solvent and using periodic boundary conditions.

The trajectory is then ‘post-processed’ to determine absolute free energies in solution for
biotin, avidin, and the avidin–biotin complex. This process begins by stripping the water
from the trajectory, and then computing absolute free energy as

〈G〉 = 〈EMM + �Gsolv〉 − T S (12.32)

where EMM is the force-field energy, �Gsolv is computed from a continuum solvation
model (in this case a finite difference Poisson–Boltzmann (FDPB) model with hydrophobic
atomic surface tensions), and the expectation value is taken over the snapshots of the
MD trajectory. Evaluations of Eq. (12.32) for isolated biotin and avidin are carried out
using the same snapshots as those for the complex, i.e., using those geometries found
in the complex, but only the atoms of the individual component are retained. The solute
entropies S are determined from the usual statistical mechanical formulae (Section 10.3)
with the vibrational frequencies being determined from normal mode analysis of each solute
optimized separately using a distance-dependent dielectric constant to mimic the effects of
solvation.
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Figure 12.6 Free-energy cycle associated with the binding of biotin and fluorobiotin analogs
to avidin. What issues arise in choosing a force field for explicit simulation of these systems?
What methods are better suited to computing the vertical legs of the cycle and what methods
the horizontal ones?

Note that since the free energies of the isolated components are computed using the
same geometries as are employed in computing the free energy of the complex, the internal
force-field energies cancel in computing a free energy of binding as

〈G〉bind = 〈G〉complex − 〈G〉biotin − 〈G〉avidin (12.33)

Only the force-field energy term associated with interactions between the biotin and avidin
fragments remains. This is added to the differential solvation free energies and differential
thermal terms to determine the full binding free energy.

To avoid the cost of multiple MD simulations, Eqs. (12.32) and (12.33) for fluoro-
substituted biotin analogs are also evaluated using geometries from the original MD
trajectory. The relevant hydrogen is simply replaced by a fluorine atom having the appro-
priate bond length oriented along the original C–H bond axis. Thus, there is no relaxation
of the complex to relieve steric clashes if they are introduced. Again, the only force-
field energy terms that survive in computing the free energy of binding are the inter-
action energies between the biotin analog and the avidin. It is further assumed that the
entropy change computed for complexation with biotin remains the same for a fluorinated
biotin.

The results of this rapid fluorine scanning are that substitution at positions pro-R 6 and
9 and pro-S 7, 8, and 9 are all predicted to decrease binding by more than 4 kcal mol−1,
substitution at position pro-S 6 is predicted to decrease binding by about 2 kcal mol−1,
substitution at position pro-R 7 is predicted to have only a small unfavorable effect,
and substitution at position pro-R 8 is predicted to increase binding by a little less than
1 kcal mol−1. The absolute free energy of binding for biotin itself with this method is
computed to be −18.8 kcal mol−1, although the fluctuations in the ensemble average and
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the possible error in the entropy calculation are sufficiently large to make the good agree-
ment with the experimental value quoted above seem potentially slightly misleading.

Irrespective of the accuracy of the absolute binding free energies, the major goal of the
scanning is to identify possible substitutions meriting further study by a more accurate
methodology. First, as a check on the assumptions of the model, binding free energies
for two substituted cases were computed from Eqs. (12.32) and (12.33) but using MD
trajectories generated for the proper complexes. The results were sufficiently close to those
obtained using the unsubstituted trajectory that no concerns were generated. Then, full
FEP calculations using TI and explicit solvent were carried out mutating biotin into 8R-
fluoroavidin and 8S-fluoroavidin, i.e., computing the vertical legs in Figure 12.6 (mutations
were run in both the backward and forward directions). For the 8R-fluoro analog, the
binding free energy was computed to be 1.5 kcal mol−1 stronger than biotin, in reasonable
agreement with the fluorine scanning value of 0.9 kcal mol−1.

There are a few technical details in this paper that are rather more ill-defined than
ideal for a ‘canned’ strategy – the description above of the fluorine scanning procedure
glosses over some of the finer details associated with evaluating binding free energies
for the substituted analogs. Nevertheless, this paper presents an interesting comparison
of more and less time-consuming models for estimating differential binding free energies
from explicit simulation. The joint application of explicit solvent and continuum solvent
methodologies for biomolecular studies seems destined to increase in frequency.

Extensions of this case study are available for the interested reader. First, Dixon et al.
(2002) have expanded the analysis presented above to include consideration of methylated
biotin analogs and in the process developed a graphical approach for visualizing free energy
changes. In addition, Lazaridis, Masunov, and Gandolfo (2002) have also considered the
binding free energies of various ligands, including biotin and biotin analogs, to avidin and
streptavidin. These authors decompose results from MD simulations with implicit solvation
into ligand/enzyme interaction energies, reorganization energies, and entropy changes, and
they conclude that the most difficult component to predict with acceptable precision is
the reorganization energy of the macromolecule. The results from all three of these studies
have important implications for docking models in general, and in particular for models that
employ static ligand and/or receptor structures to improve efficiency, and thereby ignore
relaxation energetics.
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13
Hybrid Quantal/Classical Models

13.1 Motivation

An interest in understanding solvent structure represents one example of a situation that
requires the explicit representation of a large system, as described in detail in the preceding
chapter. For reasons of efficiency, such representation is most typically carried out at the
molecular mechanics level. The chief drawback of the MM level of theory, however, is that
it is almost never appropriate for the description of processes involving bond-making or
bond-breaking, i.e., chemical reactions. To adequately model such processes, QM methods
are required. However, the region of space within which significant changes in electronic
structure occur along the course of a reaction coordinate is often relatively small compared
to the size of the reacting system as a whole. For instance, a very large enzyme may catalyze
the conversion of its substrate from one molecule to another, but the volume of space within
which bonds are being made and broken is usually limited to the relatively small active site.
The remainder of the enzyme may be important for maintaining its structure, recognizing
other enzymes with which it works, folding, etc., but fails to exert any quantum mechanical
influence on the catalytic active site.

Thus, from a modeling perspective, we may regard the situation in the abstract as described
by Figure 13.1. Within a limited region, we wish to make use of the tools of quantum
mechanics to accurately model an electronic-structure problem, while in the surrounding
region the explicit representation of the supersystem is important, but the level of model
applied can be reduced in complexity owing to the more simply understood influence of the
outer region on the process as a whole. When the level applied to the outer system is MM,
the complete Hamiltonian for the system must be some kind of hybrid of QM and MM
methodologies, defining a so-called QM/MM technique. Put in a disarmingly simple fashion

Hcomplete = HQM + HMM + HQM/MM (13.1)

where HQM accounts for the full interaction energy of all quantum mechanical particles
with one other, HMM accounts for the full interaction energy of all classical particles with
one other, and HQM/MM accounts for the energy of all interactions between one quantum
mechanical particle and one classical particle. Methods for the evaluation of the first two
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MM

QM

Figure 13.1 In large systems that require explicit representation, understanding bond-making/-
bond-breaking processes can often be accomplished using a quantum mechanical representation of
only a portion of the full system, with a molecular mechanics representation of the rest

terms on the r.h.s. of Eq. (13.1) have already been the subject of much discussion in preceding
chapters – the devil for a hybrid method is in the details of the final term, and those are the
subject of this chapter.

Many QM/MM modeling schemes have been described with varying levels of formalism.
In terms of classification, perhaps the most fundamental distinction is whether or not the
boundary separating the QM region from the MM region in Figure 13.1 cuts across any
chemical bonds. If it does not, the coupling of the QM and MM regions can be represented
with a reasonable degree of simplicity. If so clean a separation is not practical, however,
e.g., the QM region consists of the substrate for a large enzyme and at least one atom from
a side chain residue in the active site (that serves to accept a proton from the substrate, for
example), then more complicated coupling schemes must be employed to stitch together the
distinct subspaces.

13.2 Boundaries Through Space

In some sense, the simplest example of what might be called a QM/MM approach with a
through-space boundary has already been alluded to in Section 12.2.5 and illustrated with the
specific example of the Claisen rearrangement in Section 12.5.1. To evaluate the PMF for a
reaction in solution, one useful approach is to compute the reaction coordinate using a QM
method in the gas phase, and then determine changes in solvation free energy as the system
is driven from one end of the coordinate to the other by the coupling parameter λ. For the
FEP calculations themselves, the reacting system is represented classically (e.g., using fixed
geometries, partial atomic point charges, and van der Waals parameters), but the gas-phase
energies to which the solvation free energies are added, and also often the atomic partial
charges, are taken from the antecedent QM calculations. As has already been emphasized, this
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approach ignores the effect solvent has on coordinates other than the reaction coordinate,
and on the solute wave function, but it nevertheless may legitimately be referred to as a
‘weakly coupled’ QM/MM calculation. We now proceed to consider increasingly tightly
coupled protocols for joining the two regions.

13.2.1 Unpolarized Interactions

A significant issue with modern force fields is that it can be difficult to simultaneously
address both generality and suitability for use in condensed-phase simulations. For example,
the MMFF94 force field is reasonably robust for gas-phase conformational analysis over a
broad range of chemical functional groups, but erroneously fails to predict a periodic box of
n-butane to be a liquid at −0.5 ◦C (Kaminski and Jorgensen 1996). The OPLS force field, on
the other hand, is very accurate for condensed-phase simulations of molecules over which it
is defined, but it is an example of a force field whose parameterization is limited primarily
to functionality of particular relevance to biomolecules, so it is not obvious how to include
arbitrary solutes in the modeling endeavor.

Kaminski and Jorgensen (1998) have proposed one particularly simple QM/MM approach
to address this problem, which they refer to as AM1/OPLS/CM1 (AOC). In AOC, Monte
Carlo calculations are carried out for solute molecules represented by the AM1 Hamiltonian
embedded in periodic boxes of solvent molecules represented by the OPLS force field. Thus,
HQM in Eq. (13.1) is simply the AM1 energy for the solute, and HMM is evaluated for all
solvent–solvent interactions using the OPLS force field. The QM/MM interaction energy
is computed in a fashion closely resembling the standard approach for MM non-bonded
interactions

HQM/MM =
solute∑

i

solvent∑
j

[
αqCM1

i qj

rij

+ 4εij

(
σ 12

ij

r12
ij

− σ 6
ij

r6
ij

)]
(13.2)

where the Lennard–Jones parameters are determined from the usual combining rules
(Eqs. (2.30) and (2.31)) assuming the solute atoms have ε and σ values characteristic
for their atomic type in the OPLS force field. The single feature that is quantum mechan-
ical is that the solute charges are determined from the CM1 charge model applied to the
AM1 wave function (see Section 9.1.3.4). For charged molecules, the constant α is 1.0,
while for neutral molecules, it is 1.2 to approximate the effect of solvent polarization on
the gas-phase charge distribution.

The choice of AM1 as a particularly efficient level of electronic-structure theory is moti-
vated by the large number of QM calculations potentially required in the MC sampling. In
the standard AOC MC protocol, moves of solute internal coordinates are attempted every
50 MC steps, and accepted or rejected according to the standard Metropolis protocol as
described in Section 3.4.2. If the move is accepted, the QM energy and CM1 charges are
updated and used in Eq. (13.2) until the next accepted change of solute geometry. Note that
QM calculations are not required unless a solute move is being attempted.

The AOC method successfully predicts the effects of polar solvents on rotameric equilibria
for 1,2-dichloroethane and 2-furfural, as illustrated in Table 13.1. However, it is not very
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Table 13.1 Differential solvation effects (kcal mol−1) on rotameric equilibria

H

H Cl

Cl

H

H
H

Cl H

Cl

H

H

�Go
S(gauche) − �Go

S(trans)

Solvent AOCa SM5.4/AM1b Experiment

CCl4 −0.10 −0.70c

C2Cl4 −0.31 −0.37d

CH3CN −1.19 −1.03 −1.01c, −1.42d

H2O −1.48

O

O

H
O

H

O

�Go
S(syn) − �Go

S(trans)

AOCa Experimente

CCl4 0.10 −1.3 ± 0.5
CH3OCH3 −1.45 −1.7 ± 0.5
DMSO −2.40 −2.3 ± 0.5

aKaminski and Jorgensen (1998).
bChambers et al. (1999).
cWiberg et al. (1995).
dDepaepe and Ryckaert (1995).
eAbraham and Siverns (1972).

successful at predicting solvation effects on these equilibria in non-polar solvents, since
the OPLS solvent molecules are not electronically polarizable. Such effects are included in
continuum solvation models like SM5.4/AM1, being implicit in solvent dielectric constants
on the order of 2, and data from that model may be compared for the 1,2-dichloroethane
equilibrium in Table 13.1.

The AOC model has also proven efficient for modeling solvation free energy differences
along a reaction coordinate generated from gas-phase calculations (as previously described
in Section 12.5.1). Chandrasekhar, Shariffskul, and Jorgensen (2002) used this technique
to obtain excellent agreement with experiment in predicting the aqueous acceleration of
Diels–Alder cycloadditions of cyclopentadiene, supporting the conclusion from prior purely
MM simulations that enhanced hydrogen bonding to hydrophilic functionality in the TS
structures is responsible for the acceleration.

With respect to further developments of the AOC protocol, Udier-Blagovic et al. (2004)
recently assessed the relative utility of scaled CM1 and CM3 charges from AM1 and PM3
calculations for use in computation of absolute solvation free energies via AOC. On an
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initial test set of 13 organic molecules, they found neither charge model based on PM3 to
provide acceptable accuracy. However, scaling CM1 and CM3 charges derived from AM1
by factors of 1.14 and 1.15, respectively, gave average errors of only 1.0 and 1.1 kcal mol−1,
respectively, over a diverse test set of 25 organic molecules.

13.2.2 Polarized QM/Unpolarized MM

The next level of complexity involves accounting for environmentally induced relaxation
of the QM wave function explicitly (as compared to, say, the implicit scaling factor α in
Eq. (13.2)). The coupling Hamiltonian HQM/MM remains similar in spirit to that described
by Eq. (13.2), in the sense that the interaction must be represented as a sum of electrostatic
and other non-bonded interactions, but the next step is to determine the Fock operator (or
analogous DFT operator) that is used to obtain orbitals minimizing the complete Hamiltonian.
This is quite straightforward in practice given that we may write the coupling term as

HQM/MM =
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Thus, the electrostatic interaction term of Eq. (13.2) has been separated into an operator
acting on the QM electrons (the first term on the r.h.s. of Eq. (13.3)) and the classical term
for the interaction of the MM atoms with the solute nuclei. The Lennard–Jones term is the
same in Eqs. (13.2) and (13.3) (although the parameters may certainly be different from one
model to another).

The next step is to find orbitals that minimize the expectation value of Hcomplete in
Eq. (13.1), given Eq. (13.3) for HQM/MM. If we take as our wave function a standard normal-
ized Slater determinant, we have
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where i and j run over N QM electrons, k and l run over the K nuclei in the QM fragment,
and m runs over the M molecular mechanics atoms. The second equality in Eq. (13.4)
simply expands the QM Hamiltonian into its usual individual terms and uses Eq. (13.3) to
expand the QM/MM component of the Hamiltonian. The terms having no dependence on
the electronic coordinates – HMM, the QM-nuclei/MM-atom electrostatic interactions, and
the LJ interactions – may be taken outside of expectation value integrals, which are then
simply one by normalization of the wave function. The third equality simply collects terms
together in a convenient fashion.

Note that the only operator acting on the electronic wave function for the QM/MM system
that would not be present in the isolated QM system is that involving the charges of the MM
atoms. In operator formalism, these atoms behave exactly like QM nuclei, except that they
bear partial atomic charges instead of atomic-number-based charges. As such, they enter
into the standard Fock operator just as nuclear charges do, i.e., as part of the one-electron
operator. Elements of the QM/MM Fock matrix that minimize the energy computed from
Eq. (13.4) are thus calculated from the generalization of Eq. (4.54) as

Fµν =
〈
µ

∣∣∣∣−1

2
∇2

∣∣∣∣ ν
〉
−

QM
nuclei∑

k

Zk

〈
µ

∣∣∣∣ 1

rk

∣∣∣∣ ν
〉
−

MM
atoms∑

m

qm

〈
µ

∣∣∣∣ 1

rm

∣∣∣∣ ν
〉

+
∑
λσ

Pλσ

[
(µν|λσ) − 1

2
(µλ|νσ)

]
(13.5)

where only the third term on the r.h.s. is different from the usual QM expression. The
third term involves the computation of M one-electron integrals. Insofar as the bottlenecks
in HF theory tend to be assembly of the two-electron integrals or diagonalization of the
Fock matrix, the actual increase in computational time required for a QM/MM calculation
compared to a purely QM calculation on the same fragment can be quite small.

DFT equations analogous to Eqs. (13.4) and (13.5) can be derived in a similarly straight-
forward way. Again, the ultimate influence of the MM system on the KS orbitals is made
manifest only by the appearance of additional one-electron integrals associated with the MM
atoms in the KS operator.

Of course, the simplicity of the QM/MM operator does not imply that it has only a small
effect. Large atomic partial charges placed near the QM fragment would be expected to
polarize the system strongly. Table 13.2 compares the dipole moments of the standard nucleic
acid bases at the AM1 level evaluated in the gas phase and in a QM/MM calculation carried
out modeling aqueous solvation with a periodic box of TIP3P water molecules. For compar-
ison, results from the AM1-SM2 aqueous continuum solvation model are also provided.

It is important to recognize how a QM/MM calculation like that for the nucleic acid base
solvated dipole moments is accomplished. We outline here a typical series of steps

1. Choose the particular QM and MM levels to be used.

2. Given those QM and MM levels, select a set of LJ parameters for the QM fragment. One
option is to use the same parameters for atoms in the QM fragment as those that would
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Table 13.2 Computed dipole moments (D) of the nucleic acid bases in the gas phase and in aqueous
solution

Gas Aqueous solution

Nucleic acid base 〈�|µ|�〉AM1
a

〈〈�|µ|�〉AM1/TIP3P
〉a 〈�|µ|�〉AM1−SM2

b

Adenine 2.2 3.8 3.1
Cytosine 6.3 9.4 9.0
Guanine 6.2 9.4 8.5
Thymine 4.2 5.9 6.2
Uracil 4.3 6.2 6.4

aGao 1994.
bCramer and Truhlar 1992, 1993.

be applied to those atoms were they to be in the MM region (like the AOC model).
Another option is to develop separate transferable LJ parameters to be used for the QM
fragment whenever the particular QM/MM choice has been made (see, for example,
Martin et al. 2002). The data in Table 13.2 were determined using such a procedure,
with the parameters thus being part of the definition of the AM1/TIP3P model (Gao and
Xia 1992).

3. Where necessary, determine system properties as ensemble expectation values (for the
data in Table 13.2, a MC sampling scheme was employed, but MD methods are equally
applicable). Every time the coordinates of any atom in the system change, i.e., at each
time step in a MD trajectory or following an accepted MC move of either a QM or MM
atom, recompute the QM wave function (since at least one term in the operator involving
the relative positions of the QM electrons and the MM atoms must be different). Note
the contrast with the AOC method, where only internal moves in the QM system’s
coordinates necessitate a recomputation of the wave function.

4. At each simulation step, the property or properties of interest are included in the ensemble
average. For Table 13.2, the property is the evaluation of the dipole moment operator
as an electronic expectation value over the QM subsystem. Thus, the QM/MM result
for this case is an MC ensemble expectation value of a quantum mechanical operator
expectation value.

A different application of the AM1/TIP3P model nicely illustrates the ability of QM/MM
models to permit the analysis of quantities not typically simultaneously available to either
pure QM or MM models. Gao (1994) employed the AM1/TIP3P model to determine the
PMF for the Claisen rearrangement in water, a reaction already discussed in some detail
in the context of pure continuum or explicit solvation models in Section 12.5.1 (see also
Section 11.1.2). Similarly to the pure MM simulation, the computational protocol involved
FEP along the gas-phase reaction coordinate using λ to drive the structure of the initial allyl
vinyl ether through the TS to the unsaturated aldehyde product. At the AM1/TIP3P level,
the same increase in hydrogen bonding to the ether oxygen noted in the pure MM study was
observed. In the QM/MM model, however, the effect of this increased hydrogen bonding on
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Figure 13.2 Schematic comparison of gas-phase and aqueous dipole moments (- - - - - -) to the free
energy of solvation ( ) along the reaction path for the Claisen rearrangement as computed at the
QM/MM level. FEP technology allows access to the solvation free energy, while the QM treatment of
the substrate permits evaluation of the dipole moment operator. Note the large increase in polarizability
(as judged by the difference between gas-phase and aqueous dipole moments) in the region of the TS
structure that contributes to a sharp increase in the magnitude of the favorable solvation free energy.
Note also, however, that comparison of the relevant curves indicates that the total solvation free energy
depends on more than just the dipole moment

the QM solute charge distribution could be directly analyzed. As illustrated in Figure 13.2,
Gao found that the polarizability of the Claisen substrate was substantially larger in the region
of the transition state (as judged by the induced dipole moment attributable to solvation), and
that this contributed significantly to increasing the favorable relative solvation free energy
of the TS structure compared to the reactants, thereby adding to rate acceleration. The same
inference was made from analysis of pure QM continuum model results, but without an
ability to correlate polarizability with hydrogen bonding propensity.

Of course, the rich information available from a QM/MM simulation does not come
without cost. The QM/MM Claisen simulation required several million AM1 calculations
to be carried out; while AM1 is a very efficient level of QM theory for a molecule as
small as allyl vinyl ether, that still represents an enormous investment of computational
resources. As a result, the application of QM/MM methodologies based on the formalism
of Eqs. (13.4) and (13.5) has tended not to be especially systematic, i.e., choices of QM
and MM models and necessary coupling parameters have tended to be made on an ad hoc
basis, without regarding parameter transferability as being an issue of paramount concern.
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With increasing use of such models, methods are likely to become more concisely defined
in the near future. At present, the models for which protocols and parameters have been
most clearly defined and where a fair number of applications have appeared applying those
models in a consistent fashion include the already noted AM1/TIP3P model (more generally
AM1/OPLS when solvents other than water are employed in the MM region) and a similarly
fashioned HF/3-21G/OPLS model (Freindorf and Gao 1996). Implementations carrying the
QM level as far as coupled-cluster theory have been reported (Kongsted et al. 2003).

A variation on the QM/MM theme that offers an increase in computational speed by
sacrificing a certain level of microscopic detail has seen a moderate level of application
when the MM system is simply a homogeneous solvent. In such cases, explicit atomistic
representation of the solvent molecules is replaced with a set of integral equations governing
their mutual interaction, for example, the reference interaction site model (RISM; Pratt and
Chandler 1977). The equations are quite complex (and their solution can be a challenging
numerical task) but in essence integral equation theories take as input the force-field parame-
ters and interaction potentials associated with a molecular mechanics solvent molecule (e.g.,
TIP3P water or OPLS chloroform), and they output radial distribution functions describing
the solvent’s average structure (see Section 3.5). Alternatively, Freedman and Truong (2003)
have described using RISM with solvent r.d.f.s computed from explicit simulations. In any
case, integral equation models are in some sense intermediate between continuum models,
which include no solvent structural information, and explicit models, where individual snap-
shots of a solvated system comprise the data from which averages are computed.

Several models combining QM solute representations with a RISM solvent treatment
have been described recently. The QM solute is described as a sum of site potentials just
as the MM solvent is, except that the electrostatic portion of the potentials derives from
the QM wave function. Using the radial distribution functions for solvent charge sites
about solute atoms permits the solvent electrostatic influence on the QM wave function
to be determined. The RISM equations are then solved for the full set of site potentials
until self-consistency is reached (Ten-no, Hirata, and Kato 1993). Given the final site–site
distributions and the interaction potential between all sites, it is possible to compute the
free energy of solvation (Lee and Maggiora 1993). In a QM/RISM hybrid model, experi-
mental data for this quantity may be used to optimize LJ parameters for QM atoms, and
this approach has been used to define the hybrid extended RISM and quantum mechanical
solvation model XSOL (Shao, Yu, and Gao 1998) for use in modeling organic equilibria in
aqueous solution.

Rather than treating the entire solvent via the RISM formalism, an alternative approach
that has seen some study is to represent some solvent molecules explicitly, typically as
MM species, and then embed the entire QM/MM cluster in a continuum dielectric medium
according to the formalisms described in Chapter 11. Both Bandyopadhyay et al. (2002) and
Cui (2002) adopted such an approach to study the neutral/zwitterionic equilibrium of glycine
in water, the former group representing the explicit water molecules with the EFP model and
Cui doing so with a modified TIP3P model. Both studies concluded that inclusion of some
explicit solvent molecules gave critically improved accuracy over modeling the problem
with exclusively continuum solvation. Note that inclusion of specific MM solvent molecules
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about a QM anion has the additional benefit of substantially reducing any likely instabilities
associated with charge penetration (see Section 11.4.1.3).

13.2.3 Fully Polarized Interactions

Allowing the QM system to be polarized by the MM charges without at the same time
accounting for polarization of the molecules comprising the MM system may be regarded
as being possibly unbalanced. One approach for including polarizability in the MM system
has already been described in Chapter 12, and its extension to a QM/MM system is algo-
rithmically trivial. Thus, each MM molecule or atom is assigned a polarizability tensor α,
and the induced dipole at each polarizable center is determined from Eq. (12.30); in the
QM/MM system, the electric field E has the same components from the MM partial charges
and induced dipoles as in a fully classical system, and an additional component deriving
from the nuclei and electronic wave function of the QM system that is straightforward to
calculate. The interaction of the induced dipoles with the MM partial charges (Eq. (12.31))
and with one another (Eq. (2.23)) are added in the HMM term of Eq. (13.1). In addition,
the induced dipoles interact with the nuclei of the QM system according to Eq. (12.31),
and with the electronic wave function as the expectation value of the operator equivalent of
Eq. (12.31) (thereby adding additional one-electron integrals to the Fock operator, one for
each induced dipole).

The evaluation of all of these terms must proceed iteratively until self-consistency is
reached, since the induced dipoles and the relaxing QM wave function modify the elec-
tric field on which the induced dipoles are dependent. Thus, the increase in computational
resources required to include MM polarizability can be quite significant – one order of
magnitude is not uncommon. Comparisons between QM/MM systems modeled with and
without MM polarizability have been largely equivocal on the utility of its inclusion (adding
alternative three-body correction terms has also been examined for the hydrated manganous
ion (Loeffler, Yague, and Rode 2002) and was similarly found to lead to no significant
improvement in describing hydration structure). Given its very high cost of implementation,
there seems to be little point in carrying the model to this degree of physicality. However,
the lack of improvement in many cases may be attributable to the polarizability being added
post facto to an already existing force field. By virtue of fitting to experiment, formally non-
polarizable force fields must include polarization in some average way into their parameters,
making it less likely that additional explicit accounting for polarization will show dramatic
effects. It is likely that only ongoing efforts aimed at developing fully polarizable force fields
from scratch will prove definitive in determining the level of additional physical insight that
may be gained from having polarization present in explicit form (see, for instance, Banks
et al. 1999).

Although complete, fully polarizable QM/MM schemes are computationally demanding, a
simplified version of this formalism was arguably the first QM/MM approach to be described
(Warshel and Levitt 1976), and the method still sees some use today. The simplification
involves replacing explicit, polarizable MM molecules with a three-dimensional grid of
fixed, polarizable dipoles – each a so-called Langevin dipole (LD) as it is required to obey
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the Langevin polarization law. Each dipole enters the Fock operator just as described above
(Luzhkov and Warshel 1992).

Much like the RISM method, the LD approach is intermediate between a continuum model
and an explicit model. In the limit of an infinite dipole density, the uniform continuum model
is recovered, but with a density equivalent to, say, the density of water molecules in liquid
water, some character of the explicit solvent is present as well, since the magnitude of the
dipoles and their polarizability are chosen to mimic the particular solvent (Papazyan and
Warshel 1997). Since the QM/MM interaction in this case is purely electrostatic, other non-
bonded interaction terms must be included in order to compute, say, solvation free energies.
When the same surface-tension approach as that used in many continuum models is adopted
(Section 11.3.2), the resulting solvation free energies are as accurate as those from ‘pure’
continuum models (Florián and Warshel 1997). Unlike atomistic models, however, the use
of a fixed grid does not permit any real information about solvent structure to be obtained,
and indeed the fixed grid introduces issues of how best to place the solute into the grid,
where to draw the solute boundary, etc. These latter limitations have curtailed the application
of the LD model.

13.3 Boundaries Through Bonds

All of the QM/MM models discussed this far, much like continuum models, envision parti-
tioning a chemical system into (at least) two distinct regions, where the boundary between
these regions is everywhere characterized by a very low level of electron density. That is, no
atoms on one side of the boundary are bonded to atoms on the other side. As a result, the
HQM/MM term in the Hamiltonian of Eq. (13.1) is restricted to non-bonded interactions.

The situation is vastly more complicated when the boundary between the QM and MM
regions passes across one or more chemical bonds. Somehow, the dangling valences from the
two separate regions must be joined in a chemically (and computationally) sensible fashion.
Developmental work is ongoing in this area; this section will focus on the current most
widely used procedures.

13.3.1 Linear Combinations of Model Compounds

Many efforts in molecular design make use of sterically demanding groups, e.g., t-butyl
groups, to enforce particular molecular geometries. Viewing the total molecule as some kind
of sum of its functional groups, the intent is for the interaction between the large groups and
the remainder of the molecule to be entirely steric in nature. In such a situation, the inclusion
of the bulky group(s) in a fully QM calculation may be regarded as pointlessly expensive,
since the size of the fragment(s) guarantees a large increase in the total number of QM basis
functions, but the non-polarity of the fragments also indicates little likelihood of perturbing
the electronic structure of the remainder of the molecule via electrostatic interactions (steric
interactions are, of course, fundamentally electronic exchange-repulsion interactions, but for
the moment we will ignore this level of detail and consider steric effects to be distinct
from more classical electrostatic interactions). Thus, there is a clear motivation for passing a
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QM/MM boundary through space in such a way that the sterically bulky groups fall on the
MM side and the ‘interesting’ part of the molecule falls on the QM side. Finally, to avoid
the question of how to deal with a cut bond, one may assume that the electronic structure
of the QM region will be of similar quality with either the non-polar, bulky group as a cap,
or with simply hydrogen atoms as caps. With such a philosophy, the energy of the system
as a whole may be expressed as a linear combination of model compounds of different size
and at different levels of theory. In simplest form

Ecomplete = Esmall
QM +

(
E

large
MM − Esmall

MM

)
= E

large
MM + (

Esmall
QM − Esmall

MM

)
(13.6)

where the large system is the complete molecule, which is only treated at the MM level of
theory, and the small system is the ‘core’ portion whose electronic structure is of primary
interest, and it is computed at both the MM and QM levels. The two different term orderings
on the r.h.s. of Eq. (13.6) are meant to emphasize the two primary motivations for pursuing
this decomposition of the Hamiltonian.

The first motivation has already been emphasized above. There is some reason to believe
that all of the important quantum effects are captured in the small system, and the steric
energy associated with the bulky groups will be well captured as an ‘embedding’ energy,
i.e., the difference between the MM energy of the small system and the large system.
For example, Cramer and Pak (2001) modeled the reaction coordinate for intramolecular
C–H bond cleavage from a benzyl position in [(LCu)2(µ-O)2]2+, L = 1,4,7-tribenzyl-1,4,7-
triazacyclononane, by replacing the five non-reactive benzyl groups with H atoms in the small
model system (Figure 13.3). As this QM system was treated at the density functional level

N

C u
N

N

O

R

R

R

N

N

O

R

R

C u
N

Figure 13.3 A bis(µ-oxo)dicopper complex represented using Eq. (13.6) where each boxed R group
is H for the small QM system and benzyl for the large MM system. The structure on the right is a
TS structure for H-atom transfer from C to O found by optimization at the hybrid level of theory. All
other H atoms have been removed for clarity
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of theory with a double-ζ basis set, reducing the system by 35 heavy atoms and 30 hydrogen
atoms substantially reduced the total number of basis functions. The necessary MM energies
were then computed with the UFF force field. Application of the model in this fashion has
been especially attractive within the organometallic community, where large ligands can often
be regarded as having a core portion that is electronically important, and remaining regions
that are not. Thus, for example, Matsubara et al. (1996) have used combined DFT/MM
models to study dihydrogen activation by platinum with different phosphine ligands, and
Deng et al. (1997) have used other DFT/MM models to study the role of bulky substituents
in Brookhart-type Ni(II) diimine-catalyzed olefin polymerization.

The alternative motivation for the second equality of Eq. (13.6) arises in cases where a
force field may be regarded as being reasonably accurate except perhaps for some specific
quantum mechanical effect(s) not well accounted for in the functional form of the force field.
For example, French et al. (2000) constructed a (φ,ψ) potential energy surface for the torsions
about the anomeric linkages in sucrose by adjusting an MM3 surface for the full molecule
based on the difference between HF/6-31G(d) and MM3 surfaces for a tetrahydropyran-
tetrahydrofuran ether model (i.e., sucrose without any hydroxyl groups, Figure 13.4). The
MM3 force field exhibits a weakness in accounting for the so-called ‘anomeric effect’ in
sugars (see Section 2.2.3). By correcting for this weakness using the QM results, French
et al. were able to demonstrate that a sizable number of crystal structures containing sucrose
moieties that had previously been assumed to be adopting abnormally high-energy confor-
mations were instead in low-energy regions of the surface.

Note that the embedding philosophy of Eq. (13.6) may be applied more generally than
simply in the context of QM/MM calculations. For example, one can imagine situations
where the importance of a high-level accounting for electron correlation effects may be
restricted to a small region of a large system, but the full system still requires an overall QM
treatment. In such an instance, two different QM levels might be used in Eq. (13.6) instead
of one QM and one MM level; obviously, the more efficient QM level is the one applied to
the large system. For example, Sherer and Cramer (2001) studied the context dependence of
the pKa of the cytosine:2-aminopurine base pair in different double-helical RNA trimers by
taking the base pair itself to be the small system and the trimer to be the large system, and
choosing as the high and low levels of theory MP2/6-31G(d) and PM3, respectively, each
augmented with an aqueous continuum solvation model (Figure 13.5).

Note that Eq. (13.6) is written in terms of energies and not Hamiltonian operators. That
is because there is a certain ambiguity about how to define a wave function that would
be simultaneously appropriate for all of the Hamiltonian operators that would otherwise
appear on the r.h.s. This is not purely a notational issue, since it leaves open the question
of the geometries used for the different energy terms. For instance, one approach would
be to consider each energy on the r.h.s. to refer to complete geometry optimization at the
appropriate level. This is clearly the simplest method, since every energy determination may
be carried out completely independently of the others. However, if there are large differences
between the corresponding regions of any pair of geometries, it calls into question the validity
of the overall energy expression.



470 13 HYBRID QUANTAL/CLASSICAL MODELS

18
0

15
0

12
0 90 60 30 0

y

−3
0

−6
0

−9
0

−1
20

−1
50

−1
80

−1
80

−1
50

−1
20

−9
0

−6
0

−3
0

0 f

30
60

90
12

0
15

0
18

0

4

4

4

6

8

8

22 1

1

10

15

20

20

20
15

10

20
15

15

10

10

10

8

8

8 8

6

6

6

8

6

20 20

(a
)

18
0

15
0

12
0 90 60 30 0

y

−3
0

−6
0

−9
0

−1
20

−1
50

−1
80

−1
80

−1
50

−1
20

−9
0

−6
0

−3
0

0

10

10

10

10

8

8

8

10
1010

4

468

4

4 22

15

15

15

15

20

20

20

20

20

8

86

f

30
60

90
12

0
15

0
18

0

1

6

6

6

8

(b
)

F
ig

ur
e

13
.4

To
rs

io
na

l
po

te
nt

ia
l

en
er

gy
su

rf
ac

es
ab

ou
t

th
e

tw
o

C
–

O
bo

nd
s

lin
ki

ng
th

e
an

om
er

ic
ce

nt
er

s
of

su
cr

os
e

at
th

e
M

M
3

le
ve

l
(a

),
2-

te
tr

ah
yd

ro
fu

ra
ny

l-
2-

te
tr

ah
yd

ro
py

ra
ny

l
et

he
r

at
th

e
M

M
3

le
ve

l
(b

),
th

e
sa

m
e

et
he

r
at

th
e

H
F/

6-
31

G
(d

)
le

ve
l

(c
),

an
d

th
e

su
m

of
th

e
di

ff
er

en
ce

be
tw

ee
n

th
e

la
st

tw
o

w
ith

th
e

fir
st

(d
).

T
hu

s,
th

e
la

st
su

rf
ac

e
m

ay
be

vi
ew

ed
ei

th
er

as
th

e
ef

fe
ct

of
th

e
su

cr
os

e
hy

dr
ox

yl
gr

ou
ps

on
th

e
en

er
gy

su
rf

ac
e,

ev
al

ua
te

d
at

th
e

M
M

3
le

ve
l,

ad
de

d
to

th
e

fr
am

ew
or

k
su

rf
ac

e
ca

lc
ul

at
ed

at
th

e
ab

in
it

io
le

ve
l,

or
as

an
M

M
3

su
rf

ac
e

th
at

ha
s

be
en

pa
rt

ia
lly

‘c
or

re
ct

ed
’

qu
an

tu
m

m
ec

ha
ni

ca
lly

.S
ol

id
tr

ia
ng

le
s

re
pr

es
en

t a
no

m
er

ic
to

rs
io

ns
in

su
cr

os
e

un
its

fo
un

d
in

va
ri

ou
s

X
-r

ay
cr

ys
ta

ls
tr

uc
tu

r e
s.

N
ot

e
th

at
th

e
hy

br
id

su
rf

ac
e

is
th

e
on

ly
on

e
th

at
cl

us
te

rs
th

e
la

rg
e

m
aj

or
ity

of
th

es
e

tr
ia

ng
le

s
w

ith
in

lo
w

-e
ne

rg
y

co
nt

ou
rs



13.3 BOUNDARIES THROUGH BONDS 471

18
0

15
0

12
0 90 60 30 0

y

−3
0

−6
0

−9
0

−1
20

−1
50

−1
80

−1
80

−1
50

−1
20

−9
0

−6
0

−3
0

0

10

10

10

15

15

15

15

15

20

20

20

20

20

10

10

10

8

8

8
8

8 8

6

6

6

6

6

6

4

4

4

4

4

4

1

1

2

2

2

2

f

30
60

90
12

0
15

0
18

0

15

10864

(c
)

y

18
0

(d
)

15
0

12
0 90 60 30 0

2020

20

20
15

15

10

10

8

8

15
10

10

2

8

86

6

64 1 1

4

15

−3
0

−6
0

−9
0

−1
20

−1
50

−1
80 −1

80
−1

50
−1

20
−9

0
−6

0
−3

0
0 f

30
60

90
12

0
15

0
18

0

F
ig

ur
e

13
.4

(c
on

ti
nu

ed
)



472 13 HYBRID QUANTAL/CLASSICAL MODELS

frozen region

flexible region

Figure 13.5 An application of a hybrid MO/MO philosophy to the indicated RNA trimer proceeds
using correlated levels of electronic structure theory for various tautomers and protonation states of
the central base pair, this pair then representing the small system in the MO/MO analog of Eq. (13.6),
and semiempirical theory for both the small system and the frozen-geometry larger system

An alternative is to force those atoms common to the large and small models (i.e., all of
the atoms in the small model except the capping hydrogens) to occupy the same coordinate
locations in all three energy evaluations. Within this set of restraints, one may then write
down fairly simple expressions for the gradients as sums of QM and MM gradients from the
small and large systems, noting that there are some details associated with the capping atoms
in the small system and the alignment of bonds to capping atoms with bonds in the full system
(see, for example, Vreven et al. 2003 and Swart 2003). Maseras and Morokuma (1995) were
the first to provide such gradient expressions, referring to the optimization approach as the
integrated molecular orbital molecular mechanics method (IMOMM).

Subsequently, Humbel, Sieber, and Morokuma (1996) generalized the IMOMM optimiza-
tion scheme to the case where two different levels of QM theory were used instead of a
QM/MM approach, and Svensson, Humbel, and Morokuma (1996) examined the relative effi-
cacy of different combinations of levels for prototype problems. Corchado and Truhlar (1998)
later proposed a refinement of that methodology to improve computed vibrational frequencies
and Rickard et al. (2003) showed that a combination of MP2 and HF theories permits the
calculation of high-quality NMR chemical shifts within the high-level system.
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Of course, Eq. (13.6) admits to further generalization. Rather than dividing a system into
large and small models, there may be instances where a division into large, medium, and
small models may be advantageous, with increasingly smaller regions treated with increas-
ingly higher levels of theory. Svensson et al. (1996) generalized their geometry optimization
scheme to this more general case, demonstrating the method for MO/MO/MM combinations,
and refer to it as ONIOM, where the acronym, representing ‘our own n-layered integrated
molecular orbital molecular mechanics’ scheme, is meant to emphasize the typical inward-
to-outward, near-spherical layering of models that is typically chosen and is reminiscent
of the almost eponymous lachrymatory bulb. To provide yet another layer of modeling
when condensed-phase effects are of interest, the combination of ONIOM with the PCM
continuum solvation model has been described (Vreven et al. 2001) as has a model for
permitting explicit solvent molecules to morph from MM to QM while passing through a
buffer region surrounding the QM subsystem (Kerdcharoen and Morokuma 2002).

13.3.2 Link Atoms

Situations arise where the influence of the MM region on the QM region to which it is
bonded cannot be regarded simply as steric. In a large protein, for instance, polar and
possibly charged residues in an MM region inevitably will polarize a QM region in the same
protein. The only way to eliminate such QM/MM coupling is to include the entire protein
in the QM region, and such an approach is extremely impractical for anything other than a
possible single-point calculation at a fairly low level of electronic structure theory.

Of course, the strong coupling invoked here between the two regions is in no manner
different than that dealt with in Section 13.2.2. What is different is that now there are
interaction energy terms between the QM and MM regions that are not non-bonded terms,
these new terms being associated with the bonds cut by the QM/MM boundary. In practice,
coupled QM/MM calculations involving link atoms tend to adopt the following protocols
for computation of the various terms.

1. HQM is computed for the QM region capped with hydrogen atoms at every bond cut
by the QM/MM boundary. The Fock operator may be like that defined in Eq. (13.5).
However, since the capping hydrogen atom is not really a part of the system, the third
term on the r.h.s. is not evaluated when µ or ν is a basis function on a capping hydrogen;
similarly, no nuclear repulsion between the capping hydrogen nucleus and the MM atoms
is computed.

2. The energies of bonds cut by the QM/MM boundary are evaluated using the
standard MM bond-stretching term (i.e., as though the QM atom were an MM
atom). In addition, a very large force constant is applied to the fictitious bond angle
MM–atom–QM–atom–capping–H so that it remains essentially zero (note that this
connectivity choice avoids the difficulty of working with bond angles near π radians).

3. Angle bending energies involving two MM atoms and one QM atom are computed using
the standard force-field formulation. Angle bending terms involving one MM atom and
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two QM atoms have been included in some studies and deliberately not included in
others. There is no strong consensus on which, if either, approach is better.

4. Torsional energies involving two or three MM atoms and two or one QM atoms,
respectively, are computed using the standard force-field formulation. Torsional energies
involving one MM atom and three QM atoms have, like bond angles, been included in
some studies and not in others.

5. Those MM point charges that are very close to the QM system, either coincidentally
or because the capping hydrogen atoms bring electron density out to the MM boundary
atoms, can have unphysically large influences on the electronic structure of the QM
region, even when those portions of the Fock operator involving the basis functions of
the capping atoms do not include their influence directly. As a result, some studies have
zeroed charges on near-boundary atoms, others have scaled them, and still others have
selectively kept and discarded particular interactions (Eurenius et al. 1996; Bakowies and
Thiel 1996). There is increasing evidence that it is better to maintain all QM/MM charge
interactions. Amara and Field (2003) have shown that these electrostatic interactions can
be made considerably more stable by replacing MM point charges near the QM/MM
boundary with spherical Gaussian charge distributions centered on the MM atoms in
question.

6. All remaining terms associated with HQM/MM and HMM are calculated in the usual way
according to Eq. (13.4).

The use of a hydrogen atom as a capping atom is clearly motivated by simplicity. It is a
reasonable choice based on other considerations as well, however. In general, the position
of the QM/MM boundary is selected so that it will not cut across any particularly polar
or polarizable bonds. This in principle allows the correct separation of the two electrons
in the (single) bond to the one that will remain in the QM region and the one that will
be eliminated in the MM region. In practice, then, the bonds that are inevitably cut in
biomolecules, for instance, are C–C bonds between sp3 carbon atoms. Hydrogen is then a
reasonable choice for a capping atom because the electronegativities of H and C are not
too different. Nevertheless, a potentially better choice is a pseudo-halogen having seven
valence electrons and an electronegativity similar to that of carbon. The ‘lone pairs’ on such
a capping atom will then resemble the electrons from the other bonding orbitals that would
reside on the atom if the system were fully QM, which may offer a better representation of
the system; Zhang, Lee, and Yang (1999) have provided an initial description of a method
employing this protocol, using a pseudopotential for the core electrons that provides the
appropriate electronegativity behavior.

To date, the use of link atoms has been associated with extra instability in MD simulations
at the QM/MM level because of, inter alia, the stiff force constants maintaining linearity
of bonds crossing the boundary and the large electrostatic interactions involving atoms near
the boundary. Progress in this area, addressing the above and other issues, is expected to
continue briskly.
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13.3.3 Frozen Orbitals

In practice, the source of the greatest instability in the link atom approach is the strong
interactions that can develop between the wave function in regions near the link atom and
nearby MM atoms carrying partial atomic charges. As noted above, one can attempt to
eliminate some of those interactions by fiat, but this tends to lead to other instabilities.

A significant contributor to this problem is the point charge nature of molecular mechanics
charges. Smeared-out charge densities are more physically realistic and less prone to compu-
tational problems. This suggests that a worthwhile approach would be to have some sort of
buffer layer between the polarizable QM region and the point-charge-represented MM region
that would be itself represented by a continuous unpolarizable charge density, i.e., one that
is not reoptimized as part of an SCF procedure.

While the details are somewhat mathematically tedious, the conceptual basis can be
explained relatively simply. The full system is now partitioned into three regions, which
may be called the MM region, the auxiliary region, and the QM region. The new auxiliary
region is characterized by nuclei having their normal nuclear charges, and electron density
expressed in some set of basis functions. Equation (13.1) may now be generalized to yield
a Hamiltonian

Hcomplete = HQM + Haux + HMM + HQM/aux + HQM/MM + Haux/MM (13.7)

Compared to Eq. (13.1), there are three new terms, all involving the auxiliary region.
However, two of these terms are entirely classical, Haux and Haux/MM. The first is simply
the electrostatic interaction of the frozen density and its nuclei with themselves, while the
second is the interaction of the frozen density and its nuclei with the MM point charges and
non-bonded LJ terms between the two regions.

As for the HQM/aux term, it is in principle not much different than HQM/MM, except that
instead of adding one-electron integrals over atomic partial charges to the Fock operator
it adds two-electron integrals with the orbitals for one electron being frozen. There is one
additional subtle point, and that is that the MOs of the optimized QM wave function must
be orthogonal to the MOs describing the frozen density.

Thus far, there have been two reasonably carefully described models implementing the
broad philosophy outlined above. However, in reducing the above outlines to practical calcu-
lation, certain issues must be considered. First, it would be nice if the frozen density region
would remain a constant throughout the course of a simulation (if it has to be recalculated
constantly, it is really not much different from the fully QM region). One means to accom-
plish this is to associate the density with localized orbitals, e.g., spn hybrids on first-row
atoms if the system is a protein. In addition, the generation of the frozen density is usually
accomplished by a fully QM calculation on the sum of the QM and auxiliary regions,
followed by the freezing of the auxiliary portion of the density. As such, the auxiliary region
cannot be too large. To date, it has been limited to the atoms at the QM/MM boundary.

The first reported approach along these lines was the localized self-consistent-field (LSCF)
method of Ferenczy et al. (1992), originally described for the NDDO level of theory. In this
case, the auxiliary region consists of a single frozen orbital on each QM boundary atom,
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usually taken to be that atom’s contribution to a localized orbital from a fully QM calculation
on a slightly expanded region (that might itself have been capped at some boundary if
necessary). The population of the orbital – as fully paired spin density – may either be treated
as a free variable, or computed from the density matrix of the original QM calculation. At the
NDDO level, once the spatial orientation of the orbital and its s to p ratio have been set, its
orthogonality to all other orbitals may be very simply enforced in QM/MM calculations. To
maintain an overall zero charge on the QM + auxiliary regions, it is necessary that the total
number of electrons in the auxiliary orbitals be equal to the total number of such orbitals, so
some care must be taken to ensure excess charge does not introduce problems. The LSCF
method, then, looks very much like the link atom method, except that the orbitals describing
QM-atom–capping-atom bonds are not optimized as part of the SCF, but are instead treated
as frozen throughout. Extension of the LSCF formalism to ab initio HF and DFT levels of
QM theory has been described by Philipp and Friesner (1999).

In comparison, a larger auxiliary region is employed in the generalized hybrid orbital (GHO)
approach described by Gao et al. (1998). In this case, it is better to think of the QM/MM
boundary as passing through an atom instead of through bonds, as certain carbon atoms are
assigned both QM and MM character. On those atoms, three sp3 orbitals are held frozen with
paired-spin-density populations equal to one minus one-third of the partial atomic charge the
atom would carry for MM purposes, i.e., there is an attempt to spread out the character of the
boundary atom over its frozen orbitals. The remaining orbital, pointing to the QM region, is
frozen in shape by orthogonality constraints, but its population and contribution to the various
MOs is free to vary according to the SCF procedure. Thus, there is again a similarity to the
link atom procedure, in that there is a fully optimized MO representing each bond at the
QM/MM frontier, but in this case the orbital is surrounded by a much more realistic charge
environment from the hybrid atom nucleus and its three frozen auxiliary orbitals. The three
different approaches are compared schematically in Figure 13.6.

A subtle but key difference in the methodologies is that the orbital containing the two
electrons in the C–X bond is frozen in the LSCF method, optimized in the context of an
X–H bond in the link atom method, and optimized subject only to the constraint that atom
C’s contribution be a particular sp hybrid in the GHO method. In the link atom and LSCF
methods, the MM partial charge on atom C interacts with some or all of the quantum system;
in the GHO method, it is only used to set the population in the frozen orbitals.

The GHO approach has been designed in such a way that the QM/MM atoms at the
boundary are intended to be transferable. Thus, hybrid atoms have modified semiempirical
parameters and force-field parameters for use in computing the QM and MM portions of
the QM/MM energy according to Eq. (13.4), supplemented by MM bond stretching, angle
bending, and torsional terms whenever any one atom in the relevant linkage is a purely MM
atom. The modifications have been made for the combination of the AM1 Hamiltonian and
the CHARMM force field so as best to reproduce structural, energetic, and charge results
from fully AM1 calculations for a spectrum of molecules bearing functional groups similar to
those found in proteins. A CHARMM/PM3 implementation has also been reported (Garcia-
Viloca and Gao 2004) as has the formalism for an ab initio Hartree–Fock GHO method (Pu,
Gao, and Truhlar 2004).



13.4 EMPIRICAL VALENCE BOND METHODS 477

A

B

C H Y

ZXrAB
rBC

rCX

A

B

C

X

Y

Z

A

B

C

X

Y

Z

MM region QM region

wABCX
wBCXY

wCXYZ

qABC
qBCX

qCXY

rAB

rBC

rCXwABCX

wBCXY

wCXYZ

qABC
qBCX

qCXY

rAB
rBC

rCX
wABCX

wBCXY

qABC
qBCX

qCXY

qCXH

Link
atom

LSCF

GHO

Figure 13.6 Comparison of QM/MM partitioning schemes across covalent bonds. Included MM bond
stretch, angle bend, and torsion terms are indicated; those that are boxed are ignored by some authors.
Frozen orbitals are in gray for the LSCF and GHO methods

Analytic derivatives have been reported for both the LSCF and GHO models, making them
attractive options for MD simulations (Amara et al. 2000). Their generalization to ab initio
levels of theory through the use of core pseudopotentials (along the lines of the pseudo-
halogen capping atoms described above) ensures that they will see continued development.

13.4 Empirical Valence Bond Methods

A method that has certain connections with QM/MM techniques even if it does not usually
involve simultaneous evaluation of QM and MM operators during a particular calculation
is the empirical valence bond method (EVB; Warshel and Weiss 1980). At the heart of the
EVB method is the notion that arbitrarily complex reactions may be modeled as the influence
of a surrounding environment on a fundamental process that may be represented by some
combination of valence bond resonance structures. For example, the proton transfer from
one water molecule to another may, at any point along the reaction path, be envisaged as
involving some admixture of the two VB wave functions corresponding formally to

�1 = HOa –H∗ + ObH2 (13.8)

�2 = HOa− + H∗ –ObH2
+ (13.9)
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That is, these two wave functions are taken as the basis functions that are linearly combined
to describe the system at an arbitrary point along the proton-transfer coordinate (the proton
that is transferred has been labeled with an asterisk and the two oxygen atoms labeled a and
b for ease of subsequent discussion).

Most chemists are quite comfortable thinking of chemical structure and reactivity in terms
of valence bond notions – the resonance structures so often invoked in organic chemistry
are one example of this phenomenon – so this approach has conceptual appeal. From a
computational standpoint, the issue is how to derive a Hamiltonian operator that will act on
VB wave functions so as to deliver useful energies.

13.4.1 Potential Energy Surfaces

VB wave functions like those in Eqs. (13.8) and (13.9) are in some sense MM-like represen-
tations of a chemical system. We insist, for instance, that the system described by Eq. (13.8)
always has H∗ bound to Oa, irrespective of the length of the bond at any given moment.
Obviously, however, if the separation between those two atoms is large, it is absurd to
imagine that there is a bond between them. Put more quantum mechanically, one would
say that the contribution of that VB basis function to the ‘correct’ adiabatic ground state is
very small. Thinking of the adiabatic wave function as a linear combination of the VB basis
functions, we would say that the coefficient of �1 in a CI-like expansion should be small,
which is equivalent to saying that it must be at rather high energy relative to states making
larger contributions.

All of these qualitative considerations suggest that a first step to designing a Hamiltonian
for the VB system would be to use a simple force field where the making and breaking O–H∗
bonds are described by a Morse potential, the other OH bonds and bond angles in each of
the two molecular fragments are described by harmonic potential functions, and interactions
between the two fragments are modeled by standard electrostatic and LJ potential functions.
That is, we would have for the uncharged VB Hamiltonian

H1 = DOH
[
1 − e−αOH(rOaH∗−rOH,eq)

]2 +
∑

H �=H∗

1

2
kOH(rOH − rOH,eq)

2

+ 1

2
kHOH(θHOaH∗ − θHOH,eq)

2 + 1

2
kHOH(θHObH − θHOH,eq)

2

+
∑
i∈a

∑
j∈b

qiqj

εrij

+
∑
i∈a

∑
j∈b

4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]

(13.10)

where the fragments a and b are the molecules containing the oxygen atoms having the same
label. Although the bond involving H∗ is unique in using a Morse potential, all MM terms
are otherwise standard and assume a defined connectivity consistent with Eq. (13.8).
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For the charged VB wave function, we take

H1 = DOH
[
1 − e−αOH(rObH∗−rOH,eq)

]2 +
∑

H �=H∗

1

2
kOH(rOH − rOH,eq)

2

+
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H∈b

1

2
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2
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εrij

+
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∑
j∈b

4εij
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rij

)12

−
(

σij

rij

)6
]

+ �2 (13.11)

where, with the exception of the final term, differences between Eqs. (13.10) and (13.11)
simply reflect the differences in O–H∗ connectivity between Eqs. (13.8) and (13.9). The final
term, �2, is a parameter that is adjusted to make the relative energies of the two VB wave
functions correct at their respective minima. In the current example �2 may be determined
as the energy of proton transfer from one water molecule to another in the gas phase (we are
still considering only a two-molecule system), which energy is available from mass spectral
measurements.

If we were to partially optimize the geometries of the systems having the two possible
connectivities, holding fixed only the difference in the two bond lengths from Oa and Ob

each to H∗, we would obtain the set of energy curves for the two VB Hamiltonians shown
in Figure 13.7. A crude definition of the energy for the reaction coordinate would then be
simply to take the minimum of H1 or H2 as one proceeds from left to right in the proton
transfer process. Mathematically, that process is equivalent to taking as our energy the lowest
eigenvalue of the 2 × 2 matrix

H =
[

H11 H12

H21 H22

]
(13.12)

where H11 is taken to be H1, H22 is taken to be H2, and H12 and H21 are taken to be zero.
The matrix then being diagonal, the lowest eigenvalue is simply the lower of H1 or H2.

However, Eq. (13.12) is not simply an odd exercise in matrix algebra. Instead, it suggests a
more chemical approach to obtaining the energy of the reacting system. Along the way from
the VB structure of Eq. (13.8) to that of Eq. (13.9), the system obviously passes through
a region where it is best described as a mixture of these two extreme resonances. The
mathematical way in which this mixing can be accomplished is to allow the off-diagonal
matrix elements in Eq. (13.12) to be non-zero. The most widely used approximation for
these off-diagonal elements in a case like the one discussed thus far is

H12 = H21 = Ae−B(rOO−rOO,‘eq’) (13.13)

where A, B, and rOO,‘eq’ are parameters to be optimized against experimental data. Thus,
the coupling is designed to decrease exponentially as the two heavy atoms separate from
some maximally coupled distance (for more complicated approaches to model H12 see, for
example, Chang, Minichino, and Miller 1992 and Kim et al. 2000). With a non-zero coupling,
diagonalization of H in Eq. (13.12) will give a curve for the lowest eigenvalue, H0 shown
in Figure 13.7, that smoothly connects the two VB extrema. In addition, the eigenvector
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Figure 13.7 Example of potential energy curves for separate VB Hamiltonians and the curve for the
lowest energy eigenvalue when the separate Hamiltonians are coupled by an off-diagonal term in a
2 × 2 Hamiltonian matrix. Note that the difference between the minima for H11 and H22 is the term
�2 in the example given in the text only if all non-bonded and electrostatic interactions are identical
in the two VB representations, and thus the quotes around the label

associated with that eigenvalue provides the coefficients for what amounts to a 2 × 2 CI
wave function in the basis of the VB functions.

Note that the values of the various constants required, both in the ‘normal’ force field
expressions and in the term(s) specific to the EVB formalism, may be determined from
either experiment or high-level ab initio calculations or both.

The connection with QM/MM formalism arises when we consider immersing our gas-
phase EVB system in an explicitly represented surrounding medium. In the proton transfer
case, for instance, we might choose to immerse the system in a box of MM water molecules.
The usual EVB assumption is that the interaction of the original VB system with the surround-
ings serves only to modify the diagonal terms in Eq. (13.12), and it does so only by adding
the MM energy associated entirely with the solvent (which is the same whether added to H11

or H22) and also adding non-bonded interactions that potentially do differentiate between
the two VB basis functions (e.g., if the partial charge on H∗ differs in �1 and �2). In the
condensed phase, then, Eq. (13.12) becomes

H =
[

H11 + V1S + VSS H12

H21 H22 + V2S + VSS

]
(13.14)

where VSS is the intrasolute energy, ViS is the non-bonded energy between the surroundings
and the VB system i, and all other terms are defined as previously.

13.4.2 Following Reaction Paths

The particularly attractive feature of EVB theory is that when it comes to modeling a reaction,
one does not need to follow a reaction coordinate in some geometrical variable; rather, one
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follows a coordinate from one VB optimum to another. The full technical details are not
examined here, but an outline is provided – further details are available in the additional
reading at the end of the chapter.

To implement the reaction path following scheme in the EVB formalism, one defines a
λ-dependent mapping

Hλ = (1 − λ)H11 + λH22 (13.15)

where λ is the usual coupling parameter for FEP that runs from 0 to 1 in discrete steps.
Assuming sufficiently small steps in λ, one can define a free energy change using

�G∗ =
∑

λ

−RT ln〈e−(Hλ+1−Hλ)/RT 〉λ (13.16)

which has the usual appearance for FEP when molar energies are used (cf. Eq. (12.16)).
However, for every value of λ Eq. (13.15) defines an energy surface that is different from

the true PES, unless by coincidence at one or several points. This situation, of evaluating
free energy changes from trajectories moving on adjusted free energy surfaces, is reminiscent
of umbrella sampling (see Section 12.2.5), where energy modifications are introduced as a
function of certain geometric coordinates in order to force trajectories into otherwise low
probability regions of space. Just as is the case with umbrella sampling, the correct free
energy change for the transition from one VB minimum to the other must be determined
from an evaluation of each trajectory, using in particular the difference between the correct
potential and the one used to generate the trajectory (see Eq. (12.26)). In the EVB case, that
is the difference at any point between Hλ and the lowest eigenvalue of H as defined by
Eq. (13.14).

The results of such simulations can be used to further refine the various parameters
appearing in the VB energy expressions. In the case presented here, for instance, the parame-
ters would be adjusted to provide the proper pKa for water. The motivation for the extensive
parameter validation is typically then to move the EVB system into an environment where
experimental data are not well understood, e.g., an enzyme active site. Thus, the procedure
outlined above was used by Åqvist and Warshel (1992) to model the initial deprotonation
of water that is the rate-determining step in the hydration of carbon dioxide to bicarbonate
catalyzed by carbonic anhydrase. After optimizing the EVB parameters on gas-phase and
aqueous water–water proton transfers, the surrounding medium was changed to that of the
solvated enzyme (represented by a force field and thus interacting with the VB Hamilto-
nian just as described above for surrounding water). Following this approach they obtained
very close agreement with the experimentally measured catalytic effect of the enzyme. By
inspecting simulation snapshots from the portion of the free-energy curve corresponding
to the transition state region, they were able to gain structural insight into the catalytic
mechanism of proton translocation.

13.4.3 Generalization to QM/MM

The EVB method as outlined above is not formally a QM/MM method during the course of
any simulation. Instead, the connection to QM is that the parameters required for the EVB
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matrix elements may be determined in part from QM calculations. However, that could be
said of almost any force-field parameter.

A closer relationship between EVB and QM/MM is apparent when some components
of the matrix elements are computed ‘on the fly’ at a quantum mechanical level. Mo and
Gao (2000), for instance, have described such a technique in the absence of an MM region
where an EVB Hamiltonian that includes QM-computed terms is coupled with a surrounding
QM region in a non-SCF fashion. The extension of this methodology to include an MM
region follows naturally from the QM/MM couplings described above.

It should be apparent that when taken to its QM limit the EVB process simply becomes
multi-state CI (see Chapter 14) for a QM system coupled to a classical environment. However,
the enormous cost that would be associated with carrying out such a CI calculation at a level
sufficiently accurate to compete with an empirically parameterized set of potential functions
has inhibited any developments along these lines. Of course, there are interesting systems
where data for empirical parameterization are lacking, but the cost of the multi-state CI
treatment is still sufficiently expensive that it has not yet attracted any attention.

13.5 Case Study: Catalytic Mechanism of Yeast Enolase

Synopsis of Alhambra et al. (1999) ‘Quantum Mechanical Dynamical Effects in an Enzyme-
catalyzed Proton Transfer Reaction’.

The enzyme enolase catalyzes the dehydration of D-2-phosphoglycerate to phosphoenol-
pyruvate, a crucial step in the synthesis of carbohydrates for energy storage. A remarkable
feature of this reaction is that the rate determining step is removal of a proton from the
C-2 position of the reactant that is expected to have a pKa of no less than 32. The base
used for this removal is a lysine ε-amino group; additional driving force for the reaction
is stabilization of the intermediate tetraanion (the reactant is a trianion) by coordination to
two magnesium ions (Figure 13.8).

Alhambra and co-workers adopted a QM/MM strategy to better understand quantum
mechanical effects, and particularly the influence of tunneling, on the observed primary
kinetic isotope effect of 3.3 in this system (that is, the reaction proceeds 3.3 times more
slowly when the hydrogen isotope at C-2 is deuterium instead of protium). In order to carry
out their analysis they combined fully classical MD trajectories with QM/MM modeling and
analysis using variational transition-state theory. Kinetic isotope effects (KIEs), tunneling,
and variational transition state theory are discussed in detail in Chapter 15 – we will not
explore these topics in any particular depth in this case study, but will focus primarily on
the QM/MM protocol.

The authors’ approach does not actually use a trajectory to investigate the kinetics of
the enolase-catalyzed reaction. Rather, the trajectory is designed to create a ‘reasonable’
configuration of the MM part, which is then held frozen as an environment surrounding
the QM part, which is subjected to more detailed investigation. Thus, they began from a
crystal structure of the enzyme with substrate bound, and propagated a classical trajectory
(i.e., no portion was treated via QM) for 50 ps to equilibrate the system. The force field
used in this case was CHARMM22. Then, rbreaking and rmaking in Figure 13.8 were held in
the region of 1.58 and 1.21 Å, respectively, by adding strong harmonic constraints on these
bond lengths, and the trajectory was propagated for an additional 10 ps. In principle, this
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Figure 13.8 A 25-atom quantum subsystem embedded in an 8863-atom classical system to
model the catalytic step in the conversion of D-2-phosphoglycerate to phosphoenolpyruvate by
enolase. What factors influence the choice of where to set the boundary between the QM and
MM regions? Alhambra and co-workers found, using variational transition-state theory with
a frozen MM region that was selected from a classical trajectory so as to make the reaction
barrier and thermochemistry reasonable, that the breaking and making bond lengths were 1.75
and 1.12 Å, respectively, for H, but 1.57 and 1.26 Å, respectively, for D

portion of the trajectory should be representative of the protein structure in the region of
the TS for the reaction.

From this 10 ps region, random structures were selected, and QM/MM calculations were
carried out at the AM1/CHARMM22 level, with the boundary carbon atom of the lysine
side-chain modeled using the GHO approach. In these calculations, the geometry of the
MM region was held frozen, but the QM region was optimized to find reactant, product,
and transition-state structures. When the computed free energies of activation and of the
overall reaction from these structures matched sufficiently closely to experiment, it was
assumed that the MM structure was representative of a typical protein configuration in the
vicinity of the TS, and a more detailed analysis of the kinetics was undertaken to better
understand the experimentally observed isotope effects.
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A key point made by the authors is that the neglect of quantum effects in purely clas-
sical simulations, particularly zero-point vibrational energy, can have very large effects on
computed kinetic quantities. Thus, when the free energy of activation is computed using
the QM/MM potential energies but a purely classical formalism for the vibrational partition
function (i.e., by using a continuous integral in place of the discrete sum that is used for
a QM harmonic oscillator; see Eq. (10.26)), the rate is underestimated by a factor of 34
compared to the complete QM/MM prediction. A still larger discrepancy is seen in the
kinetic isotope effect: the purely classical treatment of vibrations predicts a KIE of 1.3,
while the fully QM/MM protocol predicts 3.5 after accounting for a small tunneling effect.
The latter method is in much better agreement with the experimental value of 3.3.

Having successfully matched the several experimental observables available for the
enolase system, Alhambra and co-workers then examine the reaction coordinate to better
understand the factors discriminating H from D reactivity. They discover that the TS for the
reaction of H is much later than that for reaction of D, because the rapidly increasing zero-
point energy of the N–H bond compared to the N–D bond offsets the drop in reaction coor-
dinate potential energy and moves the free-energy bottleneck for H further towards products.

The authors finish by predicting a quantity that has not yet been measured, the secondary
KIE that would be obtained with –ND2 in place of –NH2 as the reactive base. They also
note the critical role of the Mg2+ counterions in facilitating the reaction. The binding to
the two cations of the phosphoenolpyruvate tetraanion compared to the reactant trianion
is predicted to be increased by some 240 kcal mol−1; this offsets the highly unfavorable
pKa of the C-2 proton sufficiently to render the overall reaction thermochemistry only
2.8 kcal mol−1 endergonic.

One difficulty associated with the authors’ methodology is that, in the absence of having
substantial experimental data in hand, it is not in general obvious that a random selection of
a frozen MM structure from an equilibrated trajectory will provide a useful configuration.
In this instance, the authors were able to validate the quality of their framework geometry
and go on to perform more in depth analyses of microscopic features of the reaction; an
a priori prediction of the reaction’s free-energy profile, however, would require a more
complicated consideration of an ensemble of structures. A detailed protocol for such an
endeavor was subsequently described (Alhambra et al. 2001), and has been applied to other
systems.
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14
Excited Electronic States

14.1 Determinantal/Configurational Representation
of Excited States

An excited electronic state is one in which at least one electron is not in as low energy
an orbital as it could be given the molecular geometry. Such a state may be generated by
various processes, e.g., absorption of radiation by the ground state or as the product of a
chemical reaction. Although unstable relative to collapse to the lower energy ground state,
some excited states may have significant lifetimes owing to inefficient coupling with the
ground state, as described in more detail below.

Given M doubly occupied molecular orbitals and N empty virtual orbitals (and possibly
some number of singly occupied orbitals), the number of possible excited states that can be
generated is enormous. For the moment, we will restrict our discussion to the case where
the ground state is closed-shell and in the excited state only a single excited electron exists
(implying it must have come from the HOMO). Extending the discussion to more general
cases is intuitively straightforward, but notationally somewhat tedious.

The usual manner in which chemists think about an excited state is to take the ground state
�0 as context. Thus, as shown in Figure 14.1, one considers our excited state to be generated
by the removal of one electron from the HOMO of the ground state and its placement into
some higher-energy orbital. Since the wave function for the ground state can be represented
as a single Slater determinant, e.g.

1�0 =
∣∣∣ψ2

1 ψ2
2 ψ2

3 · · · ψ2
N/2

〉
(14.1)

(the Slater determinant appropriate for the RHF wave function of a singlet having N elec-
trons), then the excited state might in general be written as

�a
N/2 = ∣∣ψ2

1 ψ2
2 ψ2

3 · · · ψN/2ψa

〉
(14.2)

where we use the compact notation that if an orbital is not doubly occupied, it is multiplied
by an α spin function unless there is a bar over it, in which case it is multiplied by a β

Essentials of Computational Chemistry, 2nd Edition Christopher J. Cramer
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E

Figure 14.1 The singly excited state on the right may be qualitatively viewed as deriving from
movement of an electron out of the ground-state HOMO into the indicated higher energy orbital
(perhaps following absorption of a photon carrying the appropriate quantum of energy). Note, however,
that the optimized orbitals of the ground state are at best approximations to those of the excited state

spin function. However, as described in more detail in Section 14.4 and Appendix C, the
Slater determinant of Eq. (14.2) is not a pure spin state, but is instead an equal mixture
of singlet and triplet states (the triplet being the so-called ‘up-down’ or ‘Sz = 0’ triplet). It
turns out that the corresponding pure spin states in this instance cannot be written as single
Slater determinants, rather they require a linear combination of two. It is again somewhat
cumbersome, however, constantly to specify the spin state rigorously in this manner, so for
ease of presentation we will simply specify the spin state in a shorthand fashion, as a left
superscript on the wave function, taking as implicit that the correct wave function uses the
proper linear combination of determinants and is not a single determinant as written, i.e.,

1�a
N/2 = ∣∣ψ2

1 ψ2
2 ψ2

3 · · · ψN/2ψa

〉
(14.3)

is the singlet wave function generated from the appropriate combination of determinants
having electrons of opposite spin singly occupying orbitals N /2 and a and

3�a
N/2 = ∣∣ψ2

1 ψ2
2 ψ2

3 · · · ψN/2ψa

〉
(14.4)

is the analogous triplet. Following the general notational scheme already introduced in
Chapter 7, we will use the right sub- and superscripts in �a

i to indicate a state generated by
removing one electron from occupied orbital i and placing it into previously empty orbital a.
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Having dispensed with notational details, let us think more carefully about the chemical
picture implied by Figure 14.1. By picturing an excited state as being a different occupa-
tion of the orbitals of the ground state, we are providing something of a privileged status
to the ground-state orbitals. One must recall that these orbitals, in the HF procedure, are
variationally optimized given an average electrostatic repulsion that depends on the shape
and occupation number of all of the other MOs. When the excited state of Figure 14.1 is
generated, the occupation number of the HOMO is reduced by 1 and the occupation number
of the newly occupied orbital is increased by 1, and thus the HF field acting on every orbital
has changed. This means that none of the occupied orbitals are optimal for the excited state,
and as a result the energy of the excited state, e.g.,

E
[

1�a
N/2

]
=

〈
1�a

N/2 |H | 1�a
N/2

〉
(14.5)

evaluated using Eq. (14.3) for the wave function (i.e., the Slater determinant formed from
the optimized orbitals for the ground state), will be unphysically too high.

It is somewhat tempting to impose an incorrect dynamical view on the excited state
when it is generated by ground-state absorption of a photon. One might imagine that the
‘instantaneous’ absorption process generates the wave function of Eq. (14.3), which then
relaxes to the optimal wave function for the excited state by adjustment of all of the orbitals.
This physical picture, however, ignores the common timescale of all electronic motion.
Even as the electron is ‘moving’ from one orbital to the next, the orbitals whose occupation
numbers are not changing are relaxing in response to changing electron–electron interactions.

To digress for a moment, a timescale separation that usually is valid is the Born–
Oppenheimer separation of the nuclear and electronic motions. Thus, as illustrated in
Figure 14.2, when the optimal geometry of the ground state is not the same as that for
the excited state, we may view the absorption of radiation as taking place at the ground-state
geometry, and the energy involved is called the ‘vertical’ excitation energy. On the timescale
of nuclear dynamics, the geometry of the excited state ultimately relaxes to its own optimum.
The energy difference �E between the two systems taking each to be at its own optimal
geometry is referred to as the ‘adiabatic’ excitation energy. The same conceptual framework
may be applied to the reverse process, emission. Note that excitation and emission energies
are often expressed not in energy units but instead in terms of the wavelength of radiation
corresponding to that energy according to

�E = hc

λ
(14.6)

where h is Planck’s constant, c the speed of light in a vacuum, and λ the radiation wavelength.
A larger �E value is equivalent to a shorter wavelength, so one says that vertical excitations
are blue-shifted (since blue light is on the short wavelength side of the visible spectrum)
relative to adiabatic excitation energies, while vertical emissions with smaller �E values
are red-shifted (red being at the opposite end of the visible spectrum) relative to the same
adiabatic standard. The difference between the vertical excitation and emission energies (or
wavelengths) is referred to as the Stokes shift.
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Figure 14.2 Schematic relationship between vertical absorption and emission energies and the adia-
batic energy difference between the ground and excited states. [Note that a more rigorous treatment
requires inclusion of ZPVE and thermal contributions in the adiabatic energy difference, and consider-
ation of Franck–Condon overlap between quantized vibrational states for the vertical processes; some
of these points are discussed in Section 14.5.]

In terms of computing adiabatic energy differences, if the Born–Oppenheimer PES for
the excited state can be computed, geometry optimization of that state may be carried out
using standard techniques. But, as we have been discussing above, we have not yet devised a
scheme for computing the excited-state surface, since ground-state orbitals are not appropriate
for minimum-determinantal excited-state wave functions. How then to obtain a better excited-
state wave function?

The simplest approach, of course, is to maintain the minimum-determinantal description
and reoptimize all of the orbitals. In practice, however, such an approach is practical only
in instances where the ground-state and the excited-state wave functions belong to different
irreducible representations of the molecular point group (cf. Section 6.3.3). Otherwise, the
variational solution for the excited-state wave function is simply to collapse back to the
ground-state wave function! And, even if the two states do differ in symmetry, the desired
excited state may not be the lowest energy such state within its irrep, to which variational
optimization will nearly always lead.

In certain favorable instances, one can coax the SCF equations to converge to different
determinants of the same electronic state symmetry. For instance, phenylnitrenes have
two different closed-shell singlet states, as re-illustrated in Figure 14.3 (cf. Section 8.5.3),
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N

N

N

N

3A2 (T0) 1A2 (S1)

11A1 (S2) 21A1 (S3)

in-plane p orbital belonging
to b1 irreducible representation

out-of-plane p orbital belonging
to b2 irreducible representation

Figure 14.3 Electronic configurations of phenylnitrene, differing in occupation of the nitrogen p
orbitals, labeled according to their spin and spatial symmetries. Relative energy orderings for the four
configurations are indicated in parentheses; T0 is the triplet ground state, and Sn represents the nth
lowest singlet excited state

differing in whether the occupied nitrogen p orbital is in the plane of the aromatic ring (S2)

or perpendicular to it and conjugated with the π system (S3). As both states are closed-
shell, both belong to the totally symmetric irreducible representation (e.g., the two states
are 1A1 since phenylnitrene belongs to the C2v point group), but the different symmetries
of the alternative lone pair orbitals (one being b1 and the other b2) makes it relatively
straightforward to converge variationally optimized wave functions that may be written as

1�i = ∣∣· · ·i b2
1

〉
(14.7)

and
1�j = ∣∣· · ·j b2

2

〉
(14.8)

(for HF example, see Kim, Hamilton, and Schaefer 1992; for corresponding DFT example,
see Smith and Cramer 1996; Johnson and Cramer 2001). Note that in this case the ellipsis in
each wave function carries a subscript to emphasize that while the orbitals thereby implied
in Eqs. (14.7) and (14.8) are qualitatively similar, they are not identical (since each set was
variationally optimized subject to different HOMOs). This point is not merely technical, but
represents a critical problem associated with the approach, namely that there is no guarantee
that the two wave functions of Eqs. (14.7) and (14.8) are orthogonal, as they should be.

The issue of orthogonality is an important one. Every excited state must be orthogonal
to the ground state (as well as to all of the other excited states), and any technology for
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describing excited states that fails to enforce such orthogonality must be viewed with caution.
One might, of course, be tempted to say that the failure of an excited state to be orthogonal to
the ground state would be sufficiently damning to warrant no further use of the excited-state
wave function. However, there is some room for ambiguity, insofar as the excited-state wave
function must be orthogonal to the exact ground-state wave function, but we are almost never
working with that wave function, only some approximation thereto. Thus, an exact excited-
state wave function may very well fail to be orthogonal to, say, the HF approximation to
the ground-state wave function.

In some cases, orthogonality is ensured by the individual natures of the two states. As
already alluded to above, if the electronic states belong to two different irreps of the molecular
point group, and the product of the two irreps fails to contain the totally symmetric repre-
sentation, then the two states are necessarily orthogonal (see Appendix B). Taking again the
phenylnitrene system in Figure 14.3 as an example, the lowest energy singlet is open-shell
and has a single electron occupying each of the two nitrogen p orbitals. By analogy to
Eqs. (14.3), (14.7), and (14.8), this formally two-determinantal wave function is

1�k = ∣∣· · ·k b1,kb2,k

〉
(14.9)

where the k subscripts on all orbitals emphasize their possible differences with those opti-
mized for the wave functions of Eqs. (14.7) and (14.8). The electronic state symmetry of
Eq. (14.9) is 1A2. Since the product of A2 with A1 in the C2v point group is A2, which is not
the totally symmetric representation, the orthogonality of the A2 wave function of Eq. (14.9)
with the A1 wave functions of Eqs. (14.7) and (14.8) is ensured.

A different guarantee of orthogonality arises if the two states in question have different
spin. Continuing with the phenylnitrene system, the ground state is the triplet version of
Eq. (14.9), i.e.,

3�0 = ∣∣· · ·0 b1,0b2,0
〉

(14.10)

Orthogonality of the singlet and triplet spin coordinates ensures that the wave function of
Eq. (14.10) is orthogonal to all of those in Eqs. (14.7)–(14.9).

Methods for generating excited-state wave functions and/or energies may be conveniently
divided into methods typically limited to excited states that are well described as involving
a single excitation, and other more general approaches, some of which carry a dose of
empiricism. The next three sections examine these various methods separately. Subsequently,
the remainder of the chapter focuses on additional spectroscopic aspects of excited-state
calculations in both the gas and condensed phases.

14.2 Singly Excited States

For an average molecule, there are typically one or more low-energy excited states that may
be reasonably well described as valence-MO-to-valence-MO single electronic excitations,
and the language of spectroscopy reflects this point. Thus certain states are referred to as
n → π∗, π → π∗, etc., indicating the orbital from which the electron is excited on the left
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and the orbital into which it is excited on the right. Finding wave functions for these states
is sometimes facilitated by this relative simplicity of their character.

14.2.1 SCF Applicability

Ideally, one would like to study excited states and ground states using wave functions of
equivalent quality. Ground-state wave functions can very often be expressed in terms of a
single Slater determinant formed from variationally optimized MOs, with possible accounting
for electron correlation effects taken thereafter (or, in the case of DFT, the optimized orbitals
that intrinsically include electron correlation effects are use in the energy functional). Such
orbitals are determined in the SCF procedure.

However, the problem of variational collapse typically prevents an equivalent SCF descrip-
tion for excited states. That is, any attempt to optimize the occupied MOs with respect to
the energy will necessarily return the wave function to that of the ground state. Variational
collapse can sometimes be avoided, however, when the nature of the ground and excited
states prevents their mixing within the SCF formalism. This situation occurs most commonly
in symmetric molecules, where electronic states belonging to different irreducible represen-
tations do not mix in the SCF, and also in any situation where the ground and excited states
have different spin.

As an example of the former, consider the electronic states of fluorovinylidene illustrated
in Figure 14.4. There are two different low lying triplet states, one having A′ electronic state
symmetry and the other A′′. Furthermore, within each respective irreducible representation,
the states indicated are the lowest energy triplets. Thus, wave functions for each may be
determined via an SCF approach. In this case, HF theory is not particularly attractive as an

H

F

H

F

H

F

nC

pC

pCC

1A′

3A′3A′′

H

F

Figure 14.4 Valence MO occupations for three different electronic states of fluorovinylidene. The
triplet states belong to different irreducible representations of the molecular point group because the
singly occupied orbitals in which they differ belong alternatively to either the a′ or a′′ irreps
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option, owing to high spin contamination in the final wave functions. With DFT, however, this
problem does not here arise (see Section 8.5), and at the BVWN5/cc-pVDZ and BLYP/cc-
pVDZ levels of theory, the A′′ triplet is predicted to be lower in energy than the A′ triplet
by 2.3 and 1.6 kcal mol−1, respectively (Worthington and Cramer 1997). This only slightly
overestimates the experimental result of 0.9 kcal mol−1 (Gilles, Lineberger, and Ervin 1993).

Although the A′′ triplet is the lowest energy electronic state of fluorovinylidene having
triplet spin, the closed-shell singlet is lower in energy still, and is the ground state. Naturally,
then, it too is amenable to an SCF description. Note that there can be no variational collapse
of the A′′ triplet to the A′ singlet, not only because the spatial symmetries of the two wave
functions belong to different irreducible representations but also because the spin states are
different. The predicted �SCF energy difference between the 1A′ and 3A′′ states at the
BVWN5/cc-pVDZ and BLYP/cc-pVDZ levels is 30.9 and 31.6 kcal mol−1, respectively,
which compares well with an experimental measurement of 30.4 kcal mol−1.

In the case of the triplet of A′ symmetry, only the difference in spin states prevents
variational collapse of the triplet to the singlet, but that is sufficient. Interestingly, DFT does
a reasonably good job in predicting the singlet–triplet splitting between these two states, with
BVWN5/cc-pVDZ and BLYP/cc-pVDZ both giving values of 33.2 kcal mol−1, compared to
an experimental measurement of 31.3 kcal mol−1. If the fluorine is replaced by a t-butyl
group, the same theoretical levels predict analogous splittings of 45.7 and 46.8 kcal mol−1,
respectively, compared to an experimental measurement (Gunion and Lineberger 1996) of
45.6 kcal mol−1. These good agreements come in spite of the current formal status of DFT,
where the Hohenberg–Kohn theorem has only been proven to apply to the lowest-energy
state irrespective of spin in each irreducible representation of the molecular point group (see
Section 8.2.1).

Many of the same considerations affecting these vinylidene examples arise in comparing
the relative energies of the electronic states of phenylnitrene (Figure 14.3). In this system,
there are many different theoretical data available to compare to experiment, which itself is
available for the lowest two singlet states. Results from �SCF calculations at the HF and
DFT levels of theory are listed in Table 14.1, as are results from many additional levels that
will be discussed at appropriate points later in the chapter.

DFT levels of theory compare about as well with experiment for the splitting between
the 3A2 and 11A1 states of phenylnitrene as for the analogous states of the vinylidenes just
discussed. Agreement is nearly quantitative at the BLYP level using a triple-ζ basis set. In
general in Table 14.1, the energies of the excited states are predicted to be somewhat lower
for equivalent levels of theory when triple-ζ basis sets are used in place of those of double-
ζ quality. Such behavior is expected, insofar as ground states tend to have more electron
density residing in the close-in valence region than do excited states, and thus the ground
states are less demanding in terms of basis-set requirements. Moreover, most basis sets are
optimized for ground-state atoms and molecules, so to the extent basis-set limitations affect
the calculation, they should disproportionately affect excited states.

The DFT values for the 1A2 state derive from the sum method or projection techniques
presented in Section 14.4, and discussion of those values is deferred to that point. As for
the 21A1 state, although no experimental measurement is available, comparison to other
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Table 14.1 Energies (kcal mol−1), where available, for lowest
singlet excited states of phenylnitrene relative to the 3A2 ground
statea

Source 1A2 11A1 21A1

HF/6-31G(d) 64.6 80.1
BLYP/6-31G(d) 14.5b, 22.8c 31.4 48.7
BPW91/cc-pVDZ (�SCF)d 14.3b 33.9 43.0
BLYP/cc-pVTZ (�SCF)e 29.5 41.0
CCSD(T)/cc-pVDZe 35.2 47.2
CAS(8,8)/cc-pVDZd 17.8 42.1 76.2
CASPT2/cc-pVDZd 19.3 37.4 57.8
CASPT2/cc-pVTZe 19.3 34.8 54.5
MRCISD/DZPf 21.0 39.8 (52.0)
Experimentg 18. 30. n.a.

aZero-point vibrational energies are not included in the theoretical energies,
but ZPVE differences between alternative electronic states are predicted to
be small at the few levels where they have been evaluated.
bDetermined from sum method.
cDetermined from spin projection.
d Johnson and Cramer (2001).
eSmith and Cramer (1996).
f Hrovat, Waali, and Borden (1992); Kim, Hamilton, and Schaefer (1992).
gTravers et al. (1992); Ellison, G. B., unpublished results.

levels of theory that would be expected to be reasonably accurate suggests that the DFT
predictions are substantially too low. The DFT wave function for the 21A1 state is that of
Eq. (14.8) and, as discussed above, is found by fortuitous convergence of the SCF equations
for this occupation scheme where variational collapse to the 11A1 state of Eq. (14.7) would
otherwise be expected. The apparently rather poor accuracy of the energy for the higher state
suggests that this orthogonality issue cannot be ignored here, and the �SCF procedure must
be regarded as unreliable.

As for the HF level, the �SCF approach for the closed-shell singlet states is identical to
that in the DFT case (in this instance, the two-determinantal nature of the lower energy open-
shell singlet requires an MCSCF description, so HF values are not reported for this state).
However, both of the closed-shell singlets are subject to large non-dynamical correlation
effects (as a consequence, in part, of being so close in energy to one another). Since HF
theory is much more sensitive to such correlation than DFT, the energies of these two states
are predicted to be much too high. This error is in some sense even worse than it appears,
because severe spin contamination in the triplet, which exhibits an expectation value for S2

in excess of 2.7, probably causes it too to be poorly represented at the HF level.
Of course, with HF wave functions in hand, it is possible to carry out post-HF calculations

to partially correct for electron correlation effects. The poor quality of the HF wave functions,
however, militate against any treatment much less sophisticated than coupled-cluster. At the
CCSD(T)/cc-pVDZ level, the predicted energy of the lowest closed-shell singlet is in fair
agreement with experiment (other data in the table suggest that use of a triple-ζ basis set
would improve the CCSD(T) estimate). The energy of the second closed-shell singlet state
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looks to be somewhat low, however, again probably reflecting the non-orthogonal nature of
the HF reference for this state compared to the lower energy one.

14.2.2 CI Singles

For many singly excited states, �SCF calculations are not an option under any circumstances.
Within the context of using the orbitals of the ground state to describe the excited state, the
simplest way to evaluate the energy of the excited state would be to evaluate the Hamiltonian
for the determinant formed after promotion of the excited electron. Such an approach is rarely
useful, however, and a significant drawback of these singly excited single-configuration
wave functions is that, although each one will be orthogonal to the ground state (because of
Brillouin’s theorem, see Section 7.3.1), they are unlikely to be orthogonal to one another.
However, as long as we limit our consideration to singly excited states, they can be made to
be orthogonal to one another with fairly little computational effort, and in the process better
descriptions of the states, and presumably better energies, may be determined.

This orthogonalization is the essence of the technique known as CI singles (CIS) because
the CI matrix is formed restricting consideration to only the HF reference and all singly
excited configurations (Figure 14.5). The matrix is essentially of size M × N where M is
the number of occupied orbitals from which excitation is allowed, and N is the number of
virtual orbitals into which excitation is considered. If excitation is allowed to occur with
a spin-flip of the excited electron (e.g., permitting generation of triplet excited states from
singlet ground states or vice versa; see, for example, Sears, Sherrill, and Krylov 2003) then
the size increases, although none of the triplet states have matrix elements with any of the
singlet states because of their different spins. Orthogonalization of the CIS matrix takes
place only in the space(s) of the excited states, since they do not mix with the HF reference.
The orthogonalization provides energy eigenvalues each of which has associated with it an
eigenvector detailing the weight of every singly excited determinant in the state. That is, the
CIS wave function for each excited state is written as

�k =
occupied∑

i

virtual∑
a

ciak�
a
i (14.11)

ΨHF

EHF 0

0 dense

diagonalization
ΨHF
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E1

0

0ΨHF

Ψa
i

Figure 14.5 The CIS procedure diagonalizes the CI matrix formed only from the HF reference
and all singly excited configurations. The diagonalization provides energy eigenvalues and associ-
ated eigenvectors that may be used to characterize individual states as linear combinations of single
excitations
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where the coefficients c are the components of the eigenvector for state k. With large enough
basis sets, even the CIS matrix may grow cumbersomely large with which to work, and
iterative methods designed to locate only lower energy roots are employed, just as in CI
treatments considering higher excitations. Analytic gradients are available for CIS wave
functions, so it is possible to optimize the geometry of a particular state, making CIS
a useful method for obtaining either vertical excitation energies, or adiabatic excitation
energies.

Note the difference in objectives between a ground-state CI calculation and a CIS calcula-
tion. In the former, the goal is to improve the description of the ground state, and excitations
must be included at least through doubles (since singles do not mix with the ground state).
In the CIS calculation, the ground state is important only to the extent it determines the
orbitals, and the CI is carried out to orthogonalize the singly excited states.

Insofar as the latter process does not involve any orbital reoptimization for any particular
state, it provides a wave function that is roughly equivalent in quality only to an HF wave
function for the ground state. Of course, this may still be useful for a number of purposes.
CIS results for six excited states of benzene are included in Table 14.2, as are results from
other levels of theory that will be discussed later. The CIS results are qualitatively useful,
insofar as the states are correctly ordered, and the error is fairly systematic – all states are
predicted to be too high in energy by an average of 0.7 eV. The worst prediction is for the
lowest excited state, which is known to have significant dynamical electron correlation, and
is therefore challenging for the CIS method.

To improve CIS results beyond their roughly HF quality, various options may be consid-
ered. Particularly for spectroscopic predictions, semiempirical parameterization of the CIS
matrix elements may be preferred over their direct evaluation in an ab initio sense using
Eq. (7.12), and the most complete realization of this formalism is the INDO/S parameter-
ization of Zerner and co-workers. A few examples of the excellent performance of this
highly efficient model for the computation of excited-state energies have already been
discussed (Table 5.1). Of additional interest, Hutchison, Ratner, and Marks (2002) found
that CIS/INDO/S provided the highest accuracy of several methods (including ab initio CIS,
RPA, and TDDFT; the last two are discussed later in this chapter) for predictions of first
excited-state energies in 60 oligomers of various aromatic heterocycles. With increasing

Table 14.2 Energies (eV) for singlet excited states of benzene relative to the 1A1g,
ground state as predicted by various methodsa

Excited state CIS RPA TD-BPW91 TD-B3LYP Expt.

1B2u 6.15 5.96 5.19 5.40 4.9
1B1u 6.31 6.01 5.93 6.06 6.2
1E1g 7.13 7.12 6.34 6.34 6.33
1A2u 7.45 7.43 6.87 6.84 6.93
1E2u 7.75 7.74 6.85 6.88 6.95
1E1u 7.94 7.52 6.84 6.96 7.0

Mean abs. error: 0.7 0.6 0.1 0.1

aFrom Stratmann, Scuseria, and Frisch (1998). All calculations employed the 6-31+G(d) basis set.
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length, these energies converge to the band gap for the one-dimensional solid, a property of
considerable interest in solid-state chemistry and physics.

Improvement of ab initio CIS wave functions may in principle be accomplished with
perturbation theory, but this tends to be very slowly convergent because the existence of a
high-energy occupied orbital and a low-energy hole leads to denominators in perturbation
theory expressions analogous to Eq. (7.48) that are very near zero, and thus the terms are
very large. Head-Gordon et al. (1994) have proposed a more satisfactory approach where
the effect of double excitations on the CIS state energy is evaluated; this method is referred
to as CIS(D).

CIS technology has a particularly valuable application that is unrelated to an interest in
excited states, per se. In systems where the exact orbital occupation of the ground state is
not entirely certain, a CIS calculation allows a determination of whether the ground state has
actually been found with respect to single excitations. If a CIS eigenvalue is found that is
below the HF energy, then the HF reference either is not the ground state, or it may be, but
within the accuracy of HF/CIS theory it is clear that a near degeneracy exists with another
state or states. In highly symmetric systems, where orbital mixing is restricted by blocking
of the Fock matrix, a check of the stability of any final wave function using this approach
is a useful precaution.

A variation on the CIS scheme that is empirical in nature but has been demonstrated to
offer surprisingly high accuracy in computational practice involves marrying some aspects
of DFT with the CIS methodology (DFT-SCI; Grimme 1996). In particular, all HF orbital
energies are replaced by KS equivalents, and the Coulomb integrals and diagonal elements
are empirically scaled. Once this is done, the usual diagonalization process provides wave
functions and state energies that compare nicely with more rigorous theoretical formulations.
This technology has not yet seen widespread use.

14.2.3 Rydberg States

A particular type of singly excited state merits mention because of its unique characteristics.
A so-called Rydberg state is one where the excited electron has an energy very near the
level of the continuum, i.e., it is almost detached. Such states may conveniently be thought
of as an electron attached to a molecular cation that acts as a central attractor, much as
a nucleus acts as a central attractor in an atom. Thus, formal Rydberg orbitals may be of
s, p, d, etc. character with the exact chemical nature of the underlying molecular system
secondary in importance to its total charge. The Rydberg orbitals are by nature extremely
diffuse compared to valence orbitals. As a result, any attempt to describe a Rydberg state
requires an AO basis set that either includes diffuse functions on heavy atoms (and possibly
H) or is supplemented by additional basis functions specifically tailored to Rydberg char-
acter that are not necessarily atom-centered, e.g., they may take the molecular center of
mass as their origin (see, for example, Wiberg, de Oliveira, and Trucks 2002). The latter
option is more efficient but introduces complications if gradients are desired for geometry
optimization.
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14.3 General Excited State Methods

Electronic states that cannot be well described as single excitations from the ground state
require more general formalisms than those described thus far for the construction of their
wave functions. Such formalisms, insofar as they are general, can certainly be used for states
that are well characterized as single excitations as well; they simply tend to be somewhat
more demanding in terms of computational resources, making methods like CIS economical
alternatives when they can be applied. Some of the methods described below have already
been discussed in Chapter 7 in the context of improving the description of the ground-state
wave function, while others are specific to excited-state applications.

14.3.1 Higher Roots in MCSCF and CI Calculations

In the process of determining the expansion coefficients that define an MCSCF wave function
along lines similar to Eq. (7.10), CI calculations are carried out in the space of the orbitals
that are active in the MCSCF. Excited states that can be generated by electronic excitations
within that active space then have a corresponding root in that limited CI window and, if one
chooses, one can variationally optimize the orbitals for a root other than the one of lowest
energy, i.e., other than the ground state.

In some instances, the root in question is dominated by a single CSF, allowing one to
describe the state conveniently by reference to the ground state. In other instances, however,
that will not be the case, and simple relationships between the excited state and the ground
state cannot be easily formulated. This is, of course, purely a conceptual problem – the wave
functions themselves are perfectly well defined and useful.

In any case, once a root is specified, the MCSCF process minimizes the energy for that
root following the usual variational procedure. Problems can arise, however, along the way.
Consider the situation illustrated in Figure 14.6, with two states having curves that cross
along some geometrical coordinate. The point of crossing is a so-called ‘conical intersection’
in the corresponding PESs. In diatomics, such intersections are not permitted if the curves
correspond to electronic states of the same symmetry (the ‘non-crossing rule’), but in larger
systems such restrictions are not in force, and conical intersections are ubiquitous. The state
energies themselves are sensitive to which root is chosen for optimization. Obviously, the
chosen root has a better representation since the orbitals are optimized for it, while the
non-chosen root has a poorer representation, and thus its energy is erroneously too high
when computed as a root of the MCSCF reduced CI matrix. In situations where the two
begin close to one another in energy, e.g., near a conical intersection, it is possible that ‘root
switching’ will occur during the optimization process. Thus, in Figure 14.6, if one is at the
geometrical position indicated by the asterisk and one selects the second root as the state
for optimization (assuming the initial HF orbitals resemble better the orbitals of State A), as
the MCSCF proceeds, the energy of the second root will drop below that of the first, since
the orbitals are dropping the energy of State B at the expense of State A. As a result, the
MCSCF will suddenly switch from optimizing the orbitals for State B to optimizing them
for State A, as it is that state that is now the second root. This situation is unstable.
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Figure 14.6 Two electronic states of an arbitrary system having a conical intersection. The inset
region illustrates the effect on each curve of optimizing the orbitals for either State A or State B. At
the coordinate position marked by an asterisk, the relative energies of the two states depend on which
is chosen for orbital optimization, which can lead to root switching problems in an MCSCF calculation.
Additionally, geometry optimization can cause root switching as well, if optimization passes through
the conical intersection

To finesse this problem, it is possible to carry out a so-called ‘state-averaged’ MCSCF.
In a state-averaged calculation, the orbitals are variationally optimized not for any one state
energy, but rather for the average of the two (or more than two, if a larger number of states
are of interest). A drawback to such a calculation is that the quality of any one state’s wave
function is lower than it would be were it to be the only state under consideration. On the
other hand, a virtue of a state-averaged calculation is that all states are expressed using
the same MOs, thereby ensuring orthogonality, which is critical if, say, transition dipoles
between states are to be computed.

Nevertheless, root switching may still be problematic for geometrical reasons in the vicinity
of conical intersections. Thus, for instance, any optimization of State B in Figure 14.6 that
begins to the left of the asterisk in coordinate q will ultimately proceed to the right until
State B falls below State A in energy, at which point it is the first root for chemical reasons,
not technical reasons. The only remedy in this situation is careful analysis in the construction
of state PESs.

MCSCF results for phenylnitrene using a complete active space formed from the six
phenyl π orbitals and the two nitrogen p orbitals and the eight electrons contained therein
are presented in Table 14.1. Note that, because of symmetry and spin restrictions, only the
21A1 state must be determined as the second root of the MCSCF. The CAS results are quite
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good for the energy of the 1A2 state (recall that MCSCF is designed to handle the two-
determinantal character of that state in a fully rigorous fashion), but place the closed-shell
singlets considerably too high in energy. Since MCSCF wave functions with small active
spaces typically correct for non-dynamical correlation effects much more effectively than
for dynamical correlation effects, it is not surprising that the closed-shell singlets, with their
greater number of spin-paired electrons, are predicted to be unrealistically too high in energy.

To correct for dynamical electron correlation, the usual multireference methods may be
applied. Table 14.1 lists CASPT2 and MRCI results for the phenylnitrene states. With a
double-ζ basis, the two give roughly equivalent results in this system for the first two
singlet states. The MRCI value for the 21A1 state is actually not from a multireference
calculation, but is instead a CISD result using the HF wave function of Eq. (14.8), so its
somewhat lower energy is probably attributable to a failure to enforce orthogonality with
the lower A1 state. The CASPT2 predictions with a triple-ζ basis set (a basis set that is
too large for practical use in an MRCISD calculation) are reasonably good, and probably
represent the best estimate of any method listed in the table for the 21A1 state. Note that
the reasonably good agreement between the CASPT2/cc-pVTZ value for this state and that
from the CISD calculation probably derives from the orthogonality error in the latter being
fortuitously canceled by error associated with the limited size of the employed basis set.

On the whole, the CASPT2 method is the most robust general method for computing
excited-state energies and wave functions spanning all manner of excitations. Design efforts
with other methodologies tend to use CASPT2 values as developmental benchmarks. Grimme
and Waletzke (2000) have proposed a multireference second-order perturbation scheme (MR-
MP2) that is similar in formalism to CASPT2 but achieves substantially higher efficiency
by truncation of the active space and the number of excitations allowed within it. For 22
excited-state energies in 14 very diverse molecules MR-MP2 achieved a mean unsigned
error of 0.14 eV compared to experiment (Parac and Grimme 2002). Grimme and Waletzke
(1999) have also proposed a DFT-MRCI analog to DFT-SCI that can be used for excited
states where excitations beyond singles may need to be taken into account.

14.3.2 Propagator Methods and Time-dependent DFT

If a molecule is subjected to a linear electric field E that is fluctuating such that

E = r cos(ωt) (14.12)

where r is the position vector in one dimension, t is time, and ω is the frequency of the fluc-
tuation, it can be shown that the frequency-dependent polarizability is well approximated by

〈α〉ω =
states∑
i �=0

|〈�0|r|�i〉|2
ω − (Ei − E0)

(14.13)

where the numerator of each term in the sum is a so-called transition dipole moment and the
denominator involves the frequency and the energies of the excited states and the ground
state. Note that, if the frequency corresponds exactly to the difference in energy between an
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excited state and the ground state, there is a pole in the frequency-dependent polarizability,
i.e., it diverges since the denominator goes to zero.

Using propagator methodology (sometimes also called a Green’s function approach or an
equation-of-motion (EOM) method), the poles of the frequency-dependent polarizability can
be determined without having to compute all of the necessary excited-state wave functions
and their corresponding state energies. The necessary matrix equations are quite complex,
and only a qualitative summary is provided here. Within the confines of the so-called random-
phase approximation (RPA) the integrals that are required to compute the excitation energies
are essentially those required to fill the CI matrix containing all single and double exci-
tations and the transition dipole moments between the ground state and all singly excited
configurations. Because the RPA method includes double excitations, it is usually more accu-
rate than CIS for predicting excited-state energies. However, the method does not deliver a
formal wave function, as CIS does. The RPA method may be applied to either HF or MCSCF
wave functions. As with the CI formalisms they somewhat resemble, RPA solutions are most
efficiently found by an iterative process that focuses only on a few lowest-energy excitations.

Table 14.2 includes RPA results for the six excited states of benzene already discussed in
the context of CIS. The more complete RPA formalism does improve the results for those
cases where CIS is most in error, but the net improvement in mean absolute error over all
six states is only 0.1 eV in this case.

A DFT method that is strongly analogous to RPA is called time-dependent DFT (TDDFT).
In this case, the KS orbital energies and various exchange integrals are used in place of matrix
elements of the Hamiltonian. TDDFT is usually most successful for low-energy excitations,
because the KS orbital energies for orbitals that are high up in the virtual manifold are
typically quite poor. Casida, Casida, and Salahub (1998) have suggested that TDDFT results
are most reliable if the following two criteria are met: (i) the excitation energy should
be significantly smaller than the molecular ionization potential (note that excitations from
occupied orbitals below the HOMO are allowed, so this is not a tautological condition) and
(ii) promotion(s) should not take place into orbitals having positive KS eigenvalues.

Table 14.2 includes TDDFT results from the pure BPW91 and hybrid B3LYP functionals
for the six excited states of benzene previously discussed for CIS and RPA methods. The
pure functional is better for the most highly correlated 1B2u state, but the mean absolute error
for the two methods over all six states is equivalent. The improved quality of the TDDFT
results compared to CIS or RPA is substantial.

Many other comparisons between TDDFT and alternative methods have appeared. For
example, Parac and Grimme (2002) found B3LYP TDDFT to give a mean unsigned error of
0.26 eV on the same 22 excited-state energies for 14 molecules discussed in the last section
(cf. 0.14 eV for MR-MP2). In addition, Fabian (2001) compared B3LYP TDDFT results to
CIS/INDO/S for various absorptions in 76 organosulfur compounds containing up to four
sulfur atoms. The performance of TDDFT was again quite good: the mean unsigned error
over all absorption maxima was 0.21 eV, which was superior to the CIS/INDO/S result of
0.35 eV. Interestingly the semiempirical PPP method, which by its nature is only applicable
to excitations of the π → π* variety, had an error of only 0.20 eV, illustrating that more
expensive calculations are not always better calculations . . .

A detailed comparison of several methods for local and charge-transfer excitation energies
in benzenes substituted with donor and acceptor groups has been provided by Jamorski et al.
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Table 14.3 Vertical excited-state energies (eV) of 4-dimethylaminobenzonitrile and 3,5-dimethyl-
4-dimethylaminobenzonitrile relative to S0 ground state

NC N

CH3

CH3

Method S1 (1B, local) S2 (1A, CT) T1 (3A, CT) T2 (3B, local)

CASPT2/DZPb 4.05 4.41 3.66 3.69
B3LYP-MRCI/TZVPa 4.33 4.62
B3LYP-SCI/DZVPc 4.1 4.6 3.12 3.51
TD-LSDA//AM1d 3.89 4.17 3.10 3.43
LSDA//AM1 �SCFd 3.27
TD-B3LYP//AM1d 4.38 4.54 3.10 3.73
B3LYP//AM1 �SCFd 3.32
TD-PBE1PBE//AM1d 4.49 4.64
TD-LSDAd 3.92 4.26 3.12 3.40
LSDA �SCFd 3.29
TD-B3LYPd 4.38 4.62 3.14 3.68
B3LYP �SCFd 3.35
Experimente 4.25 4.56 3.36 3.50

NC N

CH3

CH3

CH3

CH3

Method S1 (CT) S3 (local) T1 (CT) T2 (local)

B3LYP-SCI/DZVP+e 4.17 4.95 3.77 4.03
TD-B3LYPd 3.91 4.98 3.08 3.94
B3LYP �SCFd 3.38
TD-PBE1PBEd 4.09 5.16 3.02 4.01
PBE1PBE �SCFd 3.37
TD-mPW1PW91d 4.10 5.16 3.00 4.04
mPWPW91 �SCFd 3.37
Experimente 4.27 5.00 3.48 4.31

aParusel (2000).
bSerrano-Andrés et al. (1995).
cParusel, Köhler, and Grimme (1998).
d Jamorski et al. (2002); 6-311+G(2d,p) basis set.
eBulliard et al. (1999).

(2002) and some of their results are summarized in Table 14.3. An observation made in all
of the above studies, and one that is particularly important for future developmental efforts,
is that the TDDFT methodology performs relatively poorly for excitations characterized as
charge-transfer (CT) or charge-resonance in weakly interacting composite chromophores (see
also Casida et al. 2000 and Zyubin and Mebel 2003). Note, though, that the �SCF approach
works well when it is possible to employ it.

Efforts to improve TDDFT for higher-energy excitations have shown some early success.
Tozer and Handy (1998) have proposed a correction procedure to deliver functionals having
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asymptotically correct potentials, and Adamo and Barone (1999) have demonstrated that the
hybrid PBE1PBE functional, for reasons that are not entirely clear, seems to be significantly
less affected by high-energy errors than other hybrid functionals. Such ongoing devel-
opments together with efficient schemes for computing excited-state analytic derivatives
(Furche and Ahlrichs 2002) make TDDFT the method of choice for molecules whose size
precludes the use of very large multireference ab initio schemes. Within the area of inor-
ganic chemistry, the accuracy of newly developed methods for computing transition-metal
circular dichroism (CD) spectra with TDDFT is another very promising development (see,
for example, Autschbach, Jorge, and Ziegler 2003). CD spectroscopy, together with optical
rotatory dispersion (ORD), which is also open to computation (Beratan, Kondru, and Wipf
2002 and Rinderspacher and Schreiner 2004), is particularly useful in assigning absolute
configuration for chiral molecules.

Finally, Shao, Head-Gordon, and Krylov (2003) have described a modification of TDDFT
that permits formally multideterminantal target states to be described as spin–flip excitations
from a single determinant reference state of different spin (SF-TDDFT). Thus, for example,
the difficult singlet state(s) of trimethylenemethane, discussed in Chapter 7, may be generated
from the single-determinantal triplet state by single spin–flip excitations (Slipchenko and
Krylov 2003). This development substantially expands the range of excited states that may
be addressed with TDDFT.

14.4 Sum and Projection Methods
The application of HF and KS-DFT is fundamentally limited to wave functions that can be
expressed as single Slater determinants. This restricts their utility in dealing with states like
the 1A2 state of phenylnitrene, which is two-determinantal in character (Figure 14.3). One
can apply HF or KS-DFT to the single determinant that, restricted to representation of the
singly occupied orbitals and with normalization implicit, is written

50:50� = [b1(1)α(1)b2(2)β(2) − b1(2)α(2)b2(1)β(1)] (14.14)

But, as described in more detail in Appendix C, this wave function, which configurationally
corresponds to an α electron in the b1 orbital and a β electron in the b2 orbital, is neither
a singlet nor a triplet, but a 50:50 mixture of the two, and this point is emphasized by the
left superscript on � in Eq. (14.14). While the wave function does not represent a pure spin
state, we may take advantage of the prevailing situation by noting that we may write

〈50:50�|H |50:50�
〉 =

〈(
1√
2

3� + 1√
2

1�

)
|H |

(
1√
2

3� + 1√
2

1�

)〉

= 1

2

〈3�|H |3�〉 + 1

2

〈3�|H |1�〉 + 1

2

〈1�|H |3�〉 + 1

2

〈1�|H |1�〉
= 1

2

(〈3�|H |3�〉 + 〈1�|H |1�〉)
(14.15)

where 3� and 1� represent the pure spin states (note that matrix elements of the Hamiltonian
between different spin states are zero, leading to the simplification on going from the second
to the third equality in Eq. (14.15)). The desired value in this process is the expectation
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value of the Hamiltonian for 1�, which does not have a single-determinantal description.
However, this expectation value is the only unknown in Eq. (14.15), because the expectation
value for the triplet may be computed from the alternative triplet wave function

3� = [b1(1)α(1)b2(2)α(2) − b1(2)α(2)b2(1)α(1)] (14.16)

which is the Sz = 1 single-determinantal triplet one usually works with in HF or KS-DFT
electronic structure codes. Thus, rearrangement of Eq. (14.15) indicates that the energy of
the open-shell singlet may be determined as

〈1�|H |1�〉 = 2
〈50:50�|H |50:50�

〉 − 〈3�|H |3�〉
(14.17)

where the expectation values on the right are readily computed from single-determinantal HF
or KS-DFT formalisms. This approach is known as the ‘sum method’. Although presented
here in the context of singlet and triplet states, it has been generalized to the construction
of Heisenberg spin ladders in arbitrarily complex systems, such as the iron–sulfur clusters
found in biological electron-transport systems (Noodleman et al. 1995).

To provide a specific example of the method, near UV experiments have led to assignments
of the vertical and adiabatic excitation energies for the 11Bg ← 11Ag transition in E-diazene
(HN=NH), where the 1Bg state is open-shell. Table 14.4 compares sum-method predictions at
the UHF and BLYP levels of theory to these experimental values, and also to published results
at the MRCI level of theory. For this system, the HF results are systematically too high, and
the DFT too low (cf. the sum method prediction for 1A2 phenylnitrene in Table 14.1), but
are competitive with the much more expensive MRCI results. Note that all three levels do
quite well at predicting the difference in vertical and adiabatic excitation energies.

The sum method is simple and fast, and it is an SCF approach, which can make it an
attractive option compared to other alternatives in some cases. However, it also has some
serious possible drawbacks. First, geometry optimization is tedious, since, from Eq. (14.17),
the gradients of the open-shell singlet will be the difference between twice the gradients of
the 50:50 system and the gradients of the triplet system, all at the same geometry. Secondly,
and more importantly, Eq. (14.15) is rigorously correct only when all three wave functions,
singlet, triplet, and 50:50, are written using the same MOs, in practice those that are SCF

Table 14.4 Energies (kcal mol−1) for the 11Bg ← 11Ag transition in
E-diazene

Level of theory Approach Vertical Adiabatic

UHF/cc-pVTZa sum method 75.3 65.3
spin annihilation 55.4 44.9

BLYP/cc-pVTZa sum method 64.9 56.1
spin annihilation 64.8 55.7

MRCI/DZPb 81.8 70.3
Experimentc 71.8 ± 2.3 61.8 ± 3.5

aLim et al. 1996.
bKim, Shavitt, and Del Bene 1992.
cBack, Willis, and Ramsay 1978.
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optimized for the 50:50 determinant. In the limit of the two unpaired electrons being non-
interacting (not only directly, but furthermore via polarization of the paired electrons) the
use of identical MOs poses no problems, but that is the rather trivial case of the open-shell
singlet being degenerate with the triplet (and thus also with the 50:50 wave function). When
the unpaired electrons do interact, the two-determinantal Sz = 0 triplet energy that would
be computed from the 50:50 MOs will be higher in energy than the Sz = 1 triplet energy
computed with its orbitals fully optimized in the usual SCF way and employed in Eq. (14.17).
This can contribute to significant error in unfavorable instances where the singlet and triplet
orbitals are very different from one another. Finally, if the 50:50 wave function, which is an
unrestricted wave function, shows significant spin contamination, then the use of the 50:50
orbitals to express the singlet and triplet wave functions in Eq. (14.15) will lead to their
spin contamination as well, again causing possibly significant errors when the Sz = 1 triplet
energy is used to replace the Sz = 0 triplet energy.

To reduce or eliminate spin contamination problems in unrestricted wave functions, spin
projection methods have been developed that annihilate the contributions of certain spin
states higher than the desired one. As derived in Appendix C, the PUHF energy for a wave
function that has had contamination from the next higher spin state annihilated is computed as

EPUHF = 〈�0|H |�0〉 +
∑

i〈�0|H |�i〉〈�i |As+1|�0〉
〈�0|As+1|�0〉 (14.18)

where �0 is the original spin-contaminated wave function, i runs over all doubly excited
determinants �i , and As+1 is the spin annihilation operator

As+1 = S2 − {(s + 1)[(s + 1) + 1]}
[s(s + 1)] − {(s + 1)[(s + 1) + 1]} (14.19)

where S2 is the usual total spin operator, s is the desired spin state, and s+1 is the next
higher spin state being annihilated.

In application to ‘typical’ UHF wave functions, the second term on the r.h.s. of Eq. (14.18)
provides a small correction that improves the estimate of the state energy for slightly contam-
inated cases. In principle, however, there is no reason the formalism cannot be applied to
a 50:50 wave function. The results of such an application to the already discussed diazene
excitation are listed in Table 14.4.

At the UHF level, the excitation energies from spin annihilation represent a fairly severe
underestimation of the excited-state energies, and disagree significantly with the sum method
results from that same level of theory. UHF spin annihilation is generally not a worthwhile
method to apply unless spin contamination effects are fairly small, which obviously is not
the case here.

At the DFT level of theory, spin annihilation in principle has no analog, since the correct
wave function for the KS density is not known (only the non-interacting KS wave function
from which a portion of the kinetic energy is evaluated is known, see Section 8.3). However,
Cramer et al. (1995) proposed a projected DFT (PDFT) procedure whereby the DFT energy
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of the mixed-state system is corrected by the same process employed in UHF theory, except
with determinants formed from the KS orbitals, i.e.,

EPDFT = 50:50EDFT +

∑
i

〈�0
KS|H |�i

KS〉〈�i
KS|As+1|�0

KS〉

〈�0
KS|As+1|�0

KS〉
(14.20)

where i now runs over both single and double excitations since Brillouin’s theorem no longer
guarantees as zero the expectation values of the Hamiltonian appearing in the sum on the
r.h.s. for singly excited determinants. This process applied to the diazene case of Table 14.4
gives energies almost identical to those determined from the sum method. In Table 14.1, the
PDFT energy computed for the 1A2 state of phenylnitrene overestimates this state’s energy
by about the same amount as the sum method underestimates it. Durant (1996) has also
demonstrated success in using the PDFT model to evaluate transition-state properties for
systems having substantial open-shell character.

The largest drawback of the spin annihilation procedure is similar to that of the sum
method. That is, while the spin-annihilated wave function which results from the application
of As+1 to the 50:50 antecedent is in principle spin pure, it is expressed in the MOs that were
optimized for the 50:50 case. These MOs minimize the energy of the contaminated state,
but not that of the spin pure state, and errors can be significant. Nevertheless, the speed of
the sum and projection methods, and their utility in many if not all instances, makes them
useful for rough applications prior to resort to more expensive and sophisticated models.

14.5 Transition Probabilities

In electronic spectroscopy, one wants to know not only the energy difference between distinct
electronic states but also the probability that a transition between them will take place
under appropriate circumstances. Thus, in the recording of a classic UV/Vis spectrum for a
molecule, the wavelengths of absorptions indicate the energetics of the transition, while the
intensities of the absorptions indicate their ‘allowedness’, or probability.

The simplest approach to understanding the radiation- (light-) induced transition between
electronic states is to invoke time-dependent perturbation theory. Thus, one starts from the
time-dependent Schrödinger equation

− h̄

i

∂�

∂t
= H� (14.21)

where h̄ is Planck’s constant over 2π , i is the complex number
√−1, and t is time. A

complete set of eigenfunctions for Eq. (14.21) is given by

�j = e−(iEj t/h̄)�j (14.22)

where the wave functions �j are the eigenfunctions of the time-independent Schrödinger
Eq. (4.2) having eigenvalues Ej (it is a simple and worthwhile exercise to verify that
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Eq. (14.22) is indeed an eigenfunction of Eq. (14.21)). Since the set of �j is complete,
any wave function for the system may be expressed as

� =
∑

k

cke
−(iEkt/h̄)�k (14.23)

where the normalized expansion coefficients c run over all possible eigenstates k.
We may consider the presence of a radiation field as a perturbation on the otherwise

time-independent H 0. Using the standard expression for the time-dependent electric field
contribution to the Hamiltonian for radiation having a wavelength in the UV/Vis light region
we have

H = H 0 + e0r sin(2πνt) (14.24)

where e0 is the amplitude of the electric field associated with the light of frequency ν and
r is the usual position operator (the sum of the i, j, and k operators in Cartesian space).
With a time-dependent Hamiltonian, Eq. (14.23) is still valid for the description of any wave
function for the system, except that the expansion coefficients c must also be considered to
be functions of t .

A spectroscopic measurement, from a quantum mechanical perspective, may thus be envi-
sioned as the following process. The system begins in some stationary state, in which case
all values of c in Eq. (14.23) are 0, except for one, which is 1. For simplicity, we will
consider the initial state to be the ground state, i.e., c0 = 1. Beginning at time 0, the system
is then exposed to radiation until time τ . During that time, the expansion coefficients will be
in a constant state of change until, with the disappearance of the radiation, the Hamiltonian
returns to being time-independent, at which point the expansion coefficients for � cease to
change. To the extent more than one coefficient is non-zero, the system exists in a superpo-
sition of states and the probability of any particular state k being observed by experiment,
determined from evaluation of 〈�|�〉, is simply c2

k .
To determine the latter probabilities, let us evaluate Eq. (14.21) for an arbitrary wave

function expressed in the form of Eq. (14.23)

− h̄

i

∂

∂t

∑
k

cke
−(iEkt/h̄)�k = [H 0 + e0r sin(2πνt)]

∑
k

cke
−(iEkt/h̄)�k (14.25)

which may be expanded on both sides by explicitly taking the time derivative on the left
and evaluating H 0 for the eigenfunctions on the right to

− h̄

i

∑
k

∂ck

∂t
e−(iEkt/h̄)�k +

∑
k

ckEke
−(iEkt/h̄)�k

=
∑

k

ckEke
−(iEkt/h̄)�k + e0r sin(2πνt)

∑
k

cke
−(iEkt/h̄)�k (14.26)
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If we cancel the equivalent sums on the left and right we are left with

− h̄

i

∑
k

∂ck

∂t
e−(iEkt/h̄)�k = e0r sin(2πνt)

∑
k

cke
−(iEkt/h̄)�k (14.27)

We now multiply on the left by �m and integrate, where m indexes the stationary state �

for which we are interested in measuring the probability of transition. This gives

− h̄

i

∑
k

∂ck

∂t
e−(iEkt/h̄)〈�m|�k〉 = e0 sin(2πνt)

∑
k

cke
−(iEkt/h̄)〈�m|r|�k〉 (14.28)

Note that the expectation value on the l.h.s. of Eq. (14.28) is simply δmk , because of the
orthogonality of the stationary-state eigenfunctions. Thus, only the term k = m survives, and
we may rearrange the equation to

∂cm

∂t
= − i

h̄
e0 sin(2πνt)

∑
k

cke
[i(Em−Ek)t/h̄]〈�m|r|�k〉 (14.29)

If we assume that our perturbation was small, and applied for only a short time, we may
further assume that the expansion coefficients on the r.h.s. of Eq. (14.29) have their initial
(ground-state) values. This leads to the further simplification

∂cm

∂t
= − i

h̄
e0 sin(2πνt)e[i(Em−E0)t/h̄]〈�m|r|�0〉 (14.30)

In order to determine cm at (and after) time τ , we must integrate t from 0 to τ , giving

cm(τ) = − i

h̄
e0

∫ τ

0
sin(2πνt)e[i(Em−E0)t/h̄]〈�m|r|�0〉dt

= 1

2ih̄
e0

[
ei(ωm0+ω)τ − 1

ωm0 + ω
− ei(wm0−ω)τ − 1

ωm0 − ω

]
〈�m|r|�0〉 (14.31)

where
ω = 2πν (14.32)

and

ωm0 = Em − E0

h̄
(14.33)

We now ask the question, for what values of m is |cm|2 large? Given a particular frequency
of radiation ω, the magnitude of cm will be large if ωm0 is close to ω, thereby making the
denominator in the second term in brackets very small (note that even when ωm0 is equal to
ω, the expansion coefficient is well behaved because of the way the numerator approaches
zero, cf. Section 10.5.2). This result is consistent with the notion that a photon of energy hν
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is absorbed in the transition between the two states, although it takes a more sophisticated
theoretical treatment to demonstrate this. However, this term fails to differentiate any one
state m from another, all states being predicted to undergo transitions with equal probability
at their respective frequencies.

It is the last term that accounts for differences in absorption probabilities. This term is the
expectation value of the dipole moment operator (see Section 9.1.1) evaluated over different
determinants. Its expectation value is referred to as the transition dipole moment.

The matrix elements rm0 are quite straightforward to evaluate. Before leaving them,
however, it is worthwhile to make some qualitative observations about them. First, the
Condon–Slater rules dictate that for the one-electron operator r, the only matrix elements
that survive are those between determinants differing by at most two electronic orbitals.
Thus, only absorptions generating singly or doubly excited states are allowed.

In addition, group theory can be used to assess when transition dipole moments must
be zero. The product of the irreducible representations of the two wave functions and the
dipole moment operator within the molecular point group symmetry must contain the totally
symmetric representation for the matrix element to be non-zero (note that, if the molecule
does not contain an inversion center, the operator r does not belong to any single irrep, except
for the trivial case of C1 symmetry; see Appendix B for more details). A consequence of this
consideration is that, for instance, electronic transitions between states of the same symmetry
are forbidden in molecules possessing inversion centers.

The derivation above may be generalized to wave functions other than electronic ones.
By evaluation of transition dipole matrix elements for rigid-rotor and harmonic-oscillator
rotational and vibrational wave functions, respectively, one arrives at the well-known selec-
tion rules in those systems that absorptions and emissions can only occur to adjacent levels,
as previously noted in Chapter 9. Of course, simplifications in the derivations lead to many
‘forbidden’ transitions being observable in the laboratory as weakly allowed, both in the
electronic case and in the rotational and vibrational cases.

As a final point, let us consider the transition not simply between electronic states, but
between wave functions described as products of (decoupled) electronic and vibrational
states. That is, we consider wave functions � of the form

� = �� (14.34)

where � is the electronic wave function of Eq. (14.22) and � is a vibrational wave function,
e.g., as defined by Eq. (9.40). If we carry out the same analysis as above, for radiation of
wavelengths that are far from regions associated with vibrational transitions (as UV/Vis is
from IR), then we find that Eq. (14.31) generalizes to

cm,n(τ ) = 1

2ih̄
e0

[
ei(ωm0+ω)τ − 1

ωm0 + ω
− ei(ωm0−ω)τ − 1

ωm0 − ω

]
〈�m|r|�0〉〈�m

n |�0
0〉 (14.35)

where n indexes the vibrational wave functions of electronic state m, and we have assumed
that the ground electronic state is also in its ground vibrational state. We now ask the question,
when is the overlap between the vibrational wave functions (the so-called Franck–Condon
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overlap) large? The rough rule of thumb is that ground-state vibrational wave functions have
their maximum amplitude near the equilibrium structure, while excited vibrational wave func-
tions have their maximum amplitudes near their turning points, which is to say where the PES
along a vibrational coordinate rises to roughly the vibrational energy (see also Figure 9.7).

This refines the situation depicted in Figure 14.2, which suggests that a vertical transition
occurs from the ground PES to the excited PES. More realistically, it occurs from the ground
vibrational level of the ground state (which does indeed usually have a wave function well
centered about the equilibrium structure) to any number of vibrational levels of the excited
state. However, the only vibrational wave function in the single coordinate depicted in
Figure 14.2 that is likely to have significant amplitude at the ground-state’s equilibrium
geometry is the one with its turning point at that geometry. As the excited electronic state in
this excited vibrational state has roughly the energy of the excited-state PES at the ground
state’s equilibrium geometry, the picture drawn in Figure 14.2 is quantitatively valid, if
somewhat opaque in justification (similar arguments can be made even for dissociative
excited states). The major remaining error in the figure is the one-half quantum of ZPVE that
is being ignored in the ground state for every coordinate that changes significantly between
the ground and excited states. However, two states rarely differ in more than a very small
number of coordinates, and this remaining error is typically no worse than that associated
with the computation of the state-energy difference. It can, in any case, be corrected for in
cases where treatments of increased quantitative accuracy are desired.

14.6 Solvatochromism

A surrounding condensed phase can have enormous impacts on the electronic spectroscopy
of a given molecule. Certain dye molecules are sufficiently sensitive to the nature of a
surrounding solvent that the color of their solutions can vary across the entire visible spectrum
depending on the particular solvent chosen. This solvent effect on spectroscopy is known as
solvatochromism.

The influence of solvent on UV/Vis absorption spectra is in some ways analogous to its
influence on reaction coordinates. In this case, it is not differential solvation of connected
stationary points that is of interest, but rather differential solvation of the PESs for different
electronic states (Figure 14.7). Solvatochromism, shown in Figure 14.7 as it affects vertical
absorption, derives from the differential solvation of the ground- and excited-state potential-
energy surfaces. The blue shift illustrated in this example results from the equilibrium free
energy of solvation for the ground state being larger in magnitude than �G∗ for the excited
state. Note that �G∗ is not the equilibrium free energy of solvation of the excited state
(which cannot be determined from this diagram, since the PES for the excited state in
equilibrium with solvent is not shown), nor even the non-equilibrium solvation free energy
of the excited state at the ground-state geometry, since it also includes effects associated
with the changing ground-state geometry at which the vertical excitation takes place.

The subtlety of the situation derives from the different timescales involved. If we restrict
our discussion to absorption, for the moment, the timescale of the absorption has already
been noted to be on the electronic scale – effectively infinitely fast from the point of view
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Figure 14.7 The dependence of solvatochromism on differential solvation of the ground- and
excited-state PESs

of nuclear motion. Thus, when we speak of the solvation of the excited state, at the point of
absorption the solvent is equilibrated to the charge distribution of the ground state, but its
nuclear motion is frozen on the absorption timescale, so it cannot reorganize until after the
fact. Thus, the solvation of the excited state is a non-equilibrium solvation.

Indeed, things are slightly more complicated, because the electrons of the solvent can
respond on the timescale of the absorption. Thus, in discussing solvent effects, it is helpful
to separate the bulk dielectric response of the solvent, which is a function of ε, into a
fast component, depending on n2 where n is the solvent index of refraction, and a slow
component, which is the remainder after the fast component is removed from the bulk. The
initially formed excited state interacts with the fast component in an equilibrium fashion,
but with the slow component frozen in its ground-state-equilibrium polarization. The fast
component accounts for almost the entire bulk dielectric response in very non-polar solvents,
like alkanes, and about one-half of the response in highly polar solvents.

Because the solvent is fully equilibrated to the ground state but not to the excited state,
it is often, but not always, the case that the ground state is better solvated than the excited
state, and thus most absorptions are blue-shifted (moved to higher energy) in polar solvents.
Applying identical arguments to the emission of a long-lived excited state, where the solvent
has equilibrated to the excited state and thus will not be equilibrated to an instantaneously
produced ground state, suggests that most spectroscopic emissions in polar solvents will be
red-shifted.

While the above discussion has focused primarily on electrostatic interactions between
solutes and polar solvents, experiment indicates that many absorptions in non-polar solutions
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are red-shifted. This appears not to be a polarization effect, but a manifestation of improved
dispersion interactions between the excited state, which because of its more highly excited
electron(s) tends to be more polarizable than the ground state, and the solvent. Differ-
ential hydrogen bonding interactions can also play an important role in situations where
solute–solvent interactions of this type are manifest.

Given the disparate nature of the physical interactions between the different electronic
states and the solvent, and the non-equilibrium nature of the solvation of at least one state
in the vertical process, theoretical models require a fairly high degree of sophistication in
their construction to be applicable to predicting spectroscopic properties in solution. This
requirement, coupled with the rather poor utility of available experimental data (most solution
spectra show very broad absorption peaks, making it difficult to assign vertical transitions
accurately in the absence of a very complex dynamical analysis), has kept most theory in
this area at the developers’ level. A full discussion is beyond the scope of an introductory
text, but we will briefly touch on a few of the key issues.

Continuum solvation models enjoy their usual advantage of efficiency, but the proper
computation of the reaction field for the excited state requires that first the slow component is
determined based on the ground-state charge distribution, and then the fast component based
on the excited state, the latter process being iterative in the usual SCRF sense (Aguilar,
Olivares del Valle, and Tomasi 1993; Mennucci, Cammi, and Tomasi 1998; Cossi and
Barone 2000). In the absence of a surrounding solvent shell, however, differential dispersion
and hydrogen bonding interactions must be accounted for in an ad hoc fashion after this
accounting for polarization (Rauhut, Clark, and Steinke, 1993; Li, Cramer, and Truhlar 2000).

QM/MM approaches where the solute is QM and the solvent MM are in principle useful
for computing the effect of the slow reaction field (represented by the solute point charges)
but require a polarizable solvent model if electronic equilibration to the excited state is
to be included (Gao 1994). With an MM solvent shell, it is no more possible to compute
differential dispersion effects directly than for a continuum model. An option is to make
the first solvent shell QM too, but computational costs for MC or MD simulations quickly
expand with such a model. Large QM simulations with explicit solvent have appeared using
the fast semiempirical INDO/S model to evaluate solvatochromic effects, and the results
have been promising (Coutinho, Canuto, and Zerner 1997; Coutinho and Canuto 2003).
Such simulations offer the potential to model solvent broadening accurately, since they can
compute absorptions for an ensemble of solvent configurations.

14.7 Case Study: Organic Light Emitting Diode Alq3

Synopsis of Halls and Schlegel (2001) ‘Molecular Orbital Study of the First Excited State
of the OLED Material tris(8-hydroxyquinoline)aluminum(III)’.

Many modern display technologies make use of organic light emitting diodes. These
devices typically include two layers, at least one of which is organic, through which
electrons and holes propagate. When a hole meets an electron in a single layer or at an
interface, the recombination leads to a singlet exciton that fluoresces in the light-generating
event. One small organic molecule that has proven to be useful in this regard is tris-(8-
hydroxyquinoline)aluminum(III), also called Alq3 (Figure 14.8).
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Figure 14.8 Structure of Alq3 with only one ligand drawn in full. The two states involved
in the photoemission are computed to be highly localized to a single aryl ligand, and indeed
to resemble the analogous HOMO and LUMO of 8-hydroxyquinoline (inset at right). How
are issues of molecular geometry and absorption/emission spectroscopy related? What levels
of theory would be expected to be most successful, and economical, for predicting geometry,
or absorption/emission, or both? How does the inorganic aluminum atom complicate things if
at all?

Halls and Schlegel approached Alq3 with an interest primarily in its excited-state prop-
erties. Prior studies on the ground state had provided some information about its molecular
geometry, vibrational spectroscopy, and vertical absorption spectroscopy.

Geometry optimization of excited states can be tedious since analytic derivatives are
available for a more limited range of theories than is true for ground states. When the
excited state cannot be described at the single-configuration SCF level (i.e., it is not the
lowest energy state of some irrep of the molecular point group), then the next simplest
approach is CIS, for which analytic derivatives are indeed available. The size of Alq3
presents some basis set limitations, and Halls and Schlegel decided to employ 3-21+G∗∗.
[Note that it is not entirely clear what is meant by this basis set name, since usually the first
‘*’ is really ‘(∗)’, and means polarization only on second row atoms (see Section 6.2.3),
while the second ‘*’ presumably implies p functions on H atoms; however, it would be
very unbalanced to have polarization functions only on Al and H, so it seems likely that
the authors used first-row polarization functions as well, perhaps borrowing them from the
6-31G(d) basis set, where such functions have been defined.] To check the likely utility of
this basis set, they compared it to a large polarized valence triple-ζ basis set for the S1

excited state of simple 8-hydroxyquinoline (which was small enough to permit geometry
optimization to be carried out with the larger basis). Differences in the structures predicted
using the two basis sets were sufficiently small that Halls and Schlegel were confident
about using 3-21+G∗∗ for Alq3.

However, while the CIS level has been shown in many instances to be fairly good for
optimizing excited-state geometries, it is not particularly good in this system for excitation
energies, as shown in Table 14.5. The ab initio CIS results drastically overestimate the
absorption energies in every case, irrespective of basis-set quality. Note, however, that
the CIS/INDO/S results do very well indeed, particularly with the largest window of 15
occupied and 15 virtual orbitals used in generating the singly excited states. This illustrates
how much one can achieve with careful parameterization.

The TDDFT results, in this case using the B3LYP functional, are the most satisfactory
of the non-empirical results. Comparison of 3-21+G∗∗ results with previously published
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Table 14.5 Measured and predicted absorption and emission energies (eV)
for 8-hydroxyquinoline and Alq3

Process Level of theory 8-hydroxyquinoline Alq3

Absorption CIS/3-21+G∗∗ 5.35 4.68
CIS/pVTZ 5.80
CIS/INDO/S (12x12) 3.48
CIS/INDO/S (15x15) 3.83 3.28
TD-B3LYP/3-21+G∗∗ 3.76 3.00
TD-B3LYP/6-31G(d) 3.72 2.90
Experiment 3.84 3.20

Emission CIS/3-21+G∗∗ 3.58
TD-B3LYP/3-21+G∗∗ 2.30
Experiment 2.40

6-31G(d) results again would seem to indicate that the former basis set may be regarded
as adequate.

With respect to emission, the geometry computed for the excited-state Alq3 structure at
the CIS/3-21+G∗∗ level was found to be significantly different from that for the ground
state. This leads to a Stokes shift of 0.8 eV, which is not particularly well reproduced at
the CIS level but is quite accurately predicted at the TD-B3LYP level.

Having obtained good agreement with experiment for the various spectroscopic data,
Halls and Schlegel go on to analyze the MOs involved in the photoluminescence. They
find that the orbitals involved are highly localized on a single one of the three aryl ligands
in Alq3, and that these orbitals are quite similar to those involved in the S0 → S1 absorp-
tion/emission of 8-hydroxyquinoline itself. They also express the difference between the
excited-state geometry and the ground-state geometry of Alq3 in terms of the normal modes
(this procedure is in essence a multilinear regression involving displacement vectors). They
find that a particular normal mode having high intensity in the vibrational spectrum makes
a significant contribution in this analysis, thereby rationalizing observations of vibrational
structure in the absorption and emission spectra of Alq3 under matrix isolation conditions.
They carry out their vibrational analysis using BLYP/6-31G(d) frequencies, as these were
found to be in very good agreement with the experimental ground-state IR spectrum.

The work of Halls and Schlegel illustrates particularly effectively how different levels
of theory may be used for studying different aspects of a complex chemical problem.
Furthermore, repeated comparisons of theoretical predictions to experimental measurements
in order to validate the chosen levels of theory provides solid support for the quality of
further predictions using those levels.

Bibliography and Suggested Additional Reading

Aguilar, M. A. 2001. ‘Separation of the Electric Polarization into Fast and Slow Components: A
Comparison of Two Partition Schemes’ J. Phys. Chem. A, 105, 10 393.

Cave, R. J., Burke, K., and Castner, E. W., Jr. 2002. ‘Theoretical Investigation of the Ground and
Excited States of Coumarin 151 and Coumarin 120’ J. Phys. Chem. A, 106, 9294.



516 14 EXCITED ELECTRONIC STATES

Ciofini, I. and Daul, C. A. 2003. ‘DFT Calculations of Molecular Magnetic Properties of Coordination
Compounds’, Coord. Chem. Rev., 238, 187.

Foresman, J. B., Head-Gordon, M., Pople, J. A., and Frisch, M. 1992. ‘Toward a Systematic Molecular
Orbital Theory for Excited States’ J. Phys. Chem., 96, 135.

Jensen, F. 1999. Introduction to Computational Chemistry , Wiley: Chichester.
Koch, W. and Holthausen, M. C. 2000. A Chemist’s Guide to Density Functional Theory , Wiley-VCH:

Weinheim.
Krylov, A. I., Slipchenko, L. V., and Levchenko, S. V. ‘Breaking the Curse of the Non-dynamical

Correlation Problem: the Spin–Flip Method’, ACS Symp. Ser., in press.
Levine, I. N. 2000. Quantum Chemistry , 5th Edn., Prentice Hall: New York.
Reichardt, C. 1990. Solvents and Solvent Effects in Organic Chemistry , VCH: New York.
Yarkony, D. R. 1998. ‘Conical Intersections: Diabolical and Often Misunderstood’, Acc. Chem. Res.,

31, 511.
Zerner, M. C. 1996. ‘Intermediate Neglect of Differential Overlap Calculations on the Electronic

Spectra of Transition Metal Complexes’, in Metal–Ligand Interactions , Russo, N. and Salahub,
D. R., Eds., Kluwer: Dordrecht, 493.

Ziegler, T., Rauk, A., and Baerends, E. J. 1977. Theor. Chim. Acta , 43, 261.

References
Adamo, C. and Barone, V. 1999. Chem. Phys. Lett., 314, 152.
Aguilar, M. A., Olivares del Valle, F. J., and Tomasi, J. 1993. J. Chem. Phys., 98, 7375.
Autschbach, J., Jorge, F. E., and Ziegler, T. 2003. Inorg. Chem., 42, 2867.
Back, R. A., Willis, C., and Ramsay, D. A. 1978. Can. J. Chem., 56, 1575.
Beratan, D., Kondru, R. K., and Wipf, P. 2002. ACS Symp. Ser., 810, 104.
Bulliard, C., Allan, M., Wirtz, G., Haselbach, E., Zachariasse, K. A., Detzer, N., and Grimme, S. 1999.

J. Phys. Chem. A, 103, 7766.
Casida, M. E., Casida, K. C., and Salahub, D. R. 1998. Int. J. Quantum Chem., 70, 933.
Casida, M. E., Gutierrez, F., Guan, J., Gadea, F.-X., Salahub, D. R., and Daudey, J. P. 2000. J. Chem.

Phys., 113, 7062.
Cossi, M. and Barone, V. 2000. J. Phys. Chem. A, 104, 10614.
Coutinho, K. and Canuto, S. 2003. J. Mol. Struct. (Theochem), 632, 235.
Coutinho, K., Canuto, S., and Zerner, M. 1997. Int. J. Quantum Chem., 65, 885.
Cramer, C. J., Dulles, F. G., Giesen, D. J., and Almlöf, J. 1995. Chem. Phys. Lett., 245, 165.
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15
Adiabatic Reaction Dynamics

15.1 Reaction Kinetics and Rate Constants

Consider an arbitrary equilibrium system

A + B + C + · · · −−−⇀↽−−− · · · + X + Y + Z (15.1)

where no particular stoichiometry is implied. When the system is displaced from equilibrium,
by addition of more of a particular species, by a change in temperature and/or pressure, or
by any other influence, empirical observation has shown that the rate at which equilibrium
is reestablished may be expressed as

rate(t) = kφ(t)
[A]a[B]b[C]c · · ·
· · · [X]x[Y]y[Z]z

(15.2)

where kφ is a phenomenological rate constant (distinguished from an elementary rate constant
as defined later on), [W] represents the concentration of species W (usually expressed in
units of molarity or partial pressure), and each concentration term has associated with it an
exponent that is sometimes referred to as the ‘molecularity’ of the species. Often, but not
always, molecularities have integral values, including zero. Note that since we are measuring
a return to equilibrium, all concentration terms are functions of time t , as are kφ and the rate
itself.

The a priori prediction of all of the variables appearing on the r.h.s. of Eq. (15.2) is
a challenging task, to say the least. This is particularly true because the equilibrium of
Eq. (15.1) may involve the simultaneous operation of a large number of individual chemical
reactions, with some possibly involving very low concentrations of reactive intermediates,
the presence of which may be difficult to establish experimentally. In order to make progress,
a critical simplification is to break the overall process down into so-called elementary steps.
To simplify matters a bit, we will consider only adiabatic reaction steps, that is, reactions
taking place on a single PES without any change in electronic state (the topic of non-adiabatic
dynamics is discussed briefly in Section 15.5). For practical purposes, there are only two
kinds of elementary reactions: unimolecular and bimolecular.

Essentials of Computational Chemistry, 2nd Edition Christopher J. Cramer
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09181-9 (cased); 0-470-09182-7 (pbk)
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15.1.1 Unimolecular Reactions

The simplest unimolecular reaction may be expressed in equilibrium form as

A
k1−−−⇀↽−−−
k−1

B (15.3)

where A and B are isomeric, e.g., conformationally or constitutionally. The unimolecular
rate constants above and below the equilibrium arrows are associated with the forward and
reverse steps in the equilibrium process. Thus, the rate at which A is converted into B is
k1[A] while the rate at which B is converted into A is k−1[B]. These rate constants truly are
‘constants’, i.e., they are independent of time.

Note that at equilibrium, the rate at which A is converted into B must be exactly equal to
the rate at which B is converted into A, i.e., the system is stationary with respect to reactant
and product concentrations. Thus

k1[A]eq = k−1[B]eq (15.4)

This may be rearranged to yield

k1

k−1
= [B]eq

[A]eq

= Keq (15.5)

where Keq is the equilibrium constant for Eq. (15.3). So, it is a straightforward task to
measure the ratio of the elementary rate constants, but how is any one measured individually?

If we consider the system perturbed from equilibrium – let us suppose that there is an
excess of A – then the rate of return to equilibrium may be expressed either as the rate of
disappearance of A, i.e., −d[A]/dt , or as the rate of appearance of B, i.e., d[B]/dt . Using
the first choice, we may write

−d[A]

dt
= k1[A] − k−1[B] (15.6)

If the second term on the r.h.s. can be ignored, either because k−1 � k1 (a so-called ‘irre-
versible’ reaction), or because we start with [A] � [B] and only observe the system over a
time frame where that relationship continues to hold, then we may rearrange Eq. (15.6) to
give the first-order rate expression

−d[A]

[A]
= k1dt (15.7)

where ‘first order’ implies that the sum of the exponents for concentration terms on the r.h.s.
of the general rate expression written in the form of Eq. (15.2) is one. Integration of both
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sides from time 0 to time τ leads to

ln
(

[A]0

[A]τ

)
= k1τ (15.8)

Thus, experimentally, one plots the logarithm of the concentration ratio against time under
conditions where Eq. (15.7) holds in order to determine k1. The reverse rate constant k−1

may either be determined analogously, or from Eq. (15.5) once k1 is known.
Note that for a first-order reaction, the time required for the reactant concentration to drop

by some constant factor is a simple function of the rate constant. Thus, for instance, the half-
life τ1/2, which is the time required such that [A]τ1/2 = 1

2 [A]0 for any starting concentration,
may be determined from Eq. (15.8) to be k−1

1 ln 2.
Fragmentation is another possible unimolecular reaction. A fragmentation reaction may

be expressed as

A
k1−−−⇀↽−−−
k−1

B + C (15.9)

(in principle, fragmentations involving more than two products all of which are produced
simultaneously are possible, but examples are very rare). The rate for disappearance of A
when in excess of its equilibrium value is

−d[A]

dt
= k1[A] − k−1[B][C] (15.10)

The only difference from an experimental viewpoint between Eqs. (15.6) and (15.10) is that
Eqs. (15.7) and (15.8) can now be made to apply by ensuring that either one (or both) of B
and C have vanishingly small concentrations over the course of the rate measurement.

15.1.2 Bimolecular Reactions

The opposite of a fragmentation reaction is a condensation reaction, i.e.,

A + B
k1−−−⇀↽−−−
k−1

C (15.11)

Note that in practice the abstract species A and B may themselves already be molecules
or supermolecules formed from prior condensations, but simple probability arguments make
condensation reactions simultaneously involving more than two species impossible under
most sets of experimental conditions. The rate law associated with eq. 15.11 is

−d[A]

dt
= k1[A][B] − k−1[C] (15.12)

where k1 is a second-order rate constant because it multiplies a set of concentrations whose
exponents sum to 2. The simplest evaluation of k1 proceeds by arranging for a vanishingly
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small concentration of C over the course of the measurement (or choosing an irreversible
reaction) and a vast excess of B. In that case, the rate expression becomes

−d[A]

[A]
= k∗

1dt (15.13)

which is identical to Eq. (15.7) except that k∗
1 , the so-called pseudo-first-order rate constant

which may be measured in exactly the fashion already described above for a normal first-
order rate constant, is the product of the second-order rate constant k1 and the effectively
constant [B]0 when B is in excess.

Bimolecular reactions having more products than the single species produced from a
condensation are also possible, and their rate laws are constructed and measured in a fashion
analogous to Eqs. (15.12) and (15.13). Note that the special case of a bimolecular reaction
involving two molecules of the same reactant has a rate law that is particularly simple to
integrate and work with.

15.2 Reaction Paths and Transition States

Theory may play two particularly important roles in rationalizing and predicting chemical
reaction dynamics. As noted in the last section, the first step to understanding the dynam-
ical behavior of a complex chemical system is breaking down the overall system into its
constituent elementary processes. From a theoretical standpoint, the likely importance of
various processes may be qualitatively assessed from the potential energy surfaces of puta-
tive reactions. Reactions with very high barriers will be less likely to play an important role,
while low-barrier reactions will be more likely to do so.

Moreover, the PES helps to define the scope of each elementary reaction. Thus, for
instance, a bimolecular condensation that involves the formation of two new bonds between
the reacting species may either proceed in a concerted fashion, with only a single predicted
TS structure, or it may proceed as a stepwise process with two TS structures; the stepwise
process is really two elementary reactions – first a condensation and then a unimolecular
rearrangement.

To say that an overall process involves two different TS structures presupposes, however,
some sort of trajectory that the reacting system maps out on the PES. In general, when
chemists think of a system moving on a PES, they tend to think about a particular path called
the minimum-energy path (MEP) or sometimes the intrinsic reaction coordinate (IRC). The
MEP is the path downwards from a saddle point to a minimum that would be followed by
a ball rolling on a surface if its velocity were infinitely damped at every point; an example
of such a path is given in Figure 1.4. When the potential energy surface is expressed in
mass-weighted coordinates, the MEP is also the path that follows the steepest gradient at
every point. The mass-weighted Cartesian coordinates for an atom are simply the Cartesian
coordinates scaled by the square root of the atomic mass. Mass-weighted internal coordinates
can be generated by diagonalization of the mass-weighted Cartesian coordinate force constant
matrix. This coordinate system is a very convenient one in which to work since the gradients
for many electronic structure methods are available to facilitate the following of the MEP.
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It is worth digressing for a moment to note that following an MEP is often crucial to
understanding the nature of a TS structure. Sometimes, when a molecule has a single imag-
inary frequency, visualization of the corresponding normal mode does not necessarily make
it obvious what the reaction coordinate is. It can often happen that the TS structure that
has been located corresponds to some process other than the one of interest, e.g., a TS
structure for the internal rotation of a methyl group may be found when the desired TS
structure was for some bond-making or bond-breaking process. In such a case, following
the MEP will lead, in each direction, to the ultimate minimum energy structures connected
by the TS structure. On complex potential energy surfaces, such connections can be critical
to understanding the overall topology of the PES (see, for instance, Gustafson and Cramer
1995).

Although the MEP and its connection to TS structure(s) is tremendously useful as a
conceptual tool, it can also be somewhat misleading to the extent that it focuses analysis on
the PES itself. It should always be kept in mind that the equilibria and kinetics of reacting
systems are nearly always governed by the free energy of populations of molecules, and not
the potential energy of single molecules. To the extent the free energy describes a thermal
distribution of particles composing the reacting system, one may think of the system as a
cloud hovering over the PES, with the density of the cloud thinning as it rises according to
Boltzmann statistics. Within the cloud, individual molecules may be exchanging energy with
one another to rise and fall relative to the PES, but the net distribution remains dictated by
temperature. A reacting system may be thought of as a cloud over the PES headed towards
a mountain pass whose saddle point is the TS structure. However, the passage of the cloud
over the pass need by no means take place directly over the TS structure. Depending on
how wide the pass is and how tall the cloud is, many cloud particles may be able to pass
arbitrarily far to the left and right of the TS structure (when the pass is very narrow one
says that the reaction has an entropic bottleneck, meaning that little variation in degrees of
freedom other than the reaction coordinate is permitted).

So, while the TS structure, by virtue of being a stationary point on the PES, can be
informative about the height of the pass, and local topology (by Taylor expansion of the
surface about the stationary point), it is only one representative of the population of molecules
passing from reactants to products. As such, one should be rather careful not to confuse the
TS structure, which is the stationary point, with the transition state, which may be somewhat
more rigorously defined for an N -atom system as a surface having 3N − 7 degrees of
freedom (i.e., one less than the reactants) through which the reactive flux is maximized. That
is, the ratio of the number of molecules crossing the surface in the direction reactants →
products to the number crossing in the opposite direction in a given time interval is maximal.
To make the distinction between the TS structure and the transition state more clear, it is
helpful to return to a somewhat older term for the latter, namely, the ‘activated complex’.
The remainder of this chapter will hew to this distinction as closely as possible.

Returning to kinetics, while theory can be advantageously used to decompose a complex
system into its constituent series of elementary reactions, we have not yet described any
relationship between a theoretical quantity associated with the individual elementary reactions
and their forward and reverse rate constants. It is axiomatic that reactions with high-energy
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TS structures must proceed more slowly than reactions with low-energy TS structures, but a
more quantitative analysis requires that we invoke more sophisticated models describing the
relationship between the properties of the activated complex and kinetics. Of such models,
the most versatile is transition-state theory (TST).

15.3 Transition-state Theory

15.3.1 Canonical Equation

The fundamental equations of transition-state theory may be derived in a number of different
ways. Presented here is a somewhat less rigorous derivation that has the benefit of being
pleasantly intuitive. Other derivations may be found in the sources listed in the bibliography
at the end of the chapter, or in references therein.

Consider the simple unimolecular reaction of Eq. (15.3), where the objective is to compute
the forward rate constant k1. Transition-state theory supposes that the nature of the activated
complex, A‡, is such that it represents a population of molecules in equilibrium with one
another, and also in equilibrium with the reactant, A. That population partitions between
an irreversible forward reaction to produce B, with an associated rate constant k‡, and
deactivation back to A, with a (reverse) rate constant of kdeact. The rate at which molecules
of A are activated to A‡ is kact. This situation is illustrated schematically in Figure 15.1.
Using the usual first-order kinetic equations for the rate at which B is produced, we see that

k1[A] = k‡[A‡] (15.14)

kact k‡
A B

Reaction coordinate

E

A‡
kdeact

Figure 15.1 The nature of a unimolecular reaction within the framework of transition-state theory



15.3 TRANSITION-STATE THEORY 525

As we seek an expression for k1, we may rearrange this to

k1 = k‡[A‡]

[A]

= k‡K
‡ (15.15)

where K‡ is the equilibrium constant between the activated complex and the reactants. Using
the usual relationship between free energy and the equilibrium constant, we may write

K‡ = e−(G‡−GA)/kBT (15.16)

where the difference in free energy between the activated complex and the reactants is referred
to as the activation free energy, �G‡. Using the thermodynamic concepts of Chapter 10 (see
Eqs. (10.1) and (10.3)–(10.6)), we may write the free energy of a species as

G = U0 + PV + kBT ln Q (15.17)

where Q is the partition function. Combining Eqs. (15.16) and (15.17) we may write.

K‡ = e−[(U‡,0−PV‡−kBT ln Q‡)−(UA,0−PVA−kBT ln QA)]/kBT

= Q‡

QA
e−(U‡,0−UA,0)/kBT e−(PV‡−PVA)/kBT

≈ Q‡

QA
e−(U‡,0−UA,0)/kBT (15.18)

Assuming that PV changes are negligible in activation of A leads to the final line of
Eq. (15.18), and this assumption is usually quite reasonable.

If we combine Eqs. (15.15) and (15.18) we have

k1 = k‡
Q‡

QA
e−(U‡,0−UA,0)/kBT (15.19)

Note that the zero-point-energy-including difference in internal energies between A and A‡

in the exponential term is easily computable from an electronic structure calculation (for the
electronic energy) and a frequency calculation (to determine the ZPVE) for the minimum
energy and TS structures corresponding to A and A‡, respectively. In addition, the availability
of frequencies for A permits ready computation of QA, as described in Chapter 10. Some
attention needs to be paid, however, to the nature of the partition function for the activated
complex, Q‡.

Following up on the discussion in Section 15.2 about the nature of the activated complex,
the TS structure should be recognized as a species that is a minimum in 3N − 7 degrees of
freedom – the ‘missing’ degree of freedom is the reaction coordinate. Thus, we may readily
define the electronic, translational, and rotational components of the partition function asso-
ciated with the TS structure in the usual way. For the vibrational component, we will separate
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out the partition function for the reaction coordinate degree of freedom (see Eq. (10.28)) and
write

k1 = k‡

1 − e−hω‡/kBT

Q‡

QA
e−(U‡,0−UA,0)/kBT (15.20)

where Q‡ is the reduced partition function over the 3N − 7 bound degrees of freedom and
ω‡ is the ‘vibrational frequency’ associated with the reaction coordinate. If we use a power
series expansion for the exponential function of ω‡ on the r.h.s. of Eq. (15.20), truncating
after the first two terms, we have

k1 = k‡

1 −
(

1 − hω‡

kBT

) Q‡

QA
e−(U‡,0−UA,0)/kBT

= k‡kBT

hω‡

Q‡

QA
e−(U‡,0−UA,0)/kBT (15.21)

Notice that the only two unknowns remaining are k‡ and ω‡. In this case, the vibrational
frequency ω‡ should not be thought of as the imaginary frequency that derives from the
standard harmonic oscillator analysis, but rather the real inverse time constant associated
with motion along the reaction coordinate. However, it is exactly motion along the reaction
coordinate that converts the activated complex into product B. That is, k‡ = ω‡. Eliminating
their ratio of unity from Eq. (15.21) leads to the canonical TST expression

k1 = kBT

h

Q‡

QA
e−(U‡,0−UA,0)/kBT (15.22)

For the bimolecular reaction case involving reactants A and B, the derivation above gener-
alizes to

k1 = kBT

h

Q‡

QAQB
e−(U‡,0−UA,0−UB,0)/kBT (15.23)

A point of occasional confusion arises with respect to units. In Eq. (15.22), all portions
are unitless except for kBT /h, which has units of sec−1, entirely consistent with the units
expected for a unimolecular rate constant. In Eq. (15.23), the same is true with respect to
the r.h.s., but a bimolecular rate constant has units of concentration−1 sec−1, which seems
paradoxical. The point is that, as with any thermodynamic quantity, one must pay close
attention to standard-state conventions. Recall that the magnitude of the translational partition
function depends on specification of a standard-state volume (or pressure, under ideal gas
conditions). Thus, a more complete way to write Eq. (15.23) is

k1 = kBT

h

Q‡

QAQB

Qo
AQo

B

Q‡,o
e−(U‡,0−UA,0−UB,0)/kBT (15.24)

where the various Qo terms have values of one and carry the standard-state volume units
used for the translational partition function (the same generalization applies to Eq. (15.22),
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but it is sufficiently rare for a unimolecular reaction to have different standard-state volumes
for the activated complex and the reactant that one rarely gives thought to this point). Care
must be taken then such that if the molecular translational partition function is computed
for a volume of, say, 24.5 L (the volume occupied by one mole of an ideal gas at 298 K
and 1 atm pressure), and the rate constant is in, say, molecules cm−3 sec−1, the appropriate
conversion in standard states is made.

In a very general form, then, we have the canonical expression

k = kBT

h

Q‡

QR

Qo
R

Q‡,o
e−�V ‡/kBT (15.25)

where R refers generically to either unimolecular or bimolecular reactants, and �V ‡ is the
difference in zero-point-including potential energies of the reactants and TS structure. When
working in molar quantities, Eq. (15.25) becomes

k = kBT

h

Q‡

QR

Qo
R

Q‡,o
e−�V ‡/RT (15.26)

in which case one often absorbs the standard-state partition functions back into the expo-
nential to write

k = kBT

h
e−�Go,‡/RT (15.27)

where �Go,‡ is referred to as the free energy of activation. Note that using Eq. (10.6) we
may also write

k = kBT

h
e−�H o,‡/RT e�So,‡/R (15.28)

15.3.1.1 Relation between theory and experiment

Operationally, the theoretical computation of a rate constant using TST typically employs
Eq. (15.26). One locates all necessary stationary points – one TS structure and one or two
minima – and evaluates their energies and their partition functions under the rigid-rotor-
harmonic-oscillator approximation. Experiment, on the other hand, measures rate constants
according to the methodologies outlined in Section 15.1, typically with the goal of deriving
such quantities as the free energy of activation. However, the experimental data may be
analyzed in a variety of ways, and it is critically important to ensure experimental/theoretical
comparisons are made under consistent conditions.

One analysis of experimental data involves carrying out rate constant measurements at a
series of temperatures, and then plotting ln(k/T ) against 1/T (a so-called Eyring plot). We
may rearrange Eq. (15.28) to

ln
(

k

T

)
= −�H o,‡

RT
+ �So,‡

R
+ ln

(
kB

h

)
(15.29)
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which shows that the slope of such a plot should be −�H o,‡/R and the intercept is a
function of �So,‡/R. With these quantities in hand, the activation free energy may be easily
computed for any temperature within the range of the data points and compared directly to a
theoretical computation of this quantity (extrapolation outside the range of the data points can
be dangerous because enthalpy and entropy are themselves both dependent on temperature, so
it represents an approximation to assume their constancy over a given measurement range).

An alternative analysis having a long history, however, is to simply plot ln k vs. 1/T , this
procedure being motivated by the empirically derived Arrhenius expression

k = Ae−Ea/RT (15.30)

where A is the so-called pre-exponential factor and Ea is the Arrhenius activation energy.
Rearranging Eq. (15.30) readily illustrates that a plot of ln k vs. 1/T will have slope −Ea/R

and intercept ln A. Simple algebra allows us to express the relationships between the Arrhe-
nius quantities and the thermodynamic quantities as

Ea = �H o,‡ + RT (15.31)

and

A = kBT

h
e(1+�So,‡/R) (15.32)

Because these two different conventions exist (as well as other conventions, e.g., one based
on collision theory, that will not be discussed here), when the term ‘activation energy’ is used
without qualification, it is critical for accurate comparisons that it be established whether
this term refers to an Arrhenius activation energy, a TST activation free energy, a difference
in stationary-point potential energies, a difference in zero-point-including stationary-point
potential energies, etc. The term ‘barrier’ is also often used ambiguously, and care should
be taken to establish its meaning in a given situation.

One point of interest deriving from the equations of TST (and Arrhenius theory) is that
the upper limit for the 298 K rate constant of a unimolecular reaction that takes place with
zero activation energy (of whatever sort) is roughly 1013 sec−1. This is, in some sense, a
conceptually obvious result since that is on the order of a molecular vibrational frequency,
which is thought of as the ‘mechanism’ by which a transition state goes to its products.

15.3.1.2 Kinetic isotope effects

As noted in Chapter 10, the zero-point energy, and the translational, rotational, and vibra-
tional partition functions all depend on the isotopic masses of the atoms. Thus, so too does
the rate constant for a given reaction. A difference in rates observed for two different isotopi-
cally substituted reactants is referred to as a kinetic isotope effect (KIE), usually expressed
as a ratio of rates. Isotope effects are divided into two classes: primary isotope effects refer
to situations where the isotopic substitution involves one of the two atoms involved in a
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breaking (or making) bond, while secondary isotope effects cover all other possibilities. In
general, then, a KIE may be computed as

klight

kheavy
=

Q
‡
light

QR,light
e
−�V

‡
light/kBT

Q
‡
heavy

QR,heavy
e
−�V

‡
heavy/kBT

= Q
‡
light

Q
‡
heavy

QR,heavy

QR,light
e−(�ZPVE‡

light−�ZPVE‡
heavy)/kBT (15.33)

From a theoretical perspective, isotope effects are fairly trivially computed. The stationary
points on the PES and their electronic energies are independent of atomic mass, as are
the molecular force constants. Thus, one simply needs to compute the isotopically depen-
dent zero-point energies and translational, rotational, and vibrational partition functions, and
evaluate Eq. (15.33).

Primary isotope effects tend to be dominated by the difference in zero-point energies, as
illustrated in Figure 15.2. Because the reaction coordinate is the breaking bond, and because
there is little or no ZPVE associated with this mode in the TS structure, the full difference in
reactant ZPVEs enters into the difference in zero-point-including potential energy barriers.

1
2 hwheavy

1
2 hwlight

∆V‡
heavy ∆V‡

light

E

Reaction coordinate

Figure 15.2 The dominant contribution to a primary KIE is the differential loss of zero-point vibra-
tional energy in the reaction coordinate when an isotopically substituted bond is broken. Because the
light isotopomer has a higher vibrational frequency, it has more ZPVE, and a lower potential energy
of activation (thus primary isotope effects expressed as klight/kheavy are essentially always greater than
1). Effects from other normal modes are ignored in this diagram (cf. Figure 15.3)
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To a rough approximation, then, in the limit of a fully broken bond in the TS structure, the
primary KIE is

klight

kheavy
≈ e

− 1
2 h(ω

R,‡
heavy−ω

R,‡
light)/kBT

(15.34)

where ωR,‡ refers to the frequency in the reactants of the bond being broken in the TS structure.
One of the largest possible differences in isotopic frequencies involving elements occurs for
hydrogen/deuterium substitutions, with X–H bonds typically having stretching frequencies
about 35% larger than X–D bonds. Using this relationship and a light isotope frequency of
3100 cm−1, Eq. (15.34) suggests that the maximum primary KIE for a hydrogen/deuterium-
substituted system at 298 K is about 7. Of course, if the bond is not fully broken in the
TS structure, smaller values may be observed/computed. Larger values may also be observed,
owing to quantum mechanical tunneling, as described in Section 15.3.3. When heavier elements
are used, isotope effects become smaller, but a number of experimental techniques have proven
to be sufficiently accurate to measure very small differences (see, for instance, Keating et al.
1999).

Secondary KIEs are also typically much smaller than primary KIEs, because the isotopi-
cally substituted modes are not lost in the TS structure (see Figure 15.3). In addition,
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Figure 15.3 Secondary KIEs are associated with normal modes other than the reaction coordinate,
one of which is shown in this diagram. The heavy and light vibrational frequencies both change on
going from the reactant (R) to the TS structure (‡); because in this example the mode is ‘tighter’ in
the TS structure, the difference between the heavy and light ZPVEs increases, and this causes the
potential energy of activation to be larger for the light isotopomer than the heavy one (an example of
an inverse secondary KIE). In a real many-atom system there are potentially a large number of modes
that will contribute to the secondary KIE, some in a normal fashion and some in an inverse fashion
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secondary KIEs can be ‘inverse’, which is to say that the light atom rate over the heavy
atom rate can be less than one. In this case, no particular simplifications of Eq. (15.33) are
general, and each partition function may play a role in addition to those of the ZPVEs.
This is particularly true because different vibrational modes may cancel one another in the
secondary KIE. That is, one mode may lead to a large normal KIE but be canceled by another
mode that leads to a large inverse KIE, such that more subtle effects associated with, say,
rotational motion, may be made manifest.

One caveat that must be observed when comparing computed and experimental isotope
effects is that experimental measurements can sometimes be for multistep reactions. When a
particular elementary reaction is not rate-determining, that is, it is not the bottleneck in the
overall process, then it does not matter whether or not that reaction has associated with it a
large KIE; it will not influence the observed overall rate. A separate caveat with light atoms
at low to moderate temperatures is that tunneling effects may play a significant role.

15.3.2 Variational Transition-state Theory

Canonical TST defines the free energy of the activated complex based on the TS structure.
This is convenient because, as it is a stationary point, we can use the machinery of the
rigid-rotor-harmonic-oscillator approximation to compute the necessary partition functions
to define its (reduced-dimensionality) free energy. However, it is by no means guaranteed
that the free energy associated with the TS structure really is the highest free energy of any
point along the MEP – it is only guaranteed that it is the highest point of potential energy
along the MEP. As a simple example, it might be the case that the potential energy wells
associated with some normal modes tighten up after the TS structure is reached, even though
the bottoms of those wells are at a point on the MEP slightly below the energy of the TS
structure. The increase in ZPVE resulting from those tighter potentials may exceed the drop
in bottom-of-the-well energy such that the free energy of the non-stationary point is higher
than that of the TS structure.

Variational transition-state theory (VTST), as its name implies, variationally moves the
reference position along the MEP that is employed for the computation of the activated
complex free energy, either backwards or forwards from the TS structure, until the rate
constant is minimized. Notationally

kVTST(T , s) = min
s

kBT

h

Q‡(T , s)

QR

Qo
R

Q‡,o
e−�V ‡(s)/kBT (15.35)

where s is a position on the MEP at which kVTST is evaluated. By convention, s = 0 refers to
the saddle point, and negative and positive values are displaced to the reactant and product
sides of the saddle point, respectively.

To compute the r.h.s. of Eq. (15.35), we need to define how we compute the partition
function (and the ZPVE) for the non-stationary point s. In this case, we simply continue to
take advantage of our decision to treat the activated complex as a species having 3N − 7
bound degrees of freedom. In order to define this space for an arbitrary point on the MEP,
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we simply project out motion along the MEP at point s and evaluate the partition functions
(and the ZPVE) for the remaining degrees of freedom, all of which are bound and at their
local minima for that choice of s, in the usual fashion. In practice, minimization of the
rate constant with respect to s is accomplished by standard search techniques for situations
where analytic gradients of the function to be minimized are not available. Since the partition
functions depend on both s and T , changes in T may lead to changes in the value of
s minimizing Eq. (15.35). In other words, the variational transition state can move with
changes in temperature.

Such detailed surveys of the potential energy surface are computationally fairly demanding
since not only are energies sought at every point but also gradients (to assess the degree to
which one is still on the MEP) and force constants for all bound degrees of freedom (to
compute the vibrational partition functions). If the potential energy surface for the reacting
system can be described by an analytic function, then the computational complexity is not
much worse than for any typical propagation of a molecular mechanics MD trajectory.
However, while molecular mechanics can accurately describe regions of the PES in the
close vicinity of minima, it is much more difficult to develop analytic functions for regions
within which bond breaking (or making) are taking place and, moreover, to connect any
such functions to the ‘usual’ ones about minima so that the entire PES can be described in
a smooth, differentiable way.

One alternative to having a global analytic function is simply to compute, on the fly, ener-
gies, derivatives, and force constants whenever they are required. Such an approach, usually
called ‘direct dynamics’ (Truhlar and Gordon 1990), in principle permits the use of sophisti-
cated quantum mechanical methods at every point. While this will typically improve on the
quality of the computed quantities compared to a global analytic function, this improvement
comes at the expense of potentially having to do many, many such QM calculations (this
latter point is especially telling when one is actually propagating a trajectory, as opposed to
simply looking for the variational TS). These constraints have provided much of the moti-
vation for the development of rapid MM and QM/MM models, like the MCMM and VB
methods discussed in Chapters 2 and 13, that can accurately reproduce features of the PES
in the vicinity of TS structures, where VTST optimization takes place.

Note that the conventional TST expression is simply the special case of VTST where
evaluation is done exclusively for s = 0. As such, the VTST rate constant will always be less
than or equal to the conventional TST rate constant (equal in the event that s = 0 minimizes
Eq. (15.35)). Put differently, when very accurate potential energy surfaces are available,
the conventional TST rate constant is typically an overestimate of the exact classical rate
constant. (Note that it is possible, however, for a compensating or even offsetting error to
arise from overestimation of the barrier height if the potential energy surface is not very
accurate.)

Allison and Truhlar have compared TST and VTST to accurate solution of the time-
dependent Schrödinger equation for a number of three-atom chemical reactions (it is only
for such small systems that the accurate solution of the time-dependent Schrödinger equation
is practical) and those results are listed in Table 15.1. On the high-quality surfaces available
for this comparison, VTST is typically accurate to within 50% at temperatures above 600 K.
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Table 15.1 Logarithmically averaged percent errors in
TST and VTST compared to accurate quantal rate
constants for a series of 3-atom reactionsa

T (K) Number of reactions LAPE (%)

TST VTST

200 37 1480 1952
250 40 452 569
300 48 283 296
400 49 131 148
600 37 65 51

1000 34 53 24
1500 26 63 18
2400 8 139 21

aAllison and Truhlar 1998. Logarithmically averaged percent
errors treat each factor of 2, whether an overestimate or an
underestimate, as a 100% error.

At the highest temperatures, VTST is about five times more accurate than canonical TST, but
even canonical TST is still accurate to within about a factor of 2. Note that improved perfor-
mance of VTST as temperature increases is to be expected since entropic effects increasingly
dominate under those conditions, and it is primarily entropy that moves the optimal dividing
surface away from the potential energy saddle point. At low temperatures, TST appears to
outperform VTST, but that is an artifact of not considering tunneling contributions to the
rate constant (see Section 15.3.3). Tunneling effects are included in the accurate quantal
rate constants; since TST usually overestimates the classical rate, it is accidentally in better
agreement with the quantal rate, which is always increased over the exact classical rate by
tunneling.

Note that, with the minimized rate constant in hand, a generalized activation free energy
can be defined as the difference between the free energy of the reactants and that for the
point smin. Note also that for the computation of isotope effects, VTST proceeds exactly like
conventional TST, except that there is no requirement at a given temperature that the value
of s that minimizes the rate constant for the light-atom-substituted system will be the same
value of s that minimizes the rate constant for the heavy-atom-substituted system. Each must
be determined separately, at which point the ratio of rate constants for that temperature may
be expressed.

15.3.3 Quantum Effects on the Rate Constant

The metaphor invoked in Section 15.2 of a reacting system as a cloud wandering through
a mountain pass is, by virtue of being macroscopic, necessarily a classical metaphor. In
visualizing that situation, we accept as a given that those portions of the cloud below the
level of the pass (i.e., at too low an energy) fail to go through and portions above the
pass always do. Like the cloud in the mountain pass, the probability of transmission from
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reactants to products in a classical system is a Heaviside function of the energy, as illustrated
in Figure 15.4. In a quantum system, however, the transmission probability is sigmoidal in
shape, reflecting the phenomena of tunneling and non-classical reflection. Tunneling refers to
the ability of a quantum system having an energy below the saddle point to ‘tunnel’ through
the barrier to the products side, while non-classical reflection refers to the possibility that a
quantum system above the saddle-point energy will suffer from destructive interference in
a way that prevents it from crossing to products. This situation is compared to the classical
one in Figure 15.4.

Insofar as tunneling increases the rate constant by allowing lower-energy systems to be
reactive and non-classical reflection decreases the rate constant by reducing the reactivity of
higher-energy systems, one might imagine that the two could safely be assumed to cancel.
However, a thermally equilibrated Boltzmann population has a much larger percentage of

Temperature-dependent
Boltzmann distribution

1

0

P

tunneling

non-classical
reflection

dP dE

∆V ‡

Reactant energy

Figure 15.4 Probabilities of reaction (P ) for systems moving towards a parabolic barrier for a reac-
tion with a zero-point-including potential energy of activation �V ‡. Classical systems ( ) below
the barrier height have zero probability of reaction and above the barrier height have unit proba-
bility (i.e., the ‘curve’ describes a Heaviside function). Quantum systems (- - - - - -), on the other hand,
have increasingly non-zero probabilities as the barrier energy is approached from below because of
tunneling and increasingly less than unit probabilities as the barrier energy is approached from above
because of non-classical reflection. Note that because of the Boltzmann distribution of energies in a
thermalized population of reacting systems (-· -· -· -· referenced to the right ordinate), typically many
more molecules have energies in the region where tunneling can increase the reaction rate than have
energies in the region where non-classical reflection can reduce the reaction rate. As a result, the
former is the more quantitatively important of the two quantum phenomena
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low-energy systems than high-energy ones, so tunneling effects tend to predominate over
non-classical reflection, and the inclusion of quantum mechanical tunneling can be critical
to predicting accurate rate constants. Within a TST (or VTST) framework, one writes

k = κ(T )
kBT

h

Q‡

QR

Qo
R

Q‡,o
e−�V ‡/kBT (15.36)

where κ is called the transmission coefficient. The transmission coefficient is a function
of temperature and, importantly, of the shape of the PES in the region about the activated
complex. In the classical limit κ = 1 but, particularly at low temperatures, κ can become
arbitrarily large.

Qualitatively, κ depends on the shape of the barrier (both height and width), the mass
of the particle (the lighter the particle, the greater the probability of tunneling), and the
temperature, the latter because T dictates the Boltzmann population of the reactant and
activated-complex energies. In the context of a many-atom system, tunneling through the
barrier may occur along any one or more coordinates, and the mass in question for each
case may be considered to be the reduced mass of the normal mode. Thus, tunneling effects
can be present even when the reaction coordinate itself is dominated only by heavy-atom
motion.

Highly accurate prediction of transmission coefficients including many degrees of freedom
is a very difficult quantum mechanical problem. A simplifying approximation is to consider
tunneling only in the degree of freedom corresponding to the reaction coordinate. Within
this one-dimensional formalism, various levels of approximation are available.

The simplest approximation is that of Wigner (1932), which takes

κ(T ) = 1 + 1

24

[
h Im(ν‡)

kBT

]2

(15.37)

where ν‡ is the imaginary frequency associated with the reaction coordinate (the notation
Im(x) means that we take only the imaginary part of the frequency, which is to say that
we treat it as though it is a real number rather than a complex one). The Wigner correction
works well provided that h Im(ν‡) � kBT .

A more robust approximation to κ has been provided by Skodje and Truhlar (1981),
generalizing earlier work by Bell (1959) for parabolic barriers. For notational convenience
we take

α = 2π

h Im(ν‡)
(15.38)

and

β = 1

kBT
(15.39)

In the Skodje and Truhlar approximation, one takes for β ≤ α

κ(T ) = βπ/α

sin(βπ/α)
− β

α − β
e[(β−α)(�V ‡−V )] (15.40)
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where �V ‡ is the zero-point-including potential energy difference between the TS structure
and the reactants, and V is 0 for an exoergic reaction and the (positive) zero-point-including
potential energy difference between reactants and products for an endoergic reaction. In the
case where α ≤ β, the corresponding expression is

κ(T ) = β

β − α

{
e[(β−α)(�V ‡−V )] − 1

}
(15.41)

An inspection of the power series expansion for the exponential in Eqs. (15.40) and (15.41)
indicates that neither expression diverges as α and β become arbitrarily close to equal (an
analogous consideration of the power series expansion for the sine function in Eq. (15.40)
indicates the first term on the r.h.s. to be similarly free from singularities).

A still more sophisticated approach involves fitting the reaction coordinate to a so-called
Eckart potential (Eckart 1930). The Eckart potential permits an exact, analytic solution of
the probability of tunneling through the barrier (and of non-classical reflection) from the
time-independent Schrödinger equation for systems of fixed energy E. When that result
is numerically integrated over all energies, weighted by the Boltzmann probability of the
reacting system having a particular energy at a given temperature T , a very good estimate of κ

in the limit of tunneling along a single dimension is obtained. [Note that when transition state
theory is formulated for a system of constant energy, as opposed to constant temperature, it is
called microcanonical TST (µTST) or Rice–Ramsperger–Kassel–Marcus (RRKM) theory
for the unimolecular case; a microcanonical variational TST (µVTST) can be applied in a
fashion analogous to VTST, with the choice of dividing surface location s now potentially
different at each energy E.]

It should be noted, however, that even the best one-dimensional tunneling estimate is still
likely to underestimate the full tunneling contribution, since tunneling may occur through
dimensions of the PES other than the reaction coordinate. Multi-dimensional tunneling approx-
imations are sufficiently complex, however, that they will not be further discussed here.

Another important point that must be borne in mind is that failure to account for tunneling,
or to recognize its contribution in the first place, can lead to significant errors in the inter-
pretation of experimental data. For example, Watson (1990) analyzed an Eyring plot of
apparent rate constants for methane metathesis by methyllutetiocene (Figure 15.5) to infer

Lu CH3 Lu
CH3

CH3

H– CH4

CH4

Figure 15.5 Transition-state structure for rate-determining hydrogen atom transfer in the methane
metathesis reaction of methyllutetiocene. Note that the kinetics for this narcissistic reaction may be
followed by using a 13C label either in the reacting methane or in the methyl group of the starting
organometallic
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Figure 15.6 Typical changes in rate constants as a function of temperature for light-isotope (above)
and heavy-isotope (below) substituted systems. In the high-temperature regime A, Arrhenius or TST
plots will be essentially linear and yield good estimates of the activation parameters. In the intermediate
region B, such plots may still be linear if the sampled temperature range is too small, but any activation
parameters inferred therefrom will be of little utility. Additionally, KIE values in this region are very
sensitive to the temperature. In the low-temperature regime C, the rate constant is almost entirely a
result of tunneling, and little information about the PES can be gleaned from kinetic analysis

an activation enthalpy of 11.6 kcal mol−1. However, Sherer and Cramer (2003) found for
the hydrogen-atom-transfer rate-determining step that Eqs. (15.40) and (15.41) predict the
tunneling transmission coefficient κ to drop from 93 to 4 over the experimental temperature
range of 300 to 400 K. When the apparent rate constants were divided by their corresponding
κ values, an Eyring plot of the corrected ‘true’ semiclassical rate constants provided an acti-
vation enthalpy of 19.2 kcal mol−1. This latter result agreed well with a value of 20.3 kcal
mol−1 computed from DFT, and illustrates the magnitude of the quantitative difference that
may arise when tunneling is ignored in experimental Eyring analyses.

Figure 15.6 forms the basis for a more general discussion of tunneling, reaction rates, and
kinetic isotope effects. The rate constant for an exergonic chemical reaction does not actually
go to zero as the temperature goes to zero. Instead, after the temperature drops sufficiently,
all reactant systems will be in their lowest energy state, that state will have some rate of
tunneling through the barrier, and that rate is the non-zero asymptote that will be approached.
Of course, an analysis that neglects tunneling would interpret a rate that is independent of
temperature as corresponding to an activation enthalpy of zero (see Section 15.3.1.1) which
may be very far from correct.

Moreover, because tunneling is less efficient for heavy isotopes, the transition to tunneling-
dominated kinetics occurs at lower temperatures for heavier isotopes (Figure 15.6, region B),
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leading to regions where KIEs will change rapidly as a function of temperature, which may
also confuse interpretation. These effects are not limited to esoterically low temperatures:
enzymes catalyzing proton, hydride, and hydrogen atom transfers can exhibit large rate
contributions from tunneling at biological temperatures (Kohen and Klinman 1998).

15.4 Condensed-phase Dynamics

Solvent effects on reaction coordinates have already been discussed in a general fashion
in Section 11.1.2. In terms of estimating condensed-phase rate constants, we consider three
levels of approximation. In the simplest model, referred to as separable equilibrium solvation
(SES), we assume that the effects of a surrounding condensed phase are limited simply to
changing the free energy along the MEP. In that case, the condensed-phase free energy of
activation is simply the sum of the gas-phase free energy of activation and the free energies
of solvation of the activated complex and the reactant(s) (see Figure 11.4), and we may use
Eq. (15.27) to compute the rate constant directly from the condensed-phase �Go,‡. The free
energy of the activated complex in solution may either be evaluated for the gas-phase TS
structure, or may be taken as the maximum free energy along the solvated MEP, which would
be a variational-like treatment. Operationally, we may most readily compute the solvation
free energy for each point on the MEP by assuming the solvent to be fully equilibrated to
that point and using any convenient solvation model (a continuum model being the most
efficient choice).

At the next level of approximation, we continue to imagine the solvent to be fully equili-
brated to the reacting system at every point, but instead of working with the solvated MEP
from the gas-phase surface, we find the equilibrium solvation path (ESP) which is the MEP on
the fully solvated surface (see Figure 11.1). While both the gas-phase and solvated surfaces
are defined entirely in terms of solute coordinates, the ESP may be quite different from the
gas-phase MEP because solvation effects may ‘push’ the path in directions orthogonal to
the gas-phase reaction coordinate (see Figure 11.5). With the ESP in hand, TST (or VTST)
analysis may be carried out in the usual way to obtain a condensed-phase rate constant.

The beauty of the prior approximations is that by assuming a mean-field influence of
solvation we can continue to work in a phase space having the same dimensionality as that
for the gas phase; that being the case, analysis using the tools of TST is mechanically identical
for the two phases. When the solvent is not fully equilibrated with the complete reaction
path, however, the reacting system can no longer legitimately be described exclusively in
terms of solute coordinates.

Note that the region where solvent is least well equilibrated to the solute is expected to be
in the vicinity of the activated complex, since it has so short a lifetime. Since non-equilibrium
solvation is less favorable than equilibrium solvation, the non-equilibrium free energy of the
activated complex is higher than the equilibrium free energy, and the non-equilibrium lag
in solvent response thus slows the reaction. This effect is sometimes referred to as solvent
‘friction’ and can be accounted for by inclusion in the transmission factor κ .

Explicit inclusion of all solvent degrees of freedom, e.g., in an MD simulation, is not a
very effective approach to modeling the non-equilibrium solvent influence, however. One
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issue that should be apparent is that one can no longer really define a TS structure under
such conditions – on the enormously high-dimensional PES constructed from all solute and
solvent coordinates there will be a huge number of saddle points having similar energies
in regions between reactants and products, and the related problem of running trajectories
through this potentially high-energy volume of phase space to estimate rate constants has
already been noted in Chapter 12.

To simplify matters, it is usually assumed that the influence of the solvent can be modeled
with so-called effective solvent coordinates. A typical choice is to treat the solvent coordinate
as having a harmonic potential that is linearly coupled to the solute. If one extends this approach
to use an infinite number of solvent harmonic oscillators one obtains the so-called general-
ized Langevin equation for solute dynamics (Zwanzig 1973). In the other limit of reducing
consideration of the solute to a single coordinate, one obtains Kramers–Grote–Hynes theory
(Kramers 1940; Grote and Hynes 1980). The development of more sophisticated treatments for
the solvent coordinates in non-equilibrium solvation models remains an active area of research.

15.5 Non-adiabatic Dynamics

15.5.1 General Surface Crossings

When two (or more) potential energy surfaces corresponding to different electronic states of
a chemical system are close to one another in energy, the electronic wave function should
really be written as a linear combination of the different adiabatic wave functions. For
simplicity, let us consider the case of only two states, in which case we would write

�(Q, q) = c1(Q)ψ1(Q, q) + c2(Q)ψ2(Q, q) (15.42)

where ψ1 and ψ2 are the two adiabatic states that depend on the electronic coordinates q and
the nuclear coordinates Q and the coefficients also depend on the nuclear coordinates because
the mixing of the states will vary with different geometries. The situation is illustrated for a
single internal coordinate in Figure 15.7. Note that since the coefficients c1 and c2 depend
only on nuclear coordinates, each is a nuclear wave function.

In this case, the Schrödinger equation becomes

H�(Q, q) = Efull[c1(Q)ψ1(q; Q) + c2(Q)ψ2(q; Q)] (15.43)

where the Hamiltonian operator now includes nuclear kinetic energy as well as the nuclear
repulsion, i.e.,

H =
nuclei∑

k

− 1

2mk

∇2
k + Hel + VN (15.44)

where mk is the mass of nucleus k in atomic units, ∇2 is defined as in Eq. (4.4), and Hel

and VN are defined in Eq. (4.16) and the following discussion. To determine a given c as
a function of nuclear coordinates Q, we can multiply both sides of Eq. (15.43) on the left
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U1

ψ2

ψ1

U2

V12

E

Q

Figure 15.7 Near approach (or avoided crossing) of two electronic states as a function of nuclear
coordinate Q. The inset expands the region of the avoided crossing to facilitate the definition of
quantities appearing in the Landau–Zener surface-hopping-probability model

by the adiabatic state corresponding to that c and integrate. After taking advantage of the
orthonormality of the adiabatic states, and noting that each adiabatic electronic wave function
is an eigenfunction of the electronic Hamiltonian with an associated energy eigenvalue, we
derive

nuclei∑
k

− 1

2mk


∇2

k +
2∑

j=1

(2〈ψi |∇k|ψj 〉 · ∇k + 〈ψi |∇2
k |ψj 〉)


 ci = (Efull − Ei)ci (15.45)

where Ei is the energy eigenvalue for the ith electronic state ψi and the vector operator ∇
is defined as

∇k =
(

∂

∂xk

,
∂

∂yk

,
∂

∂zk

)
(15.46)

Note that Eq. (15.45) is itself a Schrödinger equation for nuclear eigenfunction ci . The
Born–Oppenheimer approximation, previously discussed in Section 4.2.3, involves assuming
a value of zero for all of the integrals in Eq. (15.45) involving the nuclear ∇ or ∇2 operator
acting on electronic wave functions (cf. Eq. (9.37)). Under that assumption, the nuclear
and electronic wave functions are separable, but spontaneous changes in electronic states,
i.e., surface-to-surface crossings, are not permitted. Any model addressing such state–state
interconversions must instead start from Eq. (15.45) (possibly generalized to a larger number
of electronic states).

Unfortunately, Eq. (15.45) does not admit to simple analytic solutions under realistic sets
of chemical conditions. Moreover, if we now try to extend Eq. (15.43) to its time-dependent
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analog, which is time-dependent simultaneously in the nuclear and the electronic wave
functions, things get very messy indeed. Fully quantum mechanical solutions to non-adiabatic
problems are still limited to the simplest of systems.

A popular alternative in these instances is to propagate classical trajectories on the mix
of surfaces, where the probability of ‘hopping’ from one surface to another is periodically
evaluated over the time course of the trajectory. By following the time course of a very large
number of trajectories, the rate constant can be determined from a plot of reaction probability
as a function of time. (A large number of trajectories is required in order to generate this plot
reliably as a histogram of reaction times.) Thus, for instance, the system might be started
with a certain amount of kinetic energy moving inward on the upper PES of Figure 15.7. The
‘wave packet’ will increase its kinetic energy as the potential energy drops, then climb the
repulsive wall of the surface until it reaches a potential energy equal to the sum of its original
potential and kinetic energies, and then will reverse direction outward. In a single internal
coordinate, this could correspond to two atoms colliding and rebounding. If the trajectory
hops from one surface to another during the course of the simulation, and then fails to hop
back (or hops an even number of times after the initial hop) then the outgoing trajectory
will correspond to the lower energy electronic state and be counted as a reactive event.

Various models to compute the probability of hopping exist. One of the simplest is the
Landau–Zener model for avoided crossings in a single coordinate. The probability of the
hop is determined as

P = e−(πV 2
12/hv|ψ̇1−ψ̇2|) (15.47)

where V12 is the energy gap between the surfaces at the point of the avoided crossing, v is
the velocity at which the wave packet is traveling in coordinate Q, and

ψ̇i = dUi

dQ
(15.48)

where U represents a continuation of the diabatic states across the adiabatic avoided crossing
as illustrated in Figure 15.7. Qualitatively, the Landau–Zener model says that the probability
of hopping increases when (i) the adiabatic states approach one another increasingly closely,
(ii) the wave packet passes the region of avoided crossing quickly, and (iii) the shapes of the
adiabatic surfaces change suddenly in the region of the avoided crossing. Note, of course,
that if a trajectory is to be reactive, it must cross only once, either on the way in or the
way out, or an odd total number of times.

More sophisticated hopping schemes have been proposed for multi-dimensional surfaces
and for more general situations than avoided crossings (see, for example, Tully 1976; Hack
et al. 2001; Heller, Segev, and Sergeev 2002). However, further discussion on this topic is
not undertaken here.

15.5.2 Marcus Theory

A special case of a non-adiabatic reaction is electron transfer. The dynamics of electron-
transfer processes have been studied extensively, and the most robust model used to describe
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them is Marcus theory (Marcus 1964). The full scope of Marcus theory is very broad, and we
consider here only the simplest application of the model. We will take the generic electron
transfer reaction

A− + B → A + B− (15.49)

For this simple case, Marcus theory predicts the rate constant for electron transfer to be

kET = ZABe−(�Go
AB+λ)2/4λRT (15.50)

where ZAB is the collision frequency for the reactants (typically in the range of 109 to
1010 sec−1 for reactions in non-viscous liquids at ambient temperatures), �Go

AB is the free
energy change for the electron transfer, λ is the so-called reorganization energy, R is the
universal gas constant, and T is the temperature.

The reorganization energy term derives from the solvent being unable to reorient on the
same timescale as the electron transfer takes place. Thus, at the instant of transfer, the bulk
dielectric portion of the solvent reaction field is oriented to solvate charge on species A,
and not B, and over the course of the electron transfer only the optical part of the solvent
reaction field can relax to the change in the position of the charge (see Section 14.6). If the
Born formula (Eq. (11.12)) is used to compute the solvation free energies of the various
equilibrium and non-equilibrium species involved, one finds that

λ = (�q)2
(

1

ε∞
− 1

ε0

) (
1

2rA
+ 1

2rA
− 1

rAB

)
(15.51)

where �q is the amount of charge transferred (1 for the reaction of Eq. (15.49)), ε∞ is the
fast dielectric constant (sometimes called the optical dielectric constant, equal to the square
of the index of refraction – around 2 for typical solvents), ε0 is the slow, or bulk, dielectric
constant, rA and rB are the radii of species A and B, respectively, and rAB is the distance
between them at reaction. The quantity in Eq. (15.51) is sometimes called λo because it
considers only ‘outer-sphere’, which is to say solvent, reorganization. More sophisticated
approaches can be used when inner-sphere reorganization is also important, e.g., for ligated
metal systems where the metal–ligand bond lengths might vary significantly as a function of
charge. In such instances, inner-sphere reorganization energies can often be estimated from
calculations of relaxation energies when the geometry of the species for the initial charge
state is allowed to relax to the final charge state.

The exact form of Eq. (15.50) is made more intuitive by considering the simple reaction
coordinate diagrams of Figure 15.8. In these cases, we consider two parabolic potential
energy surfaces corresponding to the two sides of Eq. (15.49). The reaction coordinate may,
in particularly simple instances, be thought of as a generalized solvent coordinate. Thus, when
the solvent is optimally configured for A− + B, the energy of the curve for state A + B−
is quite high. If the free energies of the left and right sides of Eq. (15.49) are the same
(which would happen if A and B were different isotopes of the same metal, for instance),
the separation of the two curves at either minimum is exactly λ. From the mathematics of
parabolae, this requires the intersection of the two curves to take place at λ/4 energy units
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Figure 15.8 Electron-transfer reaction coordinate diagrams used in Marcus theory. Diagram (a) refers
to a case with no net free energy of reaction, in which case the intersection of the two curves occurs
at λ/4 above the minima and is taken as the barrier to the electron transfer (a barrier associated with
solvent reorganization in the simplest limit). When the overall driving force is equal in magnitude to
λ (b), the two curves cross at the equilibrium solvent configuration of the first state, and reaction is
barrierless. However, when the driving force becomes still greater (c), the crossing of the two curves
proceeds to the left on the reaction coordinate, and occurs at higher energy than the minimum of
the reactant curve. This situation creates the inverted region where rate decreases with increasing
exergonicity

above the two equal minima. This situation in illustrated in the first reaction coordinate
diagram of Figure 15.8, and rationalizes the denominator of the exponential in Eq. (15.50):
if �Go

AB is zero, then the argument of the exponential is λ/4RT which is indeed the ‘barrier’
for reaction in the system with no thermochemical driving force in either direction.

Note that Marcus theory in the form of Eq. (15.50) makes a rather surprising prediction.
If �Go

AB is equal to λ in magnitude but of opposite sign, which is to say the exergonicity
of the electron transfer exactly cancels the reorganization energy, than the argument of the
exponential is zero and the rate is predicted to be diffusion-controlled. However, if the
driving force becomes greater still, then the argument of the exponential returns to positive,
and the rate is predicted to decrease (Figure 15.8). This corresponds to the so-called inverted
region of Marcus theory. That is, as one of a pair of reactants in an electron-transfer reaction
is varied so that the reaction becomes more and more favorable in a free-energy sense, the
rate is predicted to reach a maximum and then decrease. Experimental verification of this
prediction did not occur until many years after the initial publication of the theory, in part
because the required driving force is so high and in part because of the technical challenges
associated with measuring very large rate constants. Nevertheless, an inverted region has
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now been demonstrated in several instances, and this validation of Marcus theory no doubt
contributed to it being the subject of the Nobel Prize in 1992.

A key point that must be made is that quantum mechanical tunneling through the Marcus-
theory barrier when it is non-zero can increase the rate for electron transfer just as is true
for any other activated process. Because the electron is so light a particle, tunneling can be
a major contributor to the overall rate. Models for electron tunneling will not, however, be
presented here.

15.6 Case Study: Isomerization of Propylene Oxide

Synopsis of Dubnikova and Lifshitz (2000) ‘Isomerization of Propylene Oxide. Quantum
Chemical Calculations and Kinetic Modeling’.

When the commodity chemical propylene oxide is heated to high temperature in the gas
phase in a shock tube, unimolecular rearrangement reactions occur that generate the C3H6O
isomers allyl alcohol, methyl vinyl ether, propanal, and acetone (Figure 15.9). Dubnikova
and Lifshitz carried out a series of calculations to determine the mechanistic pathway(s)
for each isomerization, with comparison of activation parameters to those determined from
Arrhenius fits to experimental rate data to validate the theoretical protocol.

Because of the complexity of the molecular hypersurface, the authors chose the B3LYP
level in combination with the cc-pVDZ basis set for their search for TS structures. Based on
judgment and intuition, they chose initial geometries for TS structures and optimized them
subject to the constraint of there being a single imaginary frequency in the product stationary

O OH

O

O

H

O

propylene
oxide

allyl
alcohol

methyl vinyl
ether

propanal

acetone

Figure 15.9 Isomerizations of propylene oxide. What plausible geometries might be proposed
as starting guesses for TS structures? Once a TS structure is found, will it be obvious for which
process it is the TS? What features of the TS may have an impact on the level of theory used
to determine its energy?
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point. They then carried out IRC calculations to verify that the TS structure connected in
one direction to the desired product and in the other direction to propylene oxide.

For the isomerizations to allyl alcohol, propanal, and acetone, they found concerted
TS structures that represented the only barrier between reactant and product, and these
structures were predicted to have stable, closed-shell singlet wave functions. However, for
the isomerization to methyl vinyl ether, a pathway involving three TS structures and two
intermediates was identified, with several stationary points having a high degree of biradical
character. To deal with this problem, they used a broken-symmetry SCF procedure (see
Section 8.5.3). Another multistep pathway involving a carbene intermediate was also found
for the isomerization of propylene oxide to methyl vinyl ether, but Dubnikova and Lifshitz
assigned it as being kinetically unimportant based on significantly higher TS energies than
those found for the first pathway.

While the B3LYP/cc-pVDZ level was judged to be a good choice for locating stationary
points, it was not expected to be quantitatively useful in computing activation enthalpies.
For this purpose, single-point CCSD(T)/cc-pVDZ calculations were carried out. Dubnikova
and Lifshitz are not clear on what, if any, special precautions were taken with the biradical
species (i.e., were single-reference HF wave functions somehow generated, or were mixed-
state UHF reference wave functions used?) The potential energies were combined with the
ZPVEs and thermal enthalpic contributions calculated from scaled B3LYP frequency calcu-
lations to determine absolute H values for all species. Absolute entropies S were computed
from the B3LYP geometries and scaled vibrational frequencies. The energies for several
of the stationary points relative to propylene oxide varied by as much as 4 kcal mol−1

comparing CCSD(T) to B3LYP. Although it is not a priori obvious which might be expected
to do better, the general rule that B3LYP somewhat underestimates barrier heights compared
to CCSD(T) suggests the latter will be of greatest utility.

With all activation parameters in hand, Dubnikova and Lifshitz convert them to A and
Ea of the Arrhenius equation (Eqs. (15.30)–(15.32)) to compare to measured values; the
data are provided in Table 15.2. In the case of the rearrangement to methyl vinyl ether, the
data for the highest energy TS structure along the path were used. It is interesting to note
that the comparison of the rate constants derived from the activation parameters at some
particular temperature – 1000 K is shown in Table 15.2 – appears more favorable than a
direct comparison of the activation parameters themselves. This occurs because in every
case the error in activation energy is compensated for by an error in the pre-exponential
factor. That is, if the activation energy is predicted to be too high, which would predict too

Table 15.2 Predicted and measured activation parameters for unimolecular rearrangements of
propylene oxide

Product Source A (sec−1) Ea (kcal mol−1) k1000 (sec−1)

Allyl alcohol Experiment 7.9 × 1012 57.1 2.7
Theory 2.2 × 1013 60.2 1.6

Methyl vinyl ether Experiment 3.2 × 1013 58.8 4.7
Theory 1.3 × 1014 59.3 14.9

Propanal Experiment 2.5 × 1014 58.5 42.8
Theory 3.5 × 1013 54.4 47.0

Acetone Experiment 1.7 × 1014 60.7 9.6
Theory 1.1 × 1014 54.2 163.3
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small a rate constant, the pre-exponential is predicted to be too large, which returns the rate
constant to a reasonable value, and vice versa. In spite of such compensating errors, in the
case of acetone the final error in the rate is almost a factor of 20. At lower temperatures,
this error would increase dramatically.

Nevertheless, the agreement that is obtained – which is probably the best one should
expect given the small size of the basis set used in the CCSD(T) calculations
and the possible problems associated with biradical character in the methyl vinyl
ether pathway – suggests that the theoretically predicted TS structures are accurate
representations of the actual transition states. This establishes the concerted nature of three
of the rearrangements and the stepwise nature of the fourth.
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Appendix A
Acronym Glossary

Note: Basis set abbreviations are detailed in Chapter 6 and are, for the most part, not included
here. Only the most common combinations of exchange and correlation functionals are
included as separate acronyms. Unit abbreviations are not listed.

6-12 The inverse power dependence of Lennard–Jones terms
AA All-atom (as opposed to united-atom)
ACM Adiabatic connection method
ADF Amsterdam density functional code
AIM Atoms in molecules
AM1 Austin Model 1
AMBER Assisted model building with energy refinement
AO Atomic orbital
AOC AM1/OPLS/CM1
B Becke (1988) exchange functional
B1B95 ACM one-parameter functional
B3LYP ACM using B exchange and LYP correlation functionals
B3PW91 ACM using B exchange and PW91 correlation functionals
B86 Becke (1986) exchange functional
B95 Becke correlation functional
B97 ACM functional of Becke
B97-1 ACM functional of Becke reparameterized by Hamprecht et al.
B98 ACM MGGA exchange-correlation functional of Becke
BAC Bond-additivity correction
BB1K B1B95 optimized for kinetics
BD CCD using Brueckner orbitals
BH&H Becke half-and-half exchange functional
BKO Born–Kirkwood–Onsager
BLYP B exchange and LYP correlation functionals
Bm Modification of Becke exchange functional for use with τ1
BPW91 B exchange and PW91 correlation functionals

Essentials of Computational Chemistry, 2nd Edition Christopher J. Cramer
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09181-9 (cased); 0-470-09182-7 (pbk)



550 APPENDIX A

BR MGGA exchange functional of Becke and Roussel
BSSE Basis set superposition error
CAM Cambridge GGA exchange functional
CAS Complete active space
CASPT2 Complete active space second-order perturbation theory
CASSCF Complete active space self-consistent field
CBS Complete basis set
CCD Coupled cluster with double substitution operator
CCSD Coupled cluster with single and double substitution operators
CCSD(T) CCSD with perturbative estimate for connected triples
CCSDT Coupled cluster with single, double, and triple substitution operators
CCSDTQ Coupled cluster including single through quadruple excitations
CD Circular dichroism
CFF Consistent force field
CHARMM Chemistry at Harvard molecular mechanics
CHELP Charges from electrostatic potentials
CI Configuration interaction
CID CI including only double electronic excitations
CIS CI including only single electronic excitations
CISD CI including single and double electronic excitations
CIS(D) CIS including a correction for double excitations
CISDT CI including single, double, and triple electronic excitations
CISDTQ CI including single through quadruple electronic excitations
CISD(Q) CISD with Langhoff–Davidson estimate for quadruples
CMn Charge model n (where n is a version number)
CNDO Complete neglect of differential overlap
CoMFA Comparative molecular field analysis
COSMIC Computation and structural manipulation in chemistry
COSMO Conductor-like screening model
CP Counterpoise; Car–Parrinello
C-PCM Conductor formulation of PCM
CS Correlation functional of Colle and Salvetti
CSF Configuration state function
CT Charge transfer
CVFF Consistent valence force field
DFT Density functional theory
DFTB Density functional tight-binding theory
DFT-SCI Density functional theory singles configuration interaction
D-PCM Dielectric formulation of PCM
DZ Double zeta (basis set)
DZP Double zeta polarized (basis set)
EA Electron affinity
ECEPP Empirical conformational energy program for peptides
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ECP Effective core potential
EDF1 Empirical density functional 1
EFP Effective fragment potential
EHT Extended Hückel theory
EOM Equation of motion
EPR Electron paramagnetic resonance
ESFF Extensible systematic force field
ESP Electrostatic potential; Equilibrium solvation path
ESR Electron spin resonance
EVB Empirical valence bond
FDPB Finite difference Poisson–Boltzmann
FEP Free energy perturbation
FLOGO Floating Gaussian orbitals
FT97 Filatov and Thiel (1997) density functional
Gn Gaussian-n theory (n = 1, 2, or 3)
G3S Scaled G3 theory
G96 GGA functional of Gill
GAPT Generalized atomic polar tensor
GB Generalized Born
GDAC Geometry-dependent atomic charge
GGA Generalized gradient approximation
GHO Generalized hybrid orbital
GIAO Gauge-including atomic orbital
GROMOS Gröningen molecular simulation
GTO Gaussian-type orbital
GUI Graphical user interface
GVB Generalized valence bond
H&H Half-and-half adiabatic connection formula
HCTH GGA exchange-correlation functional of Hamprecht, Cohen, Tozer,

and Handy
HF Hartree–Fock
h.f.s. Hyperfine splitting
HOMO Highest occupied molecular orbital
IEF Integral equation formalism
IGLO Individual gauge for localized orbitals
IMOMM Integrated molecular orbital molecular mechanics
IMOMO Integrated molecular orbital molecular orbital
INDO Intermediate neglect of differential overlap
INDO/S INDO parameterized for spectroscopy
IP Ionization potential
IPCM PCM with a gas-phase isodensity surface as the cavity surface
IR Infrared
IRC Intrinsic reaction coordinate
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ISM MGGA correlation functional of Imamura, Scuseria, and Martin
IUPAC International Union of Pure and Applied Chemistry
KCIS MGGA correlation functional of Kriger, Chen, Iafrate, and Savin
KIE Kinetic isotope effect
KMLYP Kang and Musgrave ACM functional including LYP
KS Kohn–Sham
LANL Los Alamos National Laboratory
Lap MGGA correlation functionals
LCAO Linear combination of atomic orbitals
LD Langevin dipole
LDA Local density approximation
LG Lacks-Gordon density functional
LJ Lennard–Jones
LMP2 Localized MP2
LSCF Localized self-consistent field
LSDA Local spin density approximation
LYP Lee-Yang-Parr correlation functions
LUMO Lowest unoccupied molecular orbital
MBPTn Many-body perturbation theory of order n

MC Monte Carlo
MC Multicoefficient (as a prefix to a level of theory being scaled)
MCMM Multiconfiguration molecular mechanics
MCPF Modified coupled-pair functional
MCSCF Multiconfiguration self-consistent field
MD Molecular dynamics
MEP Minimum energy path; Molecular electrostatic potential
MGGA Meta-generalized gradient approximation
MINDO/3 Modified intermediate neglect of differential overlap (version 3)
MKS Multiplicative Kohn–Sham (NMR model)
MM Molecular mechanics
MMFF Merck molecular force field
MNDO Modified neglect of differential overlap
MNDOC MNDO including electron correlation effects
MNDO/d MNDO augmented with d functions for some atoms
MO Molecular orbital
MP4SDQ MP4 including single, double and quadruple excitations
MPn Møller–Plesset perturbation theory of order n

mPBE Modified PBE functional
MPEOE Modified partial equalization of orbital electronegativity
mPW Modified Perdew–Wang density functional
MPW1K mPW1PW91 optimized for kinetics
mPW1N mPW1PW91 modified for halide/alkyl-halide nucleophilic substitutions
mPW1PW91 One-parameter ACM using PW91 functionals
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mPW1S mPW1PW91 modified for sugar conformational analysis
MRCI Multireference CI
MRCISD Multireference CI including single and double excitations
MR-MP2 Multireference second-order perturbation theory
MST Miertus–Scrocco–Tomasi (polarized continuum) model
MST-ST MST model augmented with atomic surface tensions
µTST Microcanonical transition state theory
µVTST Microcanonical variational transition state theory
NAO Natural atomic orbital
NBO Natural bond orbital
NDDO Neglect of diatomic differential overlap
NHE Normal hydrogen electrode
NIST National Institute of Standards and Technology (U.S.)
NMR Nuclear magnetic resonance
nOe Nuclear Overhauser effect
NPA Natural population analysis
O OPTX exchange functional
O3LYP ACM using O exchange and LYP correlation functionals
OLYP O exchange and LYP correlation functionals
OM1 Orthogonalization method 1
OM2 Orthogonalization method 2
ONIOM Our own n-layered integrated molecular orbital molecular mechanics
o.o.p. Out-of-plane
OPLS Optimized potentials for liquid simulations
ORD Optical rotatory dispersion
P Perdew exchange functional
P86 Perdew correlation functional
PA Proton affinity
PB Poisson–Boltzmann
PBC Periodic boundary condition
PBE Perdew, Burke, and Enzerhof functional
PBE1PBE ACM functional derived from PBE
PCA Principal components analysis
PCM Polarized continuum model
pc-n Polarization consistent n-ζ basis sets of Jensen
PD Pairwise descreening
PDDG Pairwise distance directed Gaussian
PDFT Projected density functional theory
PEG Polyethyleneglycol
PEOE Partial equalization of orbital electronegativity
PES Potential energy surface
PKZB MGGA exchange-correlation functional of Perdew, Kurth, Zupan,

and Blaha
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PM3 Parameterized (NDDO) model 3
PM3(tm) PM3 with a d orbital extension to transition metals
PME Particle-mesh Ewald
PMF Potential of mean force
PMPn Projected Møller–Plesset theory of order n

POS Points on a sphere
PP Perfect pairing
PPP Pariser–Parr–Pople
PUHF Projected UHF
PW Perdew–Wang (1991) exchange functional
PW91 Perdew–Wang (1991) correlation functional
QCISD Quadratic configuration interaction including singles and doubles
QCISD(T) QCISD with perturbative estimate for connected triples
QEq Charge equilibration
QM Quantum mechanics
QMHO Quantum mechanical harmonic oscillator
QM/MM Quantum mechanics/molecular mechanics hybrid
QSPR Quantitative structure–property relationship
RAS Restricted active space
r.d.f. Radial distribution function
RESP Restrained ESP
RHF Restricted Hartree–Fock
RISM Reference interaction site model
RMS Root mean square
RMSD Root-mean-square deviation
ROHF Restricted open-shell Hartree–Fock
ROKS Restricted open-shell Kohn–Sham theory
ROSS Restricted open-shell singlet density functional theory
RPA Random-phase approximation
RRKM Rice–Ramsperger–Kassel–Marcus
S Slater exchange functional
SAC Scaling all correction
SAM1 Semi-ab initio method 1
SAM1D SAM1 with d orbitals
SAR Structure–activity relationship
SASA Solvent-accessible surface area
SCC-DFTB Self-consistent charge density functional tight-binding theory
SCF Self-consistent field
SCIPCM PCM with a liquid-solution-phase isodensity surface as the cavity

surface
SCRF Self-consistent reaction field
SCS-MP3 Spin-component-scaled MP3
SES Separable equilibrium solvation
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SF-CISD Spin–flip CISD
SF-CIS(D) Spin–flip CIS(D)
SF-TDDFT Spin–flip TDDFT
SINDO1 Symmetric orthogonalized INDO model
SMx Solvation model x (using Cramer–Truhlar GB formalism)
SOMO Singly occupied molecular orbital
SPC Simple point charge
SRP Specific reaction (or range) parameters
S–T Singlet–triplet
STO Slater-type orbital
τ1 MGGA correlation functional
τHCTH MGGA modification of HCTH
TCSCF Two-configuration self-consistent field
TDDFT Time-dependent density functional theory
TI Thermodynamic integration
TIPnP Transferable intermolecular potentials n point charge water model
TMM Trimethylenemethane
TPSS MGGA exchange-correlation functional of Tao, Perdew, Staroverov,

and Scuseria
TPSSh ACM functional derived from TPSS
TraPPE Transferable potentials for phase equilibria
TS Transition state
TST Transition-state theory
TZ Triple zeta (basis set)
TZP Triple zeta polarized (basis set)
UA United-atom (as opposed to all-atom)
UFF Universal force field
UHF Unrestricted Hartree–Fock
UV Ultraviolet
UV/Vis Ultraviolet/visible
VB Valence bond
VDD Voronoi deformation density
VSEPR Valence-shell electron-pair repulsion
VSIP Valence-shell ionization potential
VSXC Exchange-correlation functional of van Voorhis and Scuseria
VTST Variational transition-state theory
VWN A Vosko, Wilk, Nusair correlation functional
VWN5 A Vosko, Wilk, Nusair correlation functional
WHAM Weighted histogram analysis method
Wn Weizmann-n theory (n = 1, 2, 3, or 4)
XSOL Extended RISM and quantum mechanical solvation model
ZPVE Zero-point vibrational energy



Appendix B
Symmetry and Group Theory

B.1 Symmetry Elements

To say that something is symmetric, or that it possesses symmetry, usually is to say that
an internal motif is repeated in some fashion. In the context of chemistry, that motif is a
spatial arrangement of atoms. We may classify the nature of an object’s symmetry based
on the fashion in which its repeated motifs are made manifest. In describing the symmetric
positioning of atoms in a molecule, there are only a few different operations that are relevant
for chemical systems, and these operations are referred to as ‘symmetry elements’. When
a particular symmetry element is present, the molecule is said to ‘possess’ that symmetry
element. The four symmetry elements that may be used to characterize a molecular struc-
ture are:

Plane of symmetry. If a plane can be placed in space such that for every atom of the molecule
not in the plane there is an identical atom (which is to say, the same atomic number and
isotope) on the other side of the plane at equal distance from it (i.e., a ‘mirror image’),
the molecule is said to possess a plane of symmetry. The Greek letter σ is often used
to represent both the plane of symmetry and the ‘operation’ of mirror reflection that it
performs. An example of a molecule possessing a plane of symmetry is methylcyclobutane,
as illustrated in Figure B.1. Note that a planar molecule always has at least one σ , since
the plane of the molecule satisfies the above symmetry criterion in a trivial way (the set of
reflected atoms is the empty set). Note also that if we choose a Cartesian coordinate system
in such a way that two of the Cartesian axes lie in the symmetry plane, say x and y, then
for every atom found at position (x,y,z) where z �= 0 there must be an identical atom at
position (x,y,−z).

Proper rotation axis. If a molecule can be rotated about some axis so that the positions
originally occupied by every atom are subsequently occupied by identical atoms, the molecule
is said to possess a proper rotation axis. The axis and the rotation operation performed about
it are typically represented by the notation Cn, where n is the order of the rotation. The
order is the largest value of n for which it is true that a rotation of 2π /n radians about
the axis reproduces the original structure; this is also referred to as a n-fold rotation axis.

Essentials of Computational Chemistry, 2nd Edition Christopher J. Cramer
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09181-9 (cased); 0-470-09182-7 (pbk)
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Figure B.1 Symmetry elements possessed by various molecular conformations. The molecules illus-
trated here have no elements beyond those indicated, but arbitrary molecules may be characterized by
many different symmetry operations

An example of a molecule with a three-fold rotation axis is the conformation of sym-1,3,5-
triethylcyclohexane shown in Figure B.1. Note that all molecules possess a trivial C1 axis
(indeed, an infinite number of them). Note also that if we choose a Cartesian coordinate
system where the proper rotation axis is the z axis, and if the rotation axis is two-fold, then
for every atom found at position (x,y,z) where x and y are not simultaneously equal to 0
(i.e., not on the z axis itself) there will be an identical atom at position (−x,−y,z). If the
rotation axis is four-fold, there will be an identical atom at the three positions (−x,y,z),
(x,−y,z), and (−x,−y,z). Note finally that for linear molecules the axis of the molecule is
a proper symmetry axis of infinite order, i.e., C∞.

Improper rotation axis. Rotation about an improper axis is analogous to rotation about a
proper symmetry axis, except that upon completion of the rotation operation, the molecule is
mirror reflected through a symmetry plane perpendicular to the improper rotation axis. These
axes and their associated rotation/reflection operations are usually abbreviated Sn, where n

is the order of the axis as defined above for proper rotational axes. Note that an S1 axis
is equivalent to a σ plane of symmetry, since the initial rotation operation simply returns
every atom to its original location. Note also that the presence of an S2 axis (or indeed
any S axis of even order n) implies that for every atom at a position (x,y,z) that is not the
origin, there will be an identical atom at position (−x,−y,−z); the origin in such a system
is called a ‘point of inversion’, since one may regard every atom as having an identical
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partner related by inversion through the origin, and the inversion operation itself is usually
denoted i. An example of a molecule containing an S2 axis is the chair conformation of
2,5-dioxo-1,4-tetrahydropyran (Figure B.1). Lastly, note that the presence of higher order
improper axes implies the simultaneous presence of one or more proper rotation axes. In
particular, improper axes Sn where n is odd imply a coincident Cn axis and n perpendicular
C2 axes, and improper axes Sn where n is even imply a coincident Cn/2 axis.

Point of inversion. The action of a point of inversion is described above in the context of
improper rotation axes. Note that planes of symmetry and points of inversion are somewhat
redundant symmetry elements, since they are already implicit in improper rotation axes.
However, they are somewhat more intuitive as separate phenomena than are Sn axes, and
thus most texts treat them separately.

B.2 Molecular Point Groups and Irreducible Representations

An individual molecular structure may possess no symmetry elements at all, or a single
symmetry element, or some combination of multiple symmetry elements. It turns out that
there are a finite number of possible combinations, and each such combination defines what
is referred to as a point group. The names of the various molecular point groups together
with a flow chart indicating how to assign a molecule to a point group are provided in
Figure B.2. [In crystallography, solids can be characterized by space groups, which are
analogous to point groups but more numerous as additional symmetry elements relating
different molecules in the crystal must also be considered. No further discussion of space
groups is provided here.]

There is a special algebra associated with the different point groups, and the mathematical
field of group theory is devoted to this topic. Group theory is a fascinating topic, but only
its most basic aspects are addressed here. To begin, all point groups other than the non-
symmetric C1 group are characterized by two or more so-called irreducible representations,
or irreps for short. Operationally, an irreducible representation defines how a signed or
phased fragment (e.g., an orbital) of the symmetric structure ‘transforms’ under the various
possible symmetry operations that compose the point group.

For example, the Cs point group contains two irreps, usually called a′ and a′′. Fragments
belonging to the a′ irrep are unchanged upon reflection through the symmetry plane of
the molecule. Irreps leaving fragments unchanged under all symmetry operations of the
point group are referred to as ‘totally symmetric’ irreps. The a′′ irrep of the Cs point
group, on the other hand, reverses the phase of a fragment on reflection through the mirror
plane.

A much more detailed example is provided in Figure 6.7, where the C2v point group to
which the water molecule belongs is characterized by four irreps. The totally symmetric
a1 irrep includes orbitals unchanged by rotation about the C2 axis or reflection through
either of the two vertical mirror planes. The a2 irrep includes orbitals that are unchanged
by rotation about the C2 axis but that are inverted by reflection through either of the
two vertical mirror planes (Figure 6.7 does not list any such orbitals since none exist in
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Figure B.2 Flow chart for point-group assignment. A symmetry plane that is perpendicular to a
proper axis of rotation is a σh plane, one that includes the unique proper axis of rotation is a σv plane,
and one that includes the highest order proper axis of rotation and bisects the remaining two-fold axes
of rotation is a σd plane

a minimal basis set representation, but the dxy orbital on oxygen or the antisymmetric
combination of two py orbitals on the H atoms would belong to this irrep in a polar-
ized basis set representation). The b1 irrep includes orbitals that are inverted by rotation and
reflection through the σxz symmetry plane, but left unchanged by reflection through the σyz

symmetry plane, and the b2 irrep includes orbitals that are inverted by rotation and reflection
through the σyz symmetry plane, but left unchanged by reflection through the σxz symmetry
plane.
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B.3 Assigning Electronic State Symmetries

Individual molecular orbitals, which in symmetric systems may be expressed as symmetry-
adapted combinations of atomic orbital basis functions, may be assigned to individual irreps.
The many-electron wave function is an antisymmetrized product of these orbitals, and thus
the assignment of the wave function to an irrep requires us to have defined mathematics for
taking the product between two irreps, e.g., a′ ⊗ a′′ in the Cs point group. These product
relationships may be determined from so-called character tables found in standard textbooks
on group theory. Tables B.1 through B.5 list the product rules for the simple point groups
Cs , Ci , C2, C2h, and C2v , respectively.

Assignment of an electronic wave function to an irrep is typically straightforward. All
doubly filled orbitals are ignored, as the product of all of them with one another is the
totally symmetric irrep, which is the multiplicative ‘one’ in all point groups. Thus, we need
only take the product of all of the singly occupied orbitals to determine the irrep of the wave
function. For a doublet, there is only one singly occupied orbital, so the irrep to which it
belongs determines the irrep of the wave function. Figure 6.9 illustrates this point for H2NO.
Note that, to distinguish it from orbital irreps, the wave-function state symmetry is usually
written with a capital letter. In triplets (and open-shell singlets), there are two singly occupied

Table B.1 Product rules for the Cs

point groupa

⊗ a′ a′′

a′ a′ a′′
a′′ a′′ a′

aSee text for irrep definitions.

Table B.2 Product rules for the Ci

point groupa

⊗ ag au

ag ag au

au au ag

aObjects unchanged by inversion belong to
the ag irrep; objects that change phase on
inversion belong to the au irrep.

Table B.3 Product rules for the C2

point groupa

⊗ a b

a a b

b b a

aObjects unchanged by rotation belong to
the a irrep; objects that change phase on
rotation belong to the b irrep.
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Table B.5 Product rules for the C2h point groupa

⊗ ag au bg bu

ag ag au bg bu

au au ag bu bg

bg bg bu ag au

bu bu bg au ag

aObjects unchanged by rotation belong to a type irreps, while objects changing
phase on rotation belong to b type irreps; objects unchanged by reflection through
the horizontal σ belong to −g type irreps, while objects changing phase on reflection
belong to −u type irreps.

Table B.4 Product rules for the C2v point groupa

⊗ a1 a2 b1 b2

a1 a1 a2 b1 b2

a2 a2 a1 b2 b1

b1 b1 b2 a1 a2

b2 b2 b1 a2 a1

aSee text for irrep definitions.

orbitals, so their product must be taken to determine the state symmetry. Figure 14.4 provides
examples of this process. In more complex open-shell systems, the sequential product of all
of the singly occupied orbitals determines the electronic state symmetry.

Some complications can arise. Although in many point groups the product of any two
irreps is another irrep (as is true for the examples in Tables B.1 through B.5), in some cases
the product of two irreps can only be expressed as a linear combination of two or more
different irreps. A determinant that does not belong to a single irrep is not a true wave
function, but must be combined with other determinants to construct a wave function having
a pure state symmetry. Such situations are beyond the scope of this text.

B.4 Symmetry in the Evaluation of Integrals and Partition
Functions

Mathematical functions and operators can be assigned to irreps just as orbitals can be. This
has enormous implications for practical computations because the integral over all space of
any product that does not contain the totally symmetric representation vanishes, i.e., there
is no point evaluating it. The Fock and Hamiltonian operators both belong to the totally
symmetric irrep of any point group, because they depend only on interparticle distances and
the ∇2 operator, and these quantities are unaffected by changes in the coordinate system
brought about by rotations, reflections, etc. Thus, in evaluating Fock matrix elements of
the form

Fµν =
∫ ∫

φµ(1)Fφν(2)dr(1)dr(2) (B.1)
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Figure B.3 The conformer of 1,2-ethanediol shown on the left may be generated, to within enantio-
meric equivalence, by four different combinations of the left-to-right dihedral angles (ωHOCC, ωOCCO,
ωCCOH). The conformer on the right, on the other hand, is unique. To account for the greater phase-space
volume associated with the four-fold degenerate conformer, computation of its free energy must include
a term of −RT ln4

if the product of the irreps to which φµ and φν belong does not contain the totally symmetric
representation, the integral need not be evaluated, as already discussed in the context of
Figure 6.7. This point is further discussed in the context of transition dipole moments in
Section 14.5. Note that we use the language ‘contains’ the totally symmetric representation
to account for cases where the product of the irreps is a linear combination of irreps, any
one of which is the totally symmetric one.

Finally, recall that the presence of certain symmetry elements reduces the rotational parti-
tion function as described in Section 10.3.5 and Table 10.1. In addition, if a molecule can
adopt the same conformation (to within enantiomerism) using different values for internal
degrees of freedom, then this ‘structural degeneracy’ contributes to the free energy a term of
−RT lnn where n is the number of otherwise identical conformations that employ different
values for the internal degrees of freedom. For example, the two conformations of 1,2-
ethanediol shown in Figure B.3 belong to the C1 and C2h point groups, respectively. The
former is 4-fold degenerate, while the latter has no degeneracy. This effect can be important
in the evaluation of Boltzmann-averaged conformational populations in potentially symmetric
molecules.



Appendix C
Spin Algebra

C.1 Spin Operators

Electrons (and many other particles) have associated with them an intrinsic angular momen-
tum that has come to be called ‘spin’. One of the greatest successes of relativistic quantum
mechanics is that spin is seen to arise naturally within the relativistic formalism, and does
not need to be added post facto as it is in non-relativistic treatments. As with orbital angular
momentum, spin angular momentum has x, y, and z components, and the operators Sx , Sy ,
and Sz, together with orthonormal eigenfunctions α and β of electron spin, are defined from

Sxα = 1
2 h̄β (C.1)

Sxβ = 1
2 h̄α (C.2)

Syα = 1
2 ih̄β (C.3)

Syβ = − 1
2 ih̄α (C.4)

Szα = 1
2 h̄α (C.5)

Szβ = − 1
2 h̄β (C.6)

where i = √−1.
Thus, α and β are eigenfunctions of the operator Sz, with eigenvalues of 1/2 and −1/2,

respectively, in atomic units (recall that the value of h̄ is 1 in atomic units, see Table 1.1).
The spin operator S is defined by

S = Sx + Sy + Sz (C.7)

and repeated application of Eqs. (C.1) through (C.6) reveals that

S2α = 1
2 ( 1

2 + 1)h̄2α (C.8)

Essentials of Computational Chemistry, 2nd Edition Christopher J. Cramer
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and
S2β = 1

2 ( 1
2 + 1)h̄2β (C.9)

That is, α and β are also eigenfunctions of the operator S2 with eigenvalues s(s+1) where,
for a single electron, s is 1

2 .
For an N -electron spin function, the total spin angular momentum is additive, i.e.,

S =
N∑

i=1

S(i) (C.10)

where S(i) is the operator of Eq. (C.7) applied to electron i. The individual Cartesian compo-
nents of the spin angular momentum are also additive. Thus, for a normalized N -electron
spin function �, Eqs. (C.5) and (C.6) imply that

Sz� =
N∑

i=1

sz(i)� (C.11)

where sz(i) is the eigenvalue ± 1
2 of the Sz operator for electron i. Thus � is an eigenfunction

of the z component of the total spin angular momentum with an eigenvalue equal to the sum
of the eigenvalues of the individual electrons.

Consider the operator S2 for a many-electron spin function. From Eq. (C.10) and also
Eqs. (C.1) to (C.6) it follows that

S2 =
N∑

i=1

S2(i) + 2
N∑

i<j

[
Sx(i)Sx(j) + Sy(i)Sy(j) + Sz(i)Sz(j)

]
(C.12)

One may ask under what circumstances are many-electron wave functions eigenfunctions of
S2, and that question is addressed next.

C.2 Pure- and Mixed-spin Wave Functions

For ease of notation only the two-electron case is considered here. Generalization to more
electrons is entirely straightforward, if algebraically tedious. In the simplest case, both elec-
trons are spin-paired in the same orbital, in which event we have

CSS� = 1√
2

∣∣∣∣ a(1)α(1) a(1)β(1)

a(2)α(2) a(2)β(2)

∣∣∣∣
= 1√

2
a(1)a(2)[α(1)β(2) − α(2)β(1)] (C.13)

where the superscript CSS emphasizes that � is a closed-shell state and a is the normal-
ized spatial part of the doubly occupied molecular orbital. If we evaluate S2 for this wave
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function we have

〈CSS�|S2|CSS�〉 = 1
2 〈a2(1)a2(2)〉〈[α(1)β(2) − α(2)β(1)]|S2|[α(1)β(2) − α(2)β(1)]〉

= 1
2 [〈α(1)β(2)|S2|α(1)β(2)〉 − 〈α(1)β(2)|S2|α(2)β(1)〉
− 〈α(2)β(1)|S2|α(1)β(2)〉 + 〈α(2)β(1)|S2|α(2)β(1)〉] (C.14)

Note that since the spatial part of the molecular orbital is independent of spin, it may be
integrated out (to 1). As for the remaining expectation values, if we evaluate Eq. (C.12) for
the spin product function α(1)β(2) we find

S2α(1)β(2) = S2(1)α(1)β(2) + S2(2)α(1)β(2) + 2Sx(1)Sx(2)α(1)β(2)

+ 2Sy(1)Sy(2)α(1)β(2) + 2Sz(1)Sz(2)α(1)β(2)

= 1
2 ( 1

2 + 1)α(1)β(2) + 1
2 ( 1

2 + 1)α(1)β(2) + 1
2β(1)α(2) + 1

2β(1)α(2)

− 1
2α(1)β(2) (C.15)

where we employ atomic units to avoid writing h̄2 repeatedly and evaluate the one-electron
spin operators using Eqs. (C.1) through (C.6) and (C.8) and (C.9.) Similarly, we have

S2α(2)β(1) = 1
2 ( 1

2 + 1)α(2)β(1) + 1
2 ( 1

2 + 1)α(2)β(1) + 1
2β(2)α(1) + 1

2β(2)α(1)

− 1
2α(2)β(1) (C.16)

Using Eq. (C.15) allows us to evaluate the first integral on the r.h.s. of the last equality in
Eq. (C.14) as

〈α(1)β(2)|S2|α(1)β(2)〉 =
∫ ∫

α(1)β(2) 1
2 ( 1

2 + 1)α(1)β(2)dω(1)dω(2)

+
∫ ∫

α(1)β(2) 1
2 ( 1

2 + 1)α(1)β(2)dω(1)dω(2)

+
∫ ∫

α(1)β(2) 1
2 β(1)α(2)dω(1)dω(2)

+
∫ ∫

α(1)β(2) 1
2 β(1)α(2)dω(1)dω(2)

−
∫ ∫

α(1)β(2) 1
2 α(1)β(2)dω(1)dω(2)

= 1
2 ( 1

2 + 1) + 1
2 ( 1

2 + 1) + 0 + 0 − 1
2

= 1 (C.17)

where the orthonormality of the α and β spin functions for each electronic spin coordi-
nate ω permits the trivial evaluation of the individual integrals. Since the fourth integral
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on the r.h.s. of the last equality in Eq. (C.14) differs only by assignment of the electron
labels 1 and 2, it also must have a value of 1. By the same symmetry argument, the
second and third integrals must be equal to one another. Evaluating the second using
Eq. (C.16) gives

〈α(1)β(2)|S2|α(2)β(1)〉 =
∫ ∫

α(1)β(2) 1
2 ( 1

2 + 1)α(2)β(1)dω(1)dω(2)

+
∫ ∫

α(1)β(2) 1
2 ( 1

2 + 1)α(2)β(1)dω(1)dω(2)

+
∫ ∫

α(1)β(2) 1
2 β(2)α(1)dω(1)dω(2)

+
∫ ∫

α(1)β(2) 1
2 β(2)α(1)dω(1)dω(2)

−
∫

α(1)β(2) 1
2 α(2)β(1)dω(1)dω(2)

= 0 + 0 + 1
2 + 1

2 − 0

= 1 (C.18)

Thus, the expectation value of S2 from Eq. (C.14) for the closed-shell state is simply 1
2 (1 −

1 − 1 + 1) = 0.
Another wave function of interest is the one formed from two α-spin electrons in two

different spatial orbitals a and b. This Sz = 1 (see Eq. (C.11)) wave function is written as

3
1� = 1√

2

∣∣∣∣ a(1)α(1) b(1)α(1)

a(2)α(2) b(2)α(2)

∣∣∣∣
= 1√

2
α(1)α(2) [a(1)b(2) − a(2)b(1)] (C.19)

In this case, integration over the normalized non-spin-dependent spatial portion of the wave
function leaves only a fairly simple integral to evaluate for the expectation value of S2,
namely

〈α(1)α(2)|S2|α(1)α(2)〉 =
∫ ∫

α(1)α(2) 1
2 ( 1

2 + 1)α(1)α(2)dω(1)dω(2)

+
∫ ∫

α(1)α(2) 1
2 ( 1

2 + 1)α(1)α(2)dω(1)dω(2)

+
∫ ∫

α(1)α(2) 1
2 β(1)β(2)dω(1)dω(2)

−
∫ ∫

α(1)α(2) 1
2 β(1)β(2)dω(1)dω(2)
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+
∫ ∫

α(1)α(2) 1
2 α(1)α(2)dω(1)dω(2)

= 1
2 ( 1

2 + 1) + 1
2 ( 1

2 + 1) + 0 − 0 + 1
2

= 2 (C.20)

In the case of the Sz = −1 state (i.e., two β electrons instead of α), it is straightforward to
show that the expectation value may be evaluated by the analog of Eq. (C.20) with all spin
functions permuted α to β and vice versa. The resulting expectation value is still 2.

Thus far, we have described wave functions for which

S2� = s(s + 1)h̄2� (C.21)

where s = 0 for the singlet and s = 1 for the triplet. (We have not formally proven that
the wave functions are eigenfunctions of S2, but inspection of the ‘right-hand portions’
of the integrals in the expectation values of Eqs. (C.14) and (C.20) makes this a simple
exercise.) This situation defines what is meant by a singlet (s = 0) or triplet (s = 1) wave
function.

Let us now consider the wave function with an α electron in spatial orbital a and a β

electron in spatial orbital b, i.e.,

50:50
±� = 1√

2

∣∣∣∣ a(1)α(1) b(1)β(1)

a(2)α(2) b(2)β(2)

∣∣∣∣
= 1√

2
[a(1)α(1)b(2)β(2) − a(2)α(2)b(1)β(1)] (C.22)

which has been superscripted 50:50 and subscripted ± for reasons that will be apparent later.
Evaluation of the expectation value for S2 involves

〈50:50�|S2|50:50�〉 = 1
2

[〈a(1)α(1)b(2)β(2)|S2|a(1)α(1)b(2)β(2)〉
− 〈a(1)α(1)b(2)β(2)|S2|a(2)α(2)b(1)β(1)〉
− 〈a(2)α(2)b(1)β(1)|S2|a(1)α(1)b(2)β(2)〉
+〈a(2)α(2)b(1)β(1)|S2|a(2)α(2)b(1)β(1)〉] (C.23)

Note that the second and third integrals on the r.h.s. are zero because of the orthonormality
of the spatial orbitals a and b, whose products appear over the same electronic coordinate in
those integrals. The spatial functions integrate to one in the first and fourth integrals, and the
remaining spin expectation values are just those of Eq. (C.17). Thus, the expectation value
of Eq. (C.23) is 1

2 (1 − 0 − 0+1) = 1. With additional work, it can be shown that 50:50� is
not an eigenfunction of S2.
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By permutational symmetry, it is easy to show that the expectation value of S2 for the
other possible 50:50 wave function, i.e.,

50:50
∓� = 1√

2

∣∣∣∣ a(1)β(1) b(1)α(1)

a(2)β(2) b(2)α(2)

∣∣∣∣
= 1√

2
[a(1)β(1)b(2)α(2) − a(2)β(2)b(1)α(1)] (C.24)

is also 1, and it too fails to be an eigenfunction of S2. In order to construct proper eigen-
functions, we must take linear combinations of the two 50:50 functions, thereby creating
two-determinantal wave functions. In particular, we can construct

OSS� = 1√
2

(50:50
±� − 50:50

∓�
)

= 1
2 [a(1)b(2) + a(2)b(1)][α(1)β(2) − α(2)β(1)] (C.25)

where the spin function is identical to that appearing in the closed-shell singlet wave function
of Eq. (C.13). Since S2 operates only on the spin part of the wave function, OSS� must be an
eigenfunction of S2 with eigenvalue s = 0 just as is true for CSS�. Thus, OSS� is a singlet,
and in particular it is an open-shell singlet (hence the ‘OSS’ superscript), i.e., at least two
electrons are in singly occupied orbitals.

The other linear combination of the 50:50 wave functions is

3
0� = 1√

2

(50:50
±� + 50:50

∓�
)

= 1
2 [a(1)b(2) − a(2)b(1)][α(1)β(2) + α(2)β(1)] (C.26)

After integration over the spatial coordinates, we may evaluate the expectation value of S2 as

〈3
0�|S2|30�〉 = 1

2

[〈α(1)β(2)|S2|α(1)β(2)〉 + 〈α(1)β(2)|S2|α(2)β(1)〉
+〈α(2)β(1)|S2|α(1)β(2)〉 + 〈α(2)β(1)|S2|α(2)β(1)〉]

= 1
2 (1 + 1 + 1 + 1)

= 2 (C.27)

where the integrals on the r.h.s. were simplified using Eqs. (C.17) and (C.18). Thus, the
wave function of Eq. (C.26) is a triplet wave function, and it is the so-called Sz = 0 triplet.

Equation (C.25) and (C.26) make it apparent that we may also write

50:50
±� = 1√

2

(OSS� + 3
0�

)
(C.28)

if a and b are spatially identical in the singlet and triplet wave functions. Equation (C.28)
is the foundation of the sum method, described in Section 14.4.
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C.3 UHF Wave Functions

In evaluating Eq. (C.23), we invoked orthonormality between the spatial orbitals a and b,
each of which contains an electron of different spin. However, in a UHF wave function, the
α and β orbitals are not necessarily orthogonal to one another (only within each set, either
α or β, are all of the orbitals mutually orthogonal to one another). In that case, the second
and third terms on the r.h.s of Eq. (C.23) survive as −〈a|b〉2. In general, one can show that
for a UHF wave function where the number of α electrons is greater than or equal to the
number of β electrons, the expectation value of S2 may be computed as

〈UHF�|S2|UHF�〉 = nα − nβ

2

(
nα − nβ

2
+ 1

)
+ nβ −

occupied∑
i∈α,j∈β

〈φi |φj 〉2 (C.29)

where nζ is the number of electrons of spin ζ and {φ} is the set of UHF molecular orbitals.
Consider the behavior of Eq. (C.29) in certain idealized limits. If there are no β electrons,

then Eq. (C.29) reduces to the correct eigenvalue for a system of all parallel spins (cf.
Eq. (C.21)). If there are β electrons, and for every occupied β MO there is a spatially
identical occupied α MO, then the sum on the r.h.s. of Eq. (C.29) is equal to nβ (there is
one overlap integral value of unity for each occupied β MO with its partner α MO, and
all other overlap integrals must be zero because since other α MOs must be orthogonal to
the partner α MO, so too they must be orthogonal to the spatially identical β MO), and
the expectation value is again the correct eigenvalue for a high-spin system with excess α

electrons. Note, however, that this expectation value can also be achieved to within arbitrary
accuracy without requiring every occupied β MO to have a spatially identical occupied α

MO: all that is required is that the sum of the squares of the overlap integrals approach its
limiting value, nβ .

Finally, consider the case where the overlap between the α and β orbitals is exactly zero
(which could happen, for instance, if all α MOs were on one atom and all β MOs on another
atom with the two atoms infinitely far apart). In that case, the expectation value will be larger
than the pure spin state where only the excess α electrons are unpaired, but smaller than
the value expected for the pure spin state where all electrons are unpaired (i.e., a low-spin
(n+1)-multiplet where n is the total number of electrons, for which the expectation value
would be computed using s = (nα + nβ)/2 instead of s = (nα − nβ)/2). Such a system is
said to be ‘spin-contaminated’ because it is a mixture of the lowest spin state and varying
contributions from states of higher spin multiplicity. Obviously, such wave functions are of
limited utility, since expectation values of other properties will also represent an admixture
of the properties of the different states.

C.4 Spin Projection/Annihilation

When a spin-contaminated wave function is obtained from a UHF calculation, the desired
spin state is inevitably the one of lower spin (otherwise one would have constructed the high-
Sz component of the higher spin state). The contaminated wave function can be improved
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by removing the undesirable higher spin states through a process known as projection or
annihilation. Consider the case where the UHF wave function for the desired state s� is
contaminated by the next higher possible spin state (s+1)�, i.e.,

UHF� = cs
s� + c(s+1)

(s+1)� (C.30)

where each pure spin wave function is normalized and the sum of the squares of the coef-
ficients c is 1 for normalization of UHF�. When the annihilation operator of Eq. (14.19) is
applied to the spin-contaminated wave function we have

As+1
UHF� = cs

S2 − {(s + 1)[(s + 1) + 1]}
[s(s + 1)] − {(s + 1)[(s + 1) + 1]}

s�

+ c(s+1)

S2 − {(s + 1)[(s + 1) + 1]}
[s(s + 1)] − {(s + 1)[(s + 1) + 1]}

(s+1)�

= cs

[s(s + 1)] − {(s + 1)[(s + 1) + 1]}
[s(s + 1)] − {(s + 1)[(s + 1) + 1]}

s�

+ c(s+1)

{(s + 1)[(s + 1) + 1]} − {(s + 1)[(s + 1) + 1]}
[s(s + 1)] − {(s + 1)[(s + 1) + 1]}

(s+1)�

= cs · 1 · s� + c(s+1) · 0 · (s+1)�

= cs
s� (C.31)

Thus, the annihilation operator completely removes the next higher spin state and delivers
a wave function that is a pure s spin state. Note, however, that it is not a normalized
wave function, since cs < 1 (otherwise the original wave function would not have been spin
contaminated). Normalization is simple in this case, since we have

〈UHF�|As+1|UHF�〉 = 〈cs
s� + c(s+1)

(s+1)�|cs
s�〉

= 〈cs
s�|cs

s�〉 + 〈c(s+1)
(s+1)�|cs

s�〉
= c2

s 〈s�|s�〉 + csc(s+1)〈(s+1)�|s�〉
= c2

s (C.32)

With the annihilated wave function in hand, any property may be computed in the usual
fashion as an expectation value of the appropriate operator. The Hamiltonian operator is a
particularly simple operator to work with because we can make good use of the original
UHF wave function in evaluating the expectation value. Thus

EPUHF = 〈UHF�|HAs+1|UHF�〉
〈UHF�|As+1|UHF�〉

= 〈cs
s� + c(s+1)

(s+1)�|H |cs
s�〉

〈UHF�|As+1|UHF�〉
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= 〈cs
s�|H |cs

s�〉 + 〈c(s+1)
(s+1)�|H |cs

s�〉
〈UHF�|As+1|UHF�〉

= 〈cs
s�|H |cs

s�〉
〈UHF�|As+1|UHF�〉

= 〈s�|H |s�〉 (C.33)

where the final line is the desired result. To solve for the projected UHF (PUHF) energy, one
employs the so-called ‘resolution of the identity’ technique in the first line of Eq. (C.33),
giving

EPUHF =

states∑
i

〈UHF�|H |�i〉〈�i |As+1|UHF�〉

〈UHF�|As+1|UHF�〉

= 〈UHF�|H |UHF�〉 +

excited
states∑

i

〈UHF�|H |�i〉〈�i |As+1|UHF�〉

〈UHF�|As+1|UHF�〉 (C.34)

which is the result expressed in Eq. (14.18). Note that the first term on the r.h.s. of the last
equality of Eq. (C.34) is simply the energy of the spin-contaminated wave function, so the
second term may be considered the ‘correction’ associated with spin annihilation. Note also
that the only Hamiltonian matrix elements that will be non-zero will be for excited states
differing from the ground state by double excitations (the singles are zero by Brillouin’s
theorem, and triples and higher are zero because the Hamiltonian is a two-electron operator).
The Hamiltonian matrix elements required to compute the correction term are exactly those
needed for an MP2 calculation (cf. Eq. (7.47)), so the computational effort required for a
PUHF calculation is essentially that for an MP2 calculation.

While the PUHF energy is better than the more highly contaminated UHF energy, there are
many potential problems associated with it. To begin, the molecular orbitals were optimized
for the contaminated wave function, not the annihilated wave function, and as such they may
be considerably less than ideal for the single Slater determinant describing the pure spin state.
In addition, the geometry of the contaminated state may not be a good representation of the
geometry of the pure state. As analytic derivatives are not available for the PUHF energy,
reoptimization is tedious.

Another potential problem is that the wave function may be contaminated not only by
state s + 1, but also states s + 2, s + 3, etc. The s + 1 annihilation operator will reduce
the weights of these states in the annihilated wave function, but it will not eliminate them.
Inspection of Eq. (C.33) should make clear that the higher states will contribute to the
PUHF energy if they appear on both the left and right sides of the Hamiltonian expectation
values with non-zero coefficients. When such contamination is important, recourse to a more
complete projection operator, that annihilates an arbitrary number of spin states is available,
but the computational cost increases to essentially that of an MP4 calculation. Note that the
problems of the orbitals being non-ideal for the pure lowest spin state persist in this instance.
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In order to account for electron correlation, projection operator methods within the MPn

perturbation theory formalism have also been described (Schlegel 1988). Such PMPn methods
can be valuable in assessing convergence of projected pure-spin-state energies, but it should
be recalled that perturbation theory is most successful when the true wave function differs
from the HF determinant by only a small amount. Since the HF determinant starts with
contamination, it is a given that it is potentially too far removed from the true wave function
to be of much use in perturbation theory, and some caution should be exercised. Krylov
(2000) has demonstrated that coupled-cluster theory can be more robust than perturbation
theory in relying on spin-contaminated UHF wave functions so long as the reference orbitals
are chosen properly, but this method too ultimately breaks down as the spin contamina-
tion becomes especially severe. As a final resort, MCSCF methods can always be used to
construct multideterminantal, pure spin states, although this may not be the most convenient
choice for a particular problem.

References
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Appendix D
Orbital Localization

D.1 Orbitals as Empirical Constructs

It is both flattering and vexing to quantum chemists how ubiquitous it has become to ratio-
nalize chemical behavior using molecular-orbital-based arguments. It is flattering to the extent
that it indicates how large an impact quantum mechanics has had on modern chemistry, but
it is vexing because orbitals themselves, unlike the wave function, are not really a rigorous
part of quantum mechanics.

Indeed, there are other formulations of quantum mechanics, all of which have been shown
to be entirely equivalent in a formal sense to the matrix-algebraic-molecular-orbital version,
that do not in any way require an invocation of orbitals. However, the matrix-algebraic
method lends itself most readily to implementation on the architecture of a digital computer,
and thus it has come to overwhelmingly dominate modern computational chemistry. As a
result, the orbitals that are part of the computational machinery for approximately solving the
matrix algebraic equations have taken on the character of unassailable parts of the quantum
mechanical formalism, but that status is undeserved.

Consider, for example, two orbitals which might be obtained from a HF calculation on
ethylene, namely the orthonormal σ and π bonding orbitals, both of which are doubly occu-
pied (Figure D.1). If we restrict our consideration to only these two orbitals, and moreover
we use restricted HF theory so that we can ignore the details of spin orbitals, we can write
the properly antisymmetric HF wave function for this system of two orbitals as

� = 1√
2
σ(1)π(2) − 1√

2
σ(2)π(1) (D.1)

The energy of the system is calculated as the expectation value of the Hamiltonian

〈�|H |�〉 = 1
2 〈σ(1)π(2)|H |σ(1)π(2)〉 − 1

2 〈σ(1)π(2)|H |σ(2)π(1)〉
− 1

2 〈σ(2)π(1)|H |σ(1)π(2)〉 + 1
2 〈σ(2)π(1)|H |σ(2)π(1)〉 (D.2)

Now consider a different wave function, formed from different orbitals. In particular, we
will take the positive and negative linear combinations of the σ and π orbitals shown in

Essentials of Computational Chemistry, 2nd Edition Christopher J. Cramer
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-09181-9 (cased); 0-470-09182-7 (pbk)
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p b = 2−1/2 (s − p)

s a = 2−1/2 (s + p)

Figure D.1 The usual σ and π orbitals of a doubly bonded system (left) and the banana bonds
formed by their linear combination (right)

Figure D.1 to create so-called ‘banana-bond’ orbitals. We define these as

a = 1√
2
σ + 1√

2
π (D.3)

and
b = 1√

2
σ − 1√

2
π (D.4)

It is a simple exercise to show that if σ and π are orthonormal then a and b are too. Let us
now consider the antisymmetric wave function

� = 1√
2
a(1)b(2) − 1√

2
a(2)b(1) (D.5)

The energy of � is

〈�|H |�〉 = 1
2 〈a(1)b(2)|H |a(1)b(2)〉 − 1

2 〈a(1)b(2)|H |a(2)b(1)〉
− 1

2 〈a(2)b(1)|H |a(1)b(2)〉 + 1
2 〈a(2)b(1)|H |a(2)b(1)〉 (D.6)

which may be rewritten using Eqs. (D.3) and (D.4) as

〈�|H |�〉 = 1
8 〈[σ(1) + π(1)][σ(2) − π(2)]|H |[σ(1) + π(1)][σ(2) − π(2)]〉
− 1

8 〈[σ(1) + π(1)][σ(2) − π(2)]|H |[σ(2) + π(2)][σ(1) − π(1)]〉
− 1

8 〈[σ(2) + π(2)][σ(1) − π(1)]|H |[σ(1) + π(1)][σ(2) − π(2)]〉
+ 1

8 〈[σ(2) + π(2)][σ(1) − π(1)]|H |[σ(2) + π(2)][σ(1) − π(1)]〉 (D.7)

A somewhat tedious separation and collection of the 64 individual integrals in Eq. (D.7) (an
exercise left for the industrious reader) leads to
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〈�|H |�〉 = 1
2 〈σ(1)π(2)|H |σ(1)π(2)〉 − 1

2 〈σ(1)π(2)|H |σ(2)π(1)〉
− 1

2 〈σ(2)π(1)|H |σ(1)π(2)〉 + 1
2 〈σ(2)π(1)|H |σ(2)π(1)〉 (D.8)

which has the same r.h.s. as Eq. (D.2). That is, the expectation value of the energy for the
wave function � is the same as that for the wave function �. Since the HF process was
variational, this implies that � is an ‘equally optimal’ wave function as �, and there is no
obvious reason to prefer one over the other.

This particular example illustrates what can be shown more formally to be true in general:
the energy of the wave function is invariant to expressing the wave function using any
normalized linear combination of the occupied HF orbitals, as are the expectation values of
all other quantum mechanical operators. Since all such choices of linear combinations of
orbitals satisfy the variational criterion, one may legitimately ask why the HF orbitals should
be assigned any privileged status of their own as chemical entities.

The answer to that question is that, empirically, the HF orbitals have proven to be useful
models for rationalizing certain chemical phenomenon. To that extent, like many other chem-
ical models that do not have rigorous quantum mechanical foundations, they are useful tools
that now find widespread use in the chemical community. It is worthwhile to consider
briefly the advantages and disadvantages of various schemes for formulating MOs that have
appeared in the chemical literature.

The persistence of the HF orbitals as objects for chemical discussion stems from three
features. First, they are the fundamental products of the HF SCF process, and thus imme-
diately at hand following an HF calculation. Secondly, and most importantly, they have
associated with them specific orbital energies. The HF MOs are precisely those MOs that
diagonalize the Fock operator, and so they have associated energy eigenvalues. It is known
from photoelectron spectroscopy that electrons do reside at distinct energy levels, and from
an experimental standpoint, a molecular orbital is ‘defined’ by the energy of an electron
and the instantaneous difference in electron density between the pre- and post-ionized state
(of course, measuring the density difference on a timescale faster than electronic relax-
ation is impossible, but the relaxed difference may in some cases be reasonably close to
the pre-relaxed difference). Thus, the HF orbitals are natural objects for the discussion of
spectroscopic quantities. Finally, the HF orbitals can be assigned to individual irreps of the
molecular point group; this will be true for other orbitals only if linear combinations of the
HF orbitals are restricted to be exclusively within their individual irreps.

Other orbital localization schemes create MOs that do not diagonalize the Fock operator,
and thus it is more difficult to assign orbital energies to them. However, the canonical HF
orbitals have certain features that are occasionally regarded as undesirable, and this has
motivated the development of alternative localization methods. Thus, for example, many of
the HF orbitals in large systems tend to be highly delocalized, but most chemical reactivity
concepts are local in nature. For the discussion of such concepts, it is desirable to have highly
localized MOs. In general, localization schemes impose some sort of critical constraint on
the final orbitals. For instance, one constraint might be that the repulsion between electrons
in the same orbitals be maximized – this results in very compact orbitals. An alternative is
that interactions between electrons in different orbitals might be minimized – this results in
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maximally ‘distinct’ orbitals. It should be obvious that an infinite number of choices might
be made for how best to combine the HF orbitals to make new orbitals, with goodness
being determined only by how useful the final orbitals prove to be in a given qualitative or
semi-quantitative empirical chemical model.

D.2 Natural Bond Orbital Analysis

A localization algorithm that hews particularly closely to intuitive chemical concepts
is the natural bond orbital (NBO) method of Weinhold and co-workers (Reed, Curtiss
and Weinhold 1988; for latest generation code and additional technical discussion see
www.chem.wisc.edu/∼nbo5/). NBO localization is a multistep process the details of which
are sufficiently complicated that they do not warrant specific identification here – however, a
general overview of the procedure can be described fairly simply. In an initial step, orbitals
that are associated almost entirely with a single atom, e.g., core orbitals and lone pairs,
are localized as so-called natural atomic orbitals (NAOs). Next, orbitals involving bonding
(or antibonding) between pairs of atoms are localized by using only the basis set AOs of
those atoms. Finally, the remaining Rydberg-like orbitals are identified, and all orbitals are
made orthogonal to one another. The result is that, except for very small contributions from
other AOs to ensure orthogonality, all NAOs and Rydberg orbitals are described using the
basis-set AOs of a single atom and all NBOs are described using the basis-set AOs of two
atoms (in cases where resonance or other delocalization effects require orbitals delocalized
over more than two atoms, additional work is required). Thus, NBO analysis provides an
orbital picture that is as close as possible to a classical Lewis structure for a molecule.

This localization scheme permits the assignment of hybridization both to the atomic lone
pairs and to each atom’s contributions to its bond orbitals. Hybridization is a widely employed
and generally useful chemical concept even though it has no formal basis in the absence of
high-symmetry constraints. With NBO analysis, the percent s and p character (and d, f, etc.)
is immediately evident from the coefficients of the AO basis functions from which the NAO
or NBO is formed. In addition, population analysis can be carried out using the NBOs to
derive partial atomic charges (NPA, see Section 9.1.3.2).

Another useful chemical concept is hyperconjugation, which rationalizes certain chem-
ical phenomena in terms of filled-orbital–empty-orbital interactions (see Section 2.2.3).
Consider for instance the torsional potential about the C(3)–O(4) bond in 2,4-dioxaheptane
(Figure D.2). Delocalization of high-energy oxygen lone pair density into the low-energy σ ∗
C(3)–O(2) antibonding orbital is expected to stabilize torsional conformations that maximize
the overlap between such orbitals (in an oxahydrocarbon case like this, the phenomenon is
referred to as the anomeric effect).

NBO analysis can be used to quantify this phenomenon. Since the NBOs do not diago-
nalize the Fock operator (or the Kohn–Sham operator, if the analysis is carried out for DFT
instead of HF), when the Fock matrix is formed in the NBO basis, off-diagonal elements will
in general be non-zero. Second-order perturbation theory indicates that these off-diagonal
elements between filled and empty NBOs can be interpreted as the stabilization energies
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Figure D.2 The torsional potential for 2,4-dioxaheptane ( , left ordinate) exhibits a two-fold
periodicity suggesting a large influence from hyperconjugative effects. The sum of the NBO interaction
energies for the two O(4) lone pairs delocalizing into the C(3)–O(2) σ ∗ orbital (- - - - - -, right ordinate)
shows the same periodicity, with an amplitude of about 11 kcal mol−1. The smaller amplitude of the
full torsional potential reflects primarily the presence of other influences as well as the approximate
nature of the NBO analysis. See Cramer, Kelterer, and French 2001

deriving from hyperconjugation. Figure D.2 illustrates how the minima in the torsional poten-
tial energy curve for 2,4-dioxaheptane are influenced by the changes in hyperconjugation
between the O(4) lone pairs and the C(3)–O(2) antibonding σ ∗ orbital as quantified by NBO
analysis (a similar analysis may be carried out for filled-orbital–filled-orbital repulsive inter-
actions, which are the electronic component of steric interactions). This approach is a nice
energetic complement to other analyses focusing on structural changes or changes in partial
atomic charges (cf. Figure 9.3) in the investigation of hyperconjugative effects. Nevertheless,
it must be stressed that the NBO procedure is only a conceptual model, since it is based on
orbitals, and limitations in its utility may be expected in cases where chemical species are
poorly represented as Lewis structures.
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Anomeric effect, 23, 469, 578
Antisymmetry, 122–126, 190, 265
AOC, (see QM/MM)
Aqueous solvation, (see Water, as solvent)
Arrhenius equation, 528, 545
Atom types, 31, 38, 40, 48–49, 310, 356, 404,

408
Atomic partial charge, (see also Population

analysis) 31–32, 100, 135, 151–152, 171,

270, 309–324, 402–404, 411, 443, 446,
458, 462, 474–476, 480, 579

atoms-in-molecules, 309, 315–318
classes, 310–324
CMn, (n = 1–3), 319–324, 404, 459–461
conformational dependence, 313, 319
discretization, 399
electronegativity equalization, 54, 310–312
ESP, 318–319, 322–323, 449
GAPT, 315
Löwdin, 314–315, 320
Mulliken, 312–314, 320, 322–323, 404
NPA, 314–315, 322–323, 578
SCRF calculations, 404

Atomic radii, 27, 403
Atomic units, 15
Atomization energy, 111, 192, 267, 280–284,

367, 375, 381–382
Atoms-in-molecules, 315–318
Autocorrelation function, 86–88
Avidin, 452–454
Avogadro’s number, 359
Avoided crossing, 499, 540–541

B exchange, 263, 266–267, 295
B1B95, 267–268, 287, 290, 295
B1LYP, 267, 283, 292, 295, 339
B1PW91, 267, 283, 292, 295, 339
B3LYP, 241, 267–268, 271, 278–279,

284–286, 290–292, 294–295, 298–299,
330, 339–340, 347, 350, 381–382, 414,
544–545

B3LYP*, 268, 295
B3P86, 284, 290–291, 330
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B3PW91, 266–267, 284, 288, 290–291,
293–295, 330, 339–340

B86 exchange, 263, 295
B88 correlation, 263, 295
B95 correlation, 264, 295
B97, 285, 287, 295–296, 347
B98, 264, 285, 287, 295
BAC, (see Bond additivity correction)
Band structure, 192, 498
Basis set, (see also Orbital; note that individual

basis sets below are indexed by name not
distinguishing between number or type of
polarization or diffuse functions),
114–115, 117, 128–129, 139, 143, 155,
158, 166–180, 220, 227–230, 256,
273–274, 448, 578

3-21G, 172, 175–176, 192–194, 197, 340
4-31G, 172
6-21G, 172
6-311G, 172, 174, 176–177, 329, 340
6-31G, 172, 174–177, 192–193, 195, 340
additivity principle, 177–178
auxiliary, 261–262, 273
cc-pCVnZ, (n = D, T, Q,. . .), 171, 176,

228–229
cc-pVnZ, (n = D, T, Q,. . .), 171–172,

176–177, 192–193, 197, 228–229,
235, 274, 340

correlation-consistent, 171, 173, 179, 228
d functions, 173–174
density functional, 260–262
diffuse functions, 176, 180, 194, 279, 331,

412, 414
effective core potential, 178–179, 192, 224,

345, 447
EPR-III, 328
excited-state demands, 494
f functions, 174–175, 228
g functions, 174–175
IGLO-III, 328
linear dependence, 182
MAXI-n, (n = 1, 2, . . .), 172
MIDI!, 175–176, 199, 321
MIDI-n, (n = 1, 2, . . .), 172
MIDIY, 175–176
MINI-n, (n = 1, 2, . . .), 171
minimal, 170–172, 181–182, 214, 313
pc-n, (n = 1, 2, . . .), 175–176, 274
plane waves, 273, 448

polarization functions, 173–175, 197, 228,
514

Rydberg-state demands, 498
sp functions, 170–172, 180
splitting, 170–173, 313
STO-3G, 155, 169–171, 184–185,

192–193, 214
STO-MG, 169–170, 172
superposition error, 195–196, 279, 293
VB, 478–480

BB1K, 268, 295
Becke exchange, (see B exchange)
Benzene, 183, 497, 502
Benzyne, (see Didehydrobenzene)
Berendsen coupling, 91
Bergman cyclization, 349
BH&HLYP, 266, 283, 286, 290, 292, 296, 339
Biasing potential, (see Umbrella potential)
Biotin, 452–454
BLYP, 263, 272, 282, 285, 287, 289, 291–294,

330, 339–340, 347, 494–495, 505
Bm, 285, 296
Bohr magneton, 15, 327
Boltzmann distribution, 160, 377, 451, 523,

534–535
Boltzmann’s constant, 71, 358
Bond additivity correction, 243, 371
Bond critical point, 316
Bond dipole moment, 33
Bond dissociation energy, 20–21, 148, 156,

216, 243, 279, 419
Bond length, 3, 6–8, 11, 17, 22, 26–28, 34,

42, 44, 145, 160, 183, 197, 235, 243, 291,
293, 453, 479, 483, 542

equilibrium, 18–19, 40, 337, 342
Bond order, 38, 320–321
Bond separation reaction, 373
Bond stretching, (see Potential energy

functions)
Bonding, 5, 28, 34, 38, 49, 112, 118, 153,

171–172, 193–194, 216, 275, 311, 324,
381, 575, 578

dative, 197, 279
overemphasis at RHF level, 188, 197

Born equation, 396–397, 402, 542
effective radius, 402–403
generalized, 402–404, 408–409, 415,

420–421, 448
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Born-Oppenheimer approximation, 110–111,
331, 489–490, 540

Boundary-element method, 400, 404
BP86, 277, 282, 285–289, 291–292, 340,

347–348
BPW91, 233, 257, 266, 282, 285, 288–289,

291–292, 294, 321, 339, 422–423, 495,
502

BR exchange, 264, 296
Brillouin’s theorem, 213–214, 221, 496, 507,

573
Broken symmetry, (see Density functional

theory)
Bromide/methyl bromide, 440
Brownian dynamics, 80
Brueckner orbital, 226, 231–234
1,3-Butadiene, 207–208, 293
t-Butylvinylidene, 494
BVWN, 282, 330
BVWN5, 494

Cage critical point, 316
CAM exchange, 263, 296
Canonical ensemble, 357–358
Car-Parrinello, 447–448
Carbon monoxide, 244, 294, 299–300,

347–348
Carbon tetrachloride solution, 409, 446, 460
Carbonic anhydrase, 481
CASPT2, (see Perturbation theory,

multireference)
CASSCF, (see Self-consistent field,

multiconfiguration)
Cavitation, 387–388, 406–407, 417
Cavity, 388, 394–406, 410–411, 415, 419–421

charge penetration, 415
general solute, 395, 398, 410
spherical radius, 395–398, 406

CBS, (see Multilevel methods)
Centrifugal distortion, 334
CFF, 50, 53
Charge transfer, 196, 269, 279, 293, 415, 422,

448, 503
Charge-charge interaction, (see also

Electrostatic and Nonbonded interactions),
48, 90, 157, 307, 309, 400, 404, 445

Charge-dipole interaction, 307, 446
CHARMM, 52, 60, 99, 408, 476, 482–483
CHELPG, (see Atomic partial charge, ESP)

Chem-3D, 50, 55
Chem-X, 53, 60
Chemical shift, 344–349, 451, 472

scaled, 345–346
Chloride/allyl chloride, 198, 293
Chloride/methyl chloride, 185–186, 390
Chloroform solution, 387, 409, 411, 416, 446,

465
Circular dichroism, 504
CIS, 140, 187, 214, 496–499, 502, 514–515
CISD, (see Configuration interaction)
Claisen rearrangement, 392, 448–449,

463–464
CMn, (n = 1–3; see Atomic partial charge)
CNDO, 136–139
Coarse-grained models, 35, 98
Code, (see Software)
Collective coordinates, 35, 98
Collision theory, 528, 542
Comparative molecular field analysis, 308–310
Complete basis set, (see Multilevel methods)
Compressibility, 418, 446
Condensed-phase effects, (see also Solvation

and Solvatochromism), 379, 385–393,
538–539

Condon-Slater rules, 212–213, 221, 510
Configuration interaction, (see also CIS),

211–216, 224–227, 244–246, 328, 336,
401, 496–502

full, 211, 224, 278
matrix elements, 212–213
multireference, 216, 495, 501, 505
quadratic, 226–227, 281, 286–287, 292,

336, 340
single-reference, 211–216, 496–497
spin-flip, 215–216, 234, 496
VB, 477–481

Configuration state function, 206–212, 220,
499

Conformational analysis, 19, 97, 150, 313, 459
Conformational averaging, 64–66, 97, 193,

288, 377–378, 563
Conical intersection, 499–500
Continuum solvation, (see Solvation)
Contraction, (see Orbital)
Convergence

binding energy, 196
correlation energy, 228–229, 236
DFT with respect to basis set size, 274, 288
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Convergence (continued )
finite-field calculation, 327
geometry optimization, 40–50, 141, 183,

191
HF SCF, 121, 128–129, 166, 181–182, 207,

262, 491
induced dipole moment, 446
KS SCF, 274, 491, 495
multipole-multipole interactions, 307
quadratic, 181
SCRF, 396–397
simulation, 93–96, 444
solvation free energy, 401

Core electrons, 134, 178–179, 195, 228, 240,
345, 474

Core potential, (see Basis set)
Correlation, (see also Electron correlation), 110
Correlation energy density, 259, 263
COSMO, (see Solvation)
Coulomb integral, (see Two-electron integral)
Coulomb radius, 403–404
Coulomb’s law, 2, 14, 37, 402
Counterpoise correction, 195
Coupled-cluster theory, 224–227, 229–237,

242, 244–246, 336, 401, 465, 574
predictions from, 244–246, 281, 292, 339,

375, 381–382, 422–423, 495, 544–546
scaled, 229–230
spin-flip, 227

Coupling parameter, 265, 433–437, 443–444,
449, 458, 464, 481

Cross terms, 34–36
CS correlation, 296
Curtin-Hammett principle, 300
Cutoff distance, 47, 88–90
CVFF, 53, 60
Cyclobutene, 207–208

d orbitals, 153–155, 167, 285, 291
Darwin relativistic correction, 223–224
Davidson correction, 215
Debye-Hückel parameter, 395, 403
Decay time, 87, 95
Degeneracy, 204–206, 231, 244, 324, 333,

350, 359–364, 498, 563
structural, 364, 563

Degrees of freedom, 6, 20, 34, 42–43, 69, 75,
78–80, 88, 92, 183–186, 338, 342, 394,
429, 442, 523, 525–526, 531–532, 535,
538, 563

Delta SCF, 194–195, 288, 330–331, 494–496,
503

Density functional theory, 249–300, 371
broken symmetry, 275–276, 545
multideterminantal, 276
overdelocalization, 279–280, 294, 330–331
predictions from, (see individual functional

names)
projected, 494, 506–507
SCI and MRCI, 498, 501
tight-binding, 268–271, 321–322, 404
time-dependent, 497, 501–504, 514–515

Density matrix, 127–128, 181, 188–189, 196,
261–262, 308, 328, 396, 404, 476

spin, 189, 328, 330
spin-difference, 328

Deprotonation, (see Acidity)
Diazene, 505–507
1,2-Dichloroethane, 398, 459–460
Didehydrobenzene

1,3-, 197
1,4-, 231–234, 254, 275, 277, 349–350,

374–375
2,5-Didehydropyridinium cation, 231–234, 275
Dielectric constant, 2, 32–33, 98, 101, 394–397,

403, 405, 417, 421, 452, 460, 512, 542
Diels-Alder reaction, 285, 460
Diffusion, 88, 543
Dipole moment, 32–33, 37, 82–84, 143, 152,

198, 294, 306–307, 310, 315, 320–326,
332, 342, 387–388, 397, 411, 445,
463–464

induced, 33, 325, 387–388, 446, 463–464
Dipole-dipole interaction, (see also

Electrostatic and Nonbonded interactions),
23–28, 32, 47, 90, 307, 445

Dirac δ, 84–85, 224, 439
Direct dynamics, 532
Direct methods, 13, 191
Dispersion, (see also Nonbonded interaction),

28–29, 149, 155, 192, 195, 198, 271, 293,
371, 388, 406–408, 447, 513

Divide-and-conquer formalism, 274
DNA, (see Nucleic acids)
Docking, 62–64, 404, 420, 454
Double-wide sampling, 434
DREIDING, 38, 53
Drug design, 62, 152–153, 309–310
Dry cleaning, 422
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Dual topology, 443
Dynamics,

molecular, 72–80, 91–96, 273–274, 399,
420–421, 431–434, 438–440, 444,
447–454, 463, 474–477, 482–484,
513, 538

non-adiabatic, 539–544
reaction, 357, 423, 482–484, 519–546

ECEPP, 54
Eckart potential, 536
EDF1, 268, 282, 296
Effective core potential, (see Basis set)
Effective fragment potential, 447, 465
Eigenfunction, 106, 111, 120–122, 126, 166,

173, 182, 188, 190, 212, 216–218, 220,
255–256, 324–325, 328, 332, 336,
507–509, 565–570

Eigenvalue, 95, 106–107, 110–111, 121–122,
149, 190, 206, 214, 216, 219–220, 250,
253, 255, 272, 325, 330–333, 335–337,
362, 479, 496, 502, 507, 540, 565–570

Electric multipole moment, (see Multipole
moment, electric)

Electrochemistry, 410, 413–415, 422–424,
541–544

Electron affinity, 137, 176, 195, 270, 285,
288–290, 311, 330–331, 414, 423

Electron correlation, 111, 128–129, 132–133,
149, 165, 173, 178, 192–195, 203–246,
251, 280, 330, 388, 493, 574

angular, 228
core, 228, 242–243
core-valence, 228, 240–241
dynamical, 203–205, 211, 216, 223, 233,

497, 501
effect on geometries, 197–198, 235
effect on solvation free energy, 401, 406
effect on vibrational intensities, 341
energy, 129, 132–133, 149, 165, 178, 214,

224, 242, 370–372
exchange, 128, 189, 251, 265–267, 274, 278
non-dynamical, 182, 203–205, 209, 212,

216, 223, 246, 275–277, 285, 291, 351,
495, 501

radial, 228
scaled energies, 238–239

Electron density, (see also Density functional
theory and Gradient), 61, 112, 249–280,
314–318, 421, 475–476, 577

Electron spin resonance, 189, 305, 327–330
Electron transfer, 422–424, 541–544
Electronegativity, 23, 31, 152, 171, 270, 307,

310, 313, 318, 474
Electronic energy, 110–111, 121, 148, 154,

203, 206, 220, 238, 332–333, 366, 375,
412, 525

Electronic excited state, 140–141, 176,
186–187, 254, 273, 360–361, 487–513

Electronic g value, 327, 330
Electrostatic interaction, (see also

Charge-charge, Dipole-dipole, and
Nonbonded interactions), 30–34, 88, 90,
100, 195, 198, 387–388, 393–406, 444,
447, 461–462, 467, 474, 478

Electrostatic potential, (see also Atomic partial
charge), 199, 308–309, 318–319,
394–395, 399–400, 405

Electrostriction, 452
Elementary reaction, 519–523, 531
Empirical valence bond, 477–482
Enantiomeric excess, 160
Enediyne, 349–350
Enolase, 482–484
Ensemble, 69, 82, 91–93, 99, 355–366,

432–434, 440, 463
Ensemble average, (see also Expectation

value), 70, 83–88, 429, 431–437, 441,
443, 452–454, 463

Enthalpy, (see also Heat of formation), 10, 92,
355–356, 358, 366–378, 381–383, 412,
430, 444, 527–528, 537, 545

Entropy, 355, 358–366, 376–378, 386, 430,
445, 452–453, 527–528, 545

bottleneck, 523, 533
Enzyme-substrate binding, 62–63, 400,

438–439, 442, 452–454, 457–458,
482–484

Equation-of-motion method, (see Propagator
method)

Equilibration, 92–93, 96, 311
Equilibrium constant, 11, 41, 62, 132,

379–380, 386, 389, 416, 432, 520,
524–525

Equilibrium fraction, 377
Ergodicity, 72, 93, 431
ESFF, 54, 60
Essential dynamics, (see Principal components

analysis)
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Global minimum, 23, 46, 97, 146, 383
Glucose, 60, 150–151, 193, 235, 240, 385
Gradient,

corrected density functionals, (see
Generalized gradient approximation)

electron density, 263–264
potential energy surface, 43–45, 133, 144,

196–198, 221, 234–235, 238, 243, 260,
291, 319, 401, 472, 477, 497, 505, 522,
532, 573

Green’s function, (see Propagator method)
Grid, 62–64, 260, 308, 318, 338, 399–401,

466–467
docking, 62–64
for ESP charge, 318
integration over, 260, 338, 399–400

GROMOS, 54, 60, 99
Ground state, 109, 115, 360, 487–504,

507–508, 511, 513–515
Group theory, (see Point group and Symmetry)
GVB, 209

H&H, 266, 296
Half-electron method, (see Hartree-Fock

theory)
Half-life, 521
Hamiltonian, 72, 106–111, 119–122, 154, 157,

166, 179, 203, 212, 215, 219–220, 223,
249–250, 252–255, 262, 321, 325–327,
387, 396–397, 434, 436, 457, 459, 461,
478, 496, 508, 562, 572–575

determination from electron density,
249–250, 252–254, 475

EVB, 477–482
including radiation field, 508
non-interacting, 122, 219–220, 255–256,

265
QM/MM, 457, 459–462, 467–469

Hardness, 270
Harmonic oscillator, 61, 72–74, 336–342, 356,

364–365, 376, 484, 527, 531, 539
Harris functional, 269
Hartree product, 120–122
Hartree-Fock theory, 126–129

ab initio, 126–129, 165–199, 203–205, 327
and DFT, 258, 267
half-electron, 148
instability, 234
limit, 128–129, 165–166, 173, 176–178,

228, 230

periodic, 192
predictions from, 192–199, 281, 287–289,

292–294, 322–323, 330–331,
338–340, 346–348

projected, 506, 571–574
QM/MM modifications, 462
restricted, 126–128, 190, 197, 205, 234, 487
restricted open-shell, 188–190, 206, 325,

328–329
semiempirical, 128, 131–147
TS structures, 197–198
unrestricted, 148, 188–190, 234, 244, 272,

324–325, 328, 506, 545, 571–574
Hartree-Fock-Slater method, 252
HCTH, 264, 274, 283, 285, 287, 289, 292, 296
Heat capacity, 366, 445–446
Heat of formation, 37, 40–41, 142, 147–148,

155, 192, 240–244, 356, 366–375, 378,
381–383

Heaviside function, 534
Heisenberg spin ladder, 505
Hellmann-Feynman theorem, 264, 326
Hessian, 44–46, 185, 191, 221, 260, 336–338,

365–366
Hexachloroethane, 422–424
HF/3–21G/OPLS, (see QM/MM)
Hindered rotor, 376–377
Histogram, 83–86, 439, 541
Hohenberg-Kohn theorems, 252–254, 273, 494
Hole function, 251, 257, 278
Hooke’s law, 18
Hückel theory, 115–119, 269

extended, 134–136, 181
Hund’s rule, 204
Hybrid DFT, (see Adiabatic connection)
Hydrazine, 138–139, 151
Hydrogen bonding, 33, 50, 112, 145, 149–151,

156, 158, 193, 195, 198, 279, 293, 309,
386, 407, 433, 449, 460, 463, 513

Hydrogen cyanide, 316, 322, 347, 430–435
Hydrogen electrode, 410, 414, 423
Hydrogen fluoride, 176, 236, 294, 347–349
Hydrogen-atom transfer, 267, 286, 537–538
Hydrophobicity, 152, 388, 407–408, 449, 452
Hydroxylamine, 381–383
8-Hydroxyquinoline, 513–515
Hyperconjugation, 24–25, 313, 578–579
Hyperfine coupling, 10, 189, 305, 327–330,

343–344
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Hyperpolarizability, 325–327
Hypervalency, 143, 148, 153–155, 174–175,

197
Hysteresis, 434

Ideal gas assumption, 358–359, 361–362, 379,
527

IGLO, 345
IMOMM, (see QM/MM)
Implicit solvation, (see Solvation)
Improper torsions, 27
Index of refraction, 409, 512, 542
INDO, 139–143, 153, 181
INDO/S, 139–141, 153, 497, 502, 514–515
Infrared spectroscopy, (see Vibrational

spectroscopy)
Intensity, (see Frequency)
Internal coordinates, 6–7, 29, 34, 36, 46–48,

82, 336, 459, 522, 539, 541
Internal energy, 92, 356, 358–366, 376–377,

430–432, 444, 453, 525
Intrinsic reaction coordinate, (see Reaction

coordinate)
Ion convention, 378
Ionic strength, 394–395
Ionization potential, 116, 135, 137, 194–195,

270, 272, 285, 311, 330–331, 414, 502
predicted values, 141, 143, 149, 194–195,

288–290, 423
valence-shell, 135

IPCM, (see Solvation)
IRC, (see Minimum-energy path)
Irreversible reaction, 520, 522, 524
ISM, 264, 296
Isodesmic equation, 166, 372–375, 381–382,

413
Isogyric, 373–374
Isotope effect, 357, 528–531

kinetic, 482–484, 528–531, 533, 537–538

Jahn-Teller distortion, 206
Jellium, 250

KCIS, 264, 296
Kinetic-energy density, 264
Kinetic-energy functional, 250, 255–258, 262,

264, 274–275
Kinetic-energy operator, 107, 266, 269, 274,

332, 344

Kinetic isotope effect, (see Isotope effect)
Kinetics, 199, 267, 334, 344, 390, 393, 421,

482–483, 519, 523, 537
Kirkwood-Onsager equation, 396–397
KMLYP, 286–288, 296
Kohn-Sham theory, (see also Self-consistent

field), 255–257, 274–278, 397, 448, 578
QM/MM modifications, 461–462

Koopmans’ theorem, 149, 194–195, 272,
330–331

Kramers-Grote-Hynes theory, 539
Kronecker δ, 107, 224

Landau-Zener model, 541
Langevin dipole, 466–467
Langevin dynamics, 80, 539
Lap correlation, 264, 297
Laplacian operator, 107, 127, 562
LCAO approach, 111–113
Leapfrog algorithm, 77–78, 101
Lennard-Jones potential, 29–30, 33, 47, 155,

271, 461–463, 478
Lewis structure, 209, 578–579
LG exchange, 263, 297
Line search, 44
Linear response theory, 387
Linear scaling, (see Scaling behavior)
Link atom, 473–477
Liquid crystal, 417
Local density approximation, 258–263, 266
Local minimum, 6, 41–46, 61, 69, 183,

185–186, 235, 291, 337–338, 377–378,
419, 522–523

Local spin density approximation, 259–267,
278, 282, 285–286, 288–289, 291–292,
294, 345–348

Locally enhanced sampling, 98
London forces, (see Dispersion)
LT2A, 297
LYP correlation, 263, 266, 291, 297

MACROMODEL, 50–51
Magnetic multipole moment, (see Multipole

moment, magnetic)
Marcus theory, 541–544
Markov chain, 82
Mass-velocity relativistic correction, 223
Mataga-Nishimoto integral, 137
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Matrix diagonalization, (see also Scaling
behavior), 14, 212–214, 262, 274, 462,
480, 496, 522

Matrix elements, (see also Configuration
interaction), 114, 116, 119, 127–128, 138,
184–185, 213, 222, 257, 269, 272, 345,
462, 496–497, 502, 510, 562, 573

Matrix isolation, 349–351
Mayer bond order, 320–321
MBPTn, (see Perturbation theory)
MCG3, (see Multilevel methods,

multicoefficient models)
MCSCF, (see Self-consistent field,

multiconfiguration)
Membrane, 418, 421
Memory, 13, 191
Menschutkin reaction, 393
meta-Generalized gradient approximation, 264,

268, 278, 285
Metal, (see also Solid and Transition metal),

26, 38, 61, 141, 179, 275, 286, 291, 299,
328, 452, 542

Metastability, 96
Methanol, 100, 156, 208, 211, 299–300, 319,

347, 437–438
Methyl radical, 116, 188–189, 330, 343–344,

374
Methyldiazonium cation, 317
Metropolis sampling, 81–82, 451, 459
Microcanonical ensemble, 91
MINDO/3, 141–145
Minimum, (see Global and Local minima)
Minimum-energy path, (see also Reaction

coordinate), 7, 449, 522–523, 531–532,
538, 545

Missing parameters, 39–41
MM2, 38, 40, 50, 55, 59–60
MM2*, 50–51
MM3, 14, 20–21, 38, 50, 55, 59–60, 64–65,

341, 469–471
MM3*, 50–51
MM4, 55
MMFF, 38, 50, 56, 60, 341, 459
MMX, 56
MNDO, 143–156, 158, 193, 281, 287,

346–347
MNDO/d, 145, 153–155
MNDOC, 145
Model, (definition), 2

Model chemistry, 180, 240
Mole, 355
Molecular dynamics, (see Dynamics)
Molecular electrostatic potential, (see

Electrostatic potential)
Molecular mechanics, 17–66, 150, 264, 341,

445, 457–484, 532
Molecular orbital, (see Orbital)
Molecular orbital theory, 105–129, 203–244,

271–280, 285, 575–579
ab initio, 129, 131, 133, 143, 165–246
semiempirical, 128, 131–162, 237, 260,

375
Molecular rotational constant, 333
Molecular weight, 100, 152, 362, 380, 450
Molecularity, 519
MOMEC, 56
Moment of inertia, 6, 94, 332–334, 362–364,

377
Monte Carlo, 64, 80–82, 90, 92–93, 259,

431–434, 438–440, 444, 447, 449, 451,
459, 463, 513

Morse potential, 20–21, 30, 311, 478
mPBE exchange, 263, 279, 297
MPn, (n = 2, 3, 4, . . . ; see Perturbation

theory)
mPW exchange, 263, 297
MPW1K, 267–268, 279, 283, 285–288,

297
mPW1N, 268, 297
MPW1S, 268, 297
mPW1PW91, 268, 283, 287, 290, 292, 297,

339
mPW3PW91, 284, 293, 339
mPWPW91, 283, 285, 287, 290, 292, 339,

503
MST, (see Solvation, PCM)
Mulliken, (see Population analysis)
Multiconfigurational molecular mechanics, 50,

532
Multilevel methods, 239–244, 260

CBS, 239, 242, 281, 286–289, 371, 382
Gn, (n = 1–3), 240–243, 281, 284, 289,

291, 371, 382
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230–231, 269, 498, 502, 577
floating, 173
frozen, 215, 475–476
gauge-including, 345
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Pierotti’s formula, 406
pKa , (see Acidity)
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RASSCF, (see Self-consistent field,

multiconfiguration)
Rate constant, 12, 519–522, 532–538,

541–546
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United-atom model, 38, 51, 446
Universal gas constant, 359, 542
Urey-Bradley term, 26, 100
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